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Jean Lévine, Laurent Praly

Centre Automatique et Systèmes,
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Abstract— Electrostatic micro-actuators are not linearly con-
trollable in a set containing the origin due to a quadratic term
of electrical variable appearing as the input to the mechan-
ical subsystem. Consequently, such systems are not feedback
linearizable and thus not differentially flat on this set and the
application of techniques based on feedback linearization leads
usually to an unbounded control. This work aims at developing
control schemes which should be bounded everywhere in the
whole operational range. As there are no existing general
frameworks for tackling the control design for the system under
consideration, the approach of Lyapunov design combined with
backstepping is used. The obtained control scheme is proved to
stabilize the system at the above mentioned uncontrollable set.
Furthermore, we address the output feedback control using a
reduced order observer and certainty-equivalence implementa-
tion. The closed-loop stability is demonstrated by both stability
analysis and numerical simulation.

I. INTRODUCTION

This paper addresses the problem of the control of a one

degree of freedom (1DOF) parallel-plate electrostatic actua-

tor driven by a voltage source. The schematic representation

of such a device is given in Fig. 1, where m is the mass of

the movable upper electrode, b is the damping coefficient,

k is the elastic constant, A is the area of electrodes, G is

the air gap, G0 is the zero-voltage gap, x is the normalized

deflection, and R is the loop resistance. This is one of the

most popular devices in micro-electromechanical systems

(MEMS), such as micro-mirrors, optical gratings, variable

capacitors, and accelerometers. This simple MEMS is often

modeled as a rigid body, though it may be considered as a

reduced-order model of an infinite dimensional micro-device,

e.g. micro-beam or micro-plate [16].

Fig. 1. 1DOF parallel-plate electrostatic actuator.
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Micro-actuator is a key component in such applications

as adaptive optics in which a deformable mirror is actuated

by an underlying two-dimensional array of such devices,

forming the desired configuration of reflecting surface for

correcting optical aberrations [19]. Potentially, a deformable

mirror in adaptive optics systems can contain several hundred

thousands of micro-actuators. Therefore the control system

is of great importance in order to obtain the enhanced

performance required in this application.

It is straightforward to show that due to the quadratic

term q2 appearing in the mechanical subsystem, where q

represents the charge on the device (cf. (1) in Section II),

the Jacobian linearization of such a system is not controllable

at points where q = 0. Consequently, controls derived from

feedback linearization will usually explode as the trajectory

of the system is approaching these points. We remark that

the only uncontrollable equilibrium point for System (1) is

the origin, corresponding to the zero-voltage position. As

the zero-voltage position is often taken as the initial position

of the device, one needs to operate frequently around this

singular point. It happens also in the application of adaptive

optics that a big amount of devices need only to deflect

slightly from their initial position for producing desired con-

figurations for certain patterns. Hence, a precise manipulation

for small deflections while assuring the overall performance

in the full operational range is a realistic requirement. Note

that System (1) is globally asymptotically stable at the origin

if the actuation voltage is set to zero. Therefore a simple

solution for avoiding the singularity is to remove the control

signal if one wants to bring the device to this position.

However, with this control the accuracy and the resolution

of the system around the origin will be compromised. In

addition, the amplitude of control signal can still be very

high over a region near the origin, which constitutes a serious

obstacle to experimental implementations.

Control of linearly uncontrollable systems has attracted

many attentions in recent years and one can find in the

literature existing frameworks for tackling this problem for

systems with special structures, in particular systems includ-

ing odd order power integrators [2], [20], [9], [3]. However,

for systems with even order power integrators, as the one

considered in this work, no simple solution is known. In this

work, we seek control schemes that should be bounded in the
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whole operational range while being capable of enhancing

the performance of the system described in (1).

Note that to avoid the singularity due to the uncontrollable

linearization, one can use such techniques as input-output

linearization [12], which is an implementation of the charge

feedback introduced in [15]. However, the performance of

the system using this type of control is mostly dominated

by the mechanical subsystem and might be poor if, e.g., the

natural damping of the device is too low or too high. A

remarkable work on avoiding this singularity while providing

an enhanced performance is the passivity-based control [10],

[11]. In this work, we present an alternative solution based

on backstepping and Lyapunov design. We will show that our

design will result in a continuous or smooth control and the

system considered can be stabilized by an output feedback

control.

It is interesting to note that the dynamics of some magnetic

levitation systems have similar properties as the one studied

in this paper [7], [8], [13]. A more popular example is

the magnetic levitation of a steel ball (see, e.g., §8.3 of

[5]). In these systems the electrical variable (the current or

the flux) acts as the input to the mechanical subsystem in

quadratic form. The approach proposed in this paper can

then be applied to these systems. Since electrostatic and

electromagnetic forces are among the most popular actuation

mechanisms in electromechanical systems, we might expect

that our work is of practical interest.

II. SYSTEM DESCRIPTION

According to [14], [21], the dynamical model of 1DOF

parallel-plate electrostatic actuator in a normalized coordi-

nate is given by :

ẋ = v, (1a)

v̇ = −2ζv − x +
1

3
q2, (1b)

q̇ = −1

r
q(1 − x) +

2

3r
us, (1c)

where x is the deflection, v is the deflection speed, q is

the charge, us is the actuation voltage (the control signal),

ζ > 0 is the damping ratio, and r is the resistance in the

actuation circuit loop. All variables appearing in (1) are

defined in normalized coordinates and are dimensionless.

Physically, the movement of the actuator is limited by the

fixed electrode. As in practice an insulating layer is often

added on the fixed electrode in order to prevent the device

from shorting, the maximum displacement of the movable

plate is x = 1 − δ, where δ is the normalized thickness of

the insulating layer. System (1) is thus defined on the state

space X =
{

(x, v, q) ∈ R
3 | x ≤ 1 − δ

}

.

To address the problem of stabilizing the system at the set-

points, we consider an equilibrium (x̄, v̄, q̄, ūs). To determine

all equilibria of System (1) we note firstly that v̄ ≡ 0.

Secondly, since the electrostatic force is always attractive

regardless of the sign of the charge, there are no equilibria

for x < 0. Therefore, x̄ ∈ [0, 1 − δ] and at the equilibrium

the charge is given by q̄ = ±
√

3x̄. Letting x1 = x − x̄,

x2 = v − v̄, x3 = q − q̄, and u = us − ūs, the system (1)

becomes

ẋ1 = x2, (2a)

ẋ2 = −x1 − 2ζx2 +
2q̄

3
x3 +

1

3
x2

3, (2b)

ẋ3 =
1

r
(q̄x1 + x1x3 + (x̄ − 1)x3) +

2

3r
u, (2c)

which is defined on the state space

X̄ =
{

(x1, x2, x3) ∈ R
3 | x1 ≤ 1 − δ − x̄

}

.

The set-point control of System (1) is then transformed to

the stabilization of System (2) at the origin.

Note that (2c) can be written as

ẋ3 = ū (3)

where ū is a new control defined by

ū =
1

r
(q̄x1 + x1x3 + (x̄ − 1)x3) +

2

3r
u. (4)

The contact of the two plates happens when x1 = 1−δ−x̄,

at the boundary of X̄ defined as

∂X̄ =
{

(x1, x2, x3) ∈ X̄ | x1 = 1 − δ − x̄
}

.

After contact, if one continues to charge the device, the dy-

namics of the mechanical subsystem might collapse. When it

happens, the mechanical subsystem will no long be governed

by (2a)-(2b) but by

ẋ1 = 0, (5a)

ẋ2 = 0. (5b)

Hence, the system exhibits switching behavior on ∂X̄ . Note

that at any equilibrium q2 = q̄2 = 3x̄ ≤ 3(1 − δ), therefore

q can be used as a switching signal, as proposed in [10]. To

completely characterize the contact dynamics, we need the

following assumptions:

Assumption 1: [10] The velocity of the moveable elec-

trode before and after contact satisfy the relation x2(t
+
c ) =

−µx2(t
−
c ) where 0 ≤ µ ≤ 1, and x2(t

−
c ) and x2(t

+
c ) are

the velocities of the moveable electrode just before and after

contact respectively.

Assumption 2: [10] When the system is restricted on ∂X̄ ,

the mechanical dynamics are governed by (5a)-(5b) if q2 ≥
3(1 − δ) and switch back to (2a)-(2b) if q2 < 3(1 − δ).

Assumption 3: The charge on the device just before and

after contact remains unchanged.

Note that Assumption 1 is an intuitive consequence of

Newton’s law of motion. When the movable plate hits the

fixed one, it will change the moving direction. After contact,

the velocity would be reduced or become null since the

kinetic energy might be partially or entirely absorbed at the

contact. Assumption 3 is also in accordance with the physical

property of electrostatic actuators, because, as the current

across the device is always finite, one can not add or remove

charges to or from the device instantaneously.
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III. STABILIZATION BY STATE FEEDBACK

A. Stabilization Including the Uncontrollable Equilibrium

Our objective is to find a controller being able to stabilize

System (2) at any equilibrium, including (x̄, v̄, q̄) = (0, 0, 0)
at which the system is not linearly controllable. Consider

now an energy-like Lyapunov function candidate:

V1 =
1

2
x2

1 +
1

2
x2

2. (6)

The time derivative of V1 along the solutions of the corre-

sponding subsystem of (2) is

V̇1 = −2ζx2
2 +

2q̄

3
x2x3 +

1

3
x2x

2
3. (7)

Therefore a virtual control of the form

x3d = k1sgn(q̄)min(x2, 0)2n(1 − δ − x1 − x̄), (8)

where k1 is a positive constant, n is any positive integer,

and sgn : R → {−1, 1} with sgn(x) = 1 iff x ≥ 0, would

render V̇1 negative semidefinite for any q̄. The term sgn(q̄)
is for dealing with q̄ < 0. Note that x3d is identically zero

on ∂X̄ . Obviously, this control will have the effect of adding

damping to the system when x2 < 0.

As the virtual control x3d is differentiable, we can proceed

with the backstepping design by augmenting V1 as:

V = V1 +
1

2
(x3 − x3d)

2
. (9)

The time derivative of V along the solutions of (2) yields

V̇ = − 2ζx2
2 +

2q̄

3
x2x3 +

1

3
x2x

2
3

+ (x3 − x3d) (ẋ3 − ẋ3d)

= − 2ζx2
2 +

2q̄

3
x2x3d +

2q̄

3
x2 (x3 − x3d)

+
1

3
x2x

2
3d +

1

3
x2

(

x2
3 − x2

3d

)

+ (x3 − x3d) (ẋ3 − ẋ3d)

= − 2ζx2
2 +

2q̄

3
x2x3d +

1

3
x2x

2
3d + (x3 − x3d)

×
(

ū − ẋ3d + x2

(

2q̄

3
+

1

3
(x3 + x3d)

))

.

Therefore a control of the form

ū = −k2 (x3 − x3d) + ẋ3d − x2γ(x3, x3d) (10)

where

γ(x3, x3d) =
2q̄

3
+

1

3
(x3 + x3d) (11)

and k2 is a positive constant, would render V̇ negative

semidefinite. It is straightforward to verify that the time

derivative of V defined in (9) along the solutions of the con-

strained system defined on ∂X̄ is also negative semidefinite.

Furthermore, the virtual control x3d ≡ 0 on ∂X̄ . Therefore

we have by Assumption 1 and Assumption 3 that

x2
2(t

+
c ) ≤ x2

2(t
−
c ),

(

x3(t
+
c ) − x3d(t

+
c )

)2
=

(

x3(t
−
c ) − x3d(t

−
c )

)2
.

This implies V (t+c ) ≤ V (t−c ). Hence, V is a common

Lyapunov function for the switched system. Finally, as the

largest invariant set in

E =
{

(x1, x2, x3) ∈ X̄ |V̇ = 0
}

is the origin, we can conclude from LaSalle’s invariance

principle that System (2) is globally asymptotically stable

(GAS) at the origin with the proposed control.

The actual control can be obtained by reversing (4), which

is given by

u = − k2 (x3 − x3d) − x2

(

rq̄x2 +
r

2
(x3 + x3d)

)

+
3r

2
ẋ3d − 3

2
(q̄x1 + x1x3 + (x̄ − 1)x3) . (12)

Note that as

ẋ3d =k1sgn(q̄)min(x2, 0)2n−1(2n(1 − δ − x1 − x̄)ẋ2

− min(x2, 0)x2) (13)

is differentiable for all n ≥ 2, u given in (12) is smooth for

all n ≥ 2. When n = 1, u is only continuous.

B. Stabilization Excluding the Uncontrollable Equilibrium

As the virtual control given in (8) does not add sufficient

damping in the closing phase where x2 is mostly positive,

we present another one which will add damping for both the

opening and the closing phases. However, as we will see later

on, this control cannot guarantee the closed-loop stability at

the uncontrollable equilibrium (x̄, v̄, q̄) = (0, 0, 0).
Consider the Lyapunov function V1 given in (6). We chose

a virtual control of the following form

x3d = −q̄k1 tanh(x2) tanh(1 − δ − x1 − x̄). (14)

Obviously, x3d is smooth and vanishes at the contact. Note

that since the value of x might be smaller than −1 − δ, we

need to saturate the amplitude of 1−δ−x = 1−δ−x1− x̄.

With this virtual control, the time derivative of V1 becomes

V̇1 = − 2ζx2
2 −

1

3
q̄2k1x2 tanh(x2) tanh(1 − δ − x1 − x̄)

× (2 − k1 tanh(x2) tanh(1 − δ − x1 − x̄)) , (15)

which is negative semidefinite if 0 < k1 < 2.

We can proceed once again with backstepping design and

prove by following the same analysis as in Section III-

B that System (2) is globally asymptotically stable at any

equilibrium points, except for the uncontrollable one, with

the control given in (12), where

ẋ3d = − q̄k1

((

1 − tanh2(x2)
)

tanh(1 − δ − x1 − x̄)ẋ2

+tanh(x2)
(

tanh2(1 − δ − x1 − x̄) − 1
)

x2

)

. (16)

We can now expect to get enhanced performance by

combining the two virtual controls given in (8) and (14) as:

x3d =

{

k1sgn(q̄) min(x2, 0)2n(1 − δ − x1 − x̄), x̄ ≤ X̄,

−q̄k1 tanh(x2) tanh(1 − δ − x1 − x̄), x̄ > X̄,
(17)

where 0 < X̄ < 1 is a constant, while using the control given

in (12). Since the system is stabilizable at any equilibrium
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with the first virtual control in (17), the choice of X̄ depends

only on performance consideration.

IV. OUTPUT FEEDBACK CONTROL

Usually, the charge on the device and the gap between

the electrodes can be deduced from the input current, the

voltage across the device, and the capacitance (see, e.g., [1]).

However, direct sensing of velocity during normal operations

for micro-devices is extremely difficult, if not impossible.

We need therefore to construct a speed observer in order to

provide the estimate of v = x2 required for implementing the

closed-loop control described in the previous section. It can

be shown that System (1) with the deflection and the charge

as outputs admits the observer canonical form [4]. Therefore

it is possible to find a full order observer with linear error

dynamics. However, we need only to directly construct a

reduced order speed observer. Furthermore, since x2 ≡ v,

we can estimate the speed in the original coordinates.

Consider the following dynamical system:

ż = −((2ζ + kv)kv + 1)x − (2ζ + kv)z +
1

3
q2, (18)

with z(0) = −(2ζ + kv)x(0), where kv is a positive real

number. Thus, by setting

v̂ = z + kvx, (19)

the dynamics of estimation error ε = v− v̂ will be given by:

ε̇ = −(2ζ + kv)ε, ε(0) = −x2(0), (20)

which is globally exponentially stable at the origin with a

decay rate defined by kv . This implies that (18) and (19)

form an exponential observer.

We use a certainty-equivalence implementation of state-

feedback design by replacing x2 (= v) by its estimate x̂2 (=

v̂). The control law is now given by

ū = −k2 (x3 − x̂3d) + ˆ̇x3d − x̂2γ(x3, x̂3d), (21)

where

x̂3d =

{

k1sgn(q̄)min(x̂2, 0)2n(1 − δ − x1 − x̄), x̄ ≤ X̄,

−q̄k1 tanh(x̂2) tanh(1 − δ − x1 − x̄), x̄ > X̄,
(22)

and ˆ̇x3d is computed by

ˆ̇x3d =k1sgn(q̄) min(x̂2, 0)2n−1(2n(1 − δ − x1 − x̄)(kvx̂2

+ ż) − min(x̂2, 0)x̂2) (23)

if x̄ ≤ X̄ or by

ˆ̇x3d = − q̄k1

((

1 − tanh2(x̂2)
)

tanh(1 − δ − x1 − x̄)(kvx̂2

+ż) + tanh(x̂2)
(

tanh2(1 − δ − x1 − x̄) − 1
)

x̂2

)

(24)

otherwise. In (22) and (23), n ≥ 2 is a positive integer.

Denoting ξ = (x1, x2, x3), in coordinates (ξ, ε) the closed-

loop system can be expressed as

ξ̇ = f(ξ, ε),
ε̇ = −k̄vε,

(25)

with k̄v = 2ζ + kv . The vector-value function f(ξ, ε) can

be derived from (2) with the control given above and is

smooth for any n ≥ 2. Thus one can show, by using the

standard approaches in the literature, e.g. [17], that the above

closed-loop system is semi-global asymptotically stable at

the origin.

In fact, since the origin of the system ξ̇ = f(ξ, 0) is GAS,

by the converse Lyapunov theorem [6], there exists a positive

definite and proper Lyapunov function V0(ξ) such that

∂V0

∂ξ
(ξ)f(ξ, 0) ≤ −α(|ξ|) (26)

where α is some positive definite strictly increasing function

on [0,∞), also called class-K function.

Consider the following Lyapunov function candidate

V (ξ, ε) = V0(ξ) +
1

2
ε2. (27)

We need to prove that for any 0 < c1 < c2 there exists a

k∗
v such that for all k̄v > k∗

v the time derivative of V along

solutions of the closed loop system is negative-definite for

all initial conditions starting from the set

Sξε = {(ξ, ε) : c1 ≤ V (ξ, ε) ≤ c2}. (28)

Since Sξε is a compact set, then if the control is smooth,

there exists a positive constant k3 such that, for all (ξ, ε) ∈
Sξε,

∣

∣

∣

∣

∂V0

∂ξ
(ξ)(f(ξ, ε) − f(ξ, 0))

∣

∣

∣

∣

≤ k3|ε|.

Hence, the time derivative of V along the solutions of the

closed-loop system satisfies

V̇ ≤ −α(|ξ|) +
∂V0

∂ξ
(ξ)(f(ξ, ε) − f(ξ, 0)) − k̄vε2

≤ −α(|ξ|) − k̄vε2 + k3|ε|. (29)

By applying Lemma 2.1 of [18], (29) implies that there

should exist a positive constant k∗
v such that for all k̄v > k∗

v

V̇ < 0, ∀(ξ, ε) ∈ Sξε. (30)

It can be seen from (20) that the stability of the observer

error dynamics is independent of ξ. Therefore, it can be

shown, by following the same lines as in [17], that for a

sufficiently large k̄v every trajectory starting from Sξε under

the constraint ε(0) = −x2(0) is ultimately bounded and will

eventually enter into an arbitrarily small neighborhood of the

origin contained in the basin of attraction of the closed-loop

system. This proves our assertion.

As System (2) is stable with the developed control at any

equilibrium point, including the one at which the system

is not linearly controllable, we have achieved the design

objective.
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V. SIMULATION RESULTS

We have performed numerical simulations to verify the

stability and the performance of the control scheme pro-

posed. As the performance of the state feedback control

is usually superior to the one of its certainty-equivalence

implementation, we present only the simulation results for

the latter. The simulated device is a under-damped system

with ζ = 0.1 and the resistance in the driving circuit loop is

supposed to be 1. The actuator is supposed to be driven by

a bipolar voltage source.

We have found that the performance of the system at

different set-points is not significantly affected by the vari-

ation of the controller gain k2 and the observer gain kv .

Therefore once tuned their value is fixed. However, when

the observer-based implementation of the virtual control (8)

is used, the controller gain k1 should be carefully adjusted at

each set-point, in order to obtain satisfactory performance.

We have used a polynomial interpolation of well tuned values

at several set-points to present k1 as a function of set-points.

For the observer-based implementation of the virtual control

(17), k1 is set to 1.9. In the simulation, we chose X̄ = 0.2
as the threshold for selecting the virtual control in (22),

µ = 0.5 for determining the plate velocity at the contact,

and δ = 0.05.

Figure 2 shows the simulation results for the stabilization

of 0.95, 0.9, 0.85, and 0.8 gap position in the closing phase

with x1(0) = 0, corresponding to the zero-voltage position.

Figure 3 shows the simulation results for the stabilization of

0.8, 0.6, 0.4, 0.2, and 0.1 gap position. We can see that the

controller works well at all the tested operational positions

and remains stabilizing even in the presence of contact. The

control signals are also depicted. We remark that in the initial

phase, a hight control amplitude might be generated. This is

because x3d = 0 at the equilibrium, which might introduce

an important deficit in terms of charge regulation. However,

in the rest of the operation no excessive control efforts are

employed. We can also see that, as expected, the control

signals are quite smooth.

Figure 4 shows the simulation results for the stabilization

of 0.85, 0.9, 0.95, and the full gap position in the opening

phase with x1(0) = 0.2. Figure 5 shows the simulation

results for the stabilization of 0.2, 0.4, 0.6, and 0.8 gap

position whit x1(0) = 0.95, corresponding to the position

where the device is completely closed. It can be seen that

the controller works well in all the considered set-points,

including the zero-voltage position where the system is not

linearly controllable.

VI. CONCLUSIONS

This paper addressed the control of a parallel-plate elec-

trostatic micro-actuator, which is a basic element in many

MEMS-based applications. We have developed a state feed-

back control which is bounded and can stabilize the system

at any set-point in the operational range, including the

uncontrollable sets. To meet the practical operation envi-

ronments, we constructed an output feedback control law

based on the certainty-equivalence implementation using a
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Fig. 4. Stabilization of 0.85, 0.9, 0.95, and the full gap position in opening
phase: (a) gap (1 − x1); (b) control signal u.
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Fig. 5. Stabilization of 0.2, 0.4, 0.6, and 0.8 gap position in opening phase:
(a) gap (1 − x1); (b) control signal u.

reduced-order speed observer and demonstrated the stability

of the closed-loop system. The simulation results have shown

that the proposed control scheme exhibited a satisfactory

performance in different operational conditions. However,

the presented control did not allow adding arbitrary damping.

To obtain a higher performance, one may consider a hybrid

solution. For example, one can use the present control in a

neighborhood of the linearly uncontrollable equilibrium and

a tracking control scheme (e.g., [21]) in other operational

points. One may also take advantage of passivity-based

design (see, e.g., [10]), which would allow adding arbitrary

damping. The proposed approach can be applied to systems

with similar properties, such as magnetic levitation systems.
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