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Abstract: Given a finite dimensional nonlinear control system, we study the problem of
designing dynamic output feedbacks rendering the origin a globally asymptotically stable
equilibrium. First we give necessary structure of an Output Control Lyapunov function.
Then we exhibit necessary conditions on a given Control Lyapunov function to allow
the derivation of an Output Control Lyapunov function. With the help of a minimax
framework, we give also a sufficient condition for the existence of an Output Control
Lyapunov function. We check that our necessary condition and sufficient condition
coincide for linear systems and are equivalent to the standard necessary and sufficient
conditions of stabilizability and detectability. Finally we consider specific structures, in
particular “Euler-Lagrange systems” and “integral output” systems.
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1. INTRODUCTION

We consider finite dimensional nonlinear control sys-
tems with dynamics:

fE) +eu . y=hlx), O
where f: R" 5 R", g: R" 5 R™ and h: R" -5 R”
are locally Lipschitz functions, x is the state, u is the
control and y is the only available measurement.

The general problem under investigation in this paper
is:
Find an integer q, and continuous functions u: R¥ x
RY— R™ and v: RF x R? — RY such that the origin
is a globally asymptotically stable equilibrium of the
extended system :

{x = f(0) + g(@u(y,2),

z=v(y2). *)
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In general, the certainty equivalence principle does
not apply to nonlinear systems for global asymptotic
stabilization by output feedback, However, for the
non global case, it is still the main motivation of
most approaches (see (Tsinias, 1991) or (Teel and
Praly, 1994) for instance). But, in the global case,
invoking some kind of observer in the output feedback
design may be fruitless, not mentioning the difficulty
in finding such an observer. It is therefore attractive to
investigate the possibility of a direct design of output
feedback, meaning that no observer is invoked a priori.
Different kind of techniques have been proposed in
this direction. For example, immersion and invariance
principles are used in (Astolfi and Ortega, 2003),
model predictive control is derived in (Findeisen et
al., 2003).

Pure Lyapunov design is also possible. In this case,
the a priori knowledge of a Control Lyapunov func-
tion is assumed typically. But then an extra prop-



erty is needed. For instance in (Battilotti, 1999), it
is a bounded input bounded output property, or in
(Battilotti, 1994) it is stabilizability via output injec-
tion.

In our present study, we justify this extra property
from a necessary condition for a Lyapunov function
to be an output control Lyapunov function. For the
general case, we give sufficient conditions to allow
the design via a minimax approach. But we consider
also the cases of specific structures such as those
motivated by the study of Euler-Lagrange systems as
in (Loria and Nijmeijer, 1998; Shishkin ef al., 1996),
or of “integral output” systems as in (Prieur and de
Halleux, 2004).

The key point in our approach is to build a so called
output control Lyapunov function. That is (see also
(Tsinias and Kalouptsidis, 1990))

Definition 1. Given an integer ¢, a positive definite,
proper and C! function V : R” x R? — Ry is said
to be an output control Lyapunov function if, there
exist two continuous functions #: R? x R? = R™ and
v: RP x R — RY such that, V(y, z) € R? x RY,

sup DV(x,z,u(y,2),v(»:2)) <0, (3

xy=h(x
where DV is the function defined by:

DV (x,z,u,v

)
= 2 () )+ 8l + 5 (52

To mimic the definition of a control Lyapunov func-
tion, we would need to replace (3) by
uE]Rl"El{e]IM sup DV (x,z,u,v) < 0.
VSR y=hlx)
But getting function # and v of (,z) from this inequal-

ity is an open problem due to the non-compactness of
the set {x, y=h(x)}.

The paper is organized as follows. Section 2 is devoted
to necessary conditions. In Paragraph 2.1 we make
precise the necessary structure of an Qutput Control
Lyapunov function. In Paragraph 2.2, we give neces-
sary conditions on a given Control Lyapunov function
for the system (1) to allow the construction of an
Output Control Lyapunov function of the extended
system (2). Then we investigate sufficient conditions.
By a minimax approach, we give a sufficient condi-
tion for the existence of an Output Control Lyapunov
function in Section 3. We observe also that our nec-
essary condition and our sufficient condition coincide
for linear systems and are equivalent to the standard
necessary and sufficient conditions of stabilizability
and detectability. Section 4 is devoted to two nonlinear
but very specific cases where our minimax approach
does allow the design of a continuous dynamic out-
put feedback. Finally Section 5 summarizes the main

contributions of the work and points out some open
problems and future research directions.

Due to space limitations, we cannot give the proofs.
They can be found in the extended version of this
paper (Prieur and Praly, 2004).

2. NECESSARY CONDITIONS
2.1 Necessary structure of V

Assume for the time being we know continuous func-
tions u: R x R?— R™and v: R? x R?— R4 such that
the origin is a globally asymptotically stable equilib-
rium of the system (2). Then, from Kurzweil Theo-
rem (Kurzweil, 1956), there exists a positive definite,
proper and C* function V : R” x R? - Ryo whose
derivative along the solutions of (2) is negative defi-
nite, i.e. V(x,z) € R"x R?\ {(0,0)},

@V(xaza ”(h(x)az)av(h(x)az)) < 0. €]

According to Definition 1, V is an output control
Lyapunov function. Moreover since, for each x in R”,
V is lower bounded and proper in z in RY, it admits a
global minimum in z. Let Argmin,V (x,z) be the set of
such minimizers, We have for each x in R” and each ¢
in Argmin,V (x,z)

Y (s 000 = 0 5
and there exists a function U : R? — R such that
V(xz) > V(x9) =U(x), VzERT.

Also, since V admits its unique global minimum in
(x,2) at the origin, we have :

Argmin_V(0,2) = {0},
and thus
U(O) =0.

We have (see also (Pan er al., 2001, Lemma 1)) :

Proposition 1. Assume that there exists a function ¢ :
R" — Argmin,V(x,z) C R? which is locally Holder
continuous of order strictly larger than %, then U is
a Control Lyapunov function for the system (1) and

there exists M: R" x R?— R9x RY such that V can be
decomposed as :

V(x,2)=U(x)
+(z—0(x)) ' M(x,2)(z—0(%), (6

where 7 is the transposition in [R7.

In view of Proposition 1, we restrict our attention to
positive definite, proper and C' function in the form :

V)= U@+ k-0WP, )

where :
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e U is a given weak control Lyapunov function
(CLF) for the system (1), i. e. a positive definite,
proper and C' function such that there exists a C°
function k : R" — R" satisfying I vxeR™

LU(x) + LyU(x)k(x) = DU(x) < 0.
e 0:R"=3R%isa ! function.
In such a choice, there are two restrictions:

(1) U is given but this a priori data may not be the
right one,

(2) Compared to (6), we do not introduce M. Two
reasons for this :

a. In the context of Proposition 1, z is given. In
the design case, the variable z is not defined,
in particular z can be transformed by any
diffeomorphism.

b. At this stage of our study, we have not been
able to see what would be the interest of
introducing M.

2.2 A necessary condition on ¢

In (7), the two parameters we can play with are the
integer ¢ and the function ¢. We have the following
necessary conditions to help us in choosing these
parameters.

Proposition 2. IfV, given by (7), is an output control
Lyapunov function, we have :

e For any compact subset C of R” x R there
exists a real number ¢ > 0 such that, ¥(y,z) € C,

inf sup DV(x,z,u,v)<0, (8)
(M,V)2|u|+|V|SCx;y=h(x)

o For any compact subset C of R? x RY, there
exists a real number ¢p > 0 such that, for all (y,z)
in C, we have :

sup
x:y=h(x), LU(x)#0
LyU(x) — (2= 9(x))" Ld(x)
LU (x) = (2= 0(0)) " Led ()| + e = $(x)]
<co, )

o For each positive real number @ and each y in
RP, there exists a real number c; satisfying :

sup
xy=hx), 00 B, LU (x)0

LfU(x)
|LgU (1)

<ecr. (10)

The necessary condition (10) allows us to understand
why the dynamics of the feedback should have a

1 LsU(x) denotes the Lie derivative of U along the vector field f at
the point x.

sufficiently large dimension ¢. Indeed if, as can be
LeU()

) ) U
is not upper bounded on R” in all the directions, the
only way to have (10) satisfied is if the function x—
|h{x)| +|¢(x)]| is proper. This would be the case if the

map x — (h(x),(x)) were a global diffeomorphism,
implying g =n—p.

In the following section, we shall see that (9) is suffi-
cient for linear systems.

expected in the general case, the function x —

3. A SUFFICIENT CONDITION

In this section, we derive a sufficient condition for the
existence of an Output Control Lyapunov function and
apply it to the case of a linear control system.

To simplify our presentation and makes the constraint
h{x) =y onx trivial, let us assume that y is a part of the
state coordinates. This is a restriction since it says that
h(x) =y is an n — p differentiable manifold. In this
case we decompose x in (x,y) where x, defined up
to a global diffeomorphism, describes the remaining
unconstrained coordinates.

With this notation we observe that, given (x,y,2),

o if
|L.U () — (= 0(x)" L0(9)|
+le—0(x)| £0,
then
(inf) DV(x,y,z,u,v) = —eo.
e andif
|L.U () — (2= 0(x)) " L0()|
+z—0(x)| =0 (11
then

inf DV (x,y,z,u,v) = DU(x) < 0.

uy
This implies, for any function V given as (7) with U
a weak control Lyapunov function, we have, for all
(nz) ERPXRY,

sup inf DV(x,y,z,u,v) < 0. (12)

x (uy)

But, on the other hand, we know from (8) that, if
V is an output Lyapunov function, then we have, for
each compact set C, the existence of ¢ > 0 such that,
Yiy,z) €C

inf  supDV(x,y,z,u,v) < 0.
(mv):lul+v<e x -

We conclude that we would be done if we would have
a saddle point property. Specifically, we have:

Proposition 3. Assume
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(1) the map U is a control Lyapunov function such
that, with the output function A, the function

y= sup LrU(x)

x:y=h(x),LeU(x)=0
is negative definite;
(2) the map ¢ and the coordinates x are such that
(a) for each quadruple (y,z,u,v), the function
X+ DV(x,y,z,u,v) is concave,
(b) for each pair (y,z), there exists a pair (u,v)
satisfying
lim DV(x,y,z,u,v)= —e. (13)

[x]| oo

Under these conditions, there exist functions u, :
(RP\{0}) x R?> R™and v, : (R*\ {0}) x R? - R?
satisfying, Yy # 0, Vz,

sup DV (X, y,z,ue(%,2),ve(y,2)) < 0. (14)
X

Unfortunately at this stage we don’t know what the
smoothness properties of #, and v, are neither under
which extra conditions they can be extended to y =0,

Example : As in (Mazenc et al., 1994), consider the
system :
x=x"+u, y=x.
Tt can be checked that
Y1 2

Ux) =7+ 5 (xexp(=y) +) -
is a control Lyapunov function, In particular its deriva-
tive is
U = —y* exp(~y) + (xexp(~y) +)* exp(y)

+{xexp(—y)+y)uexp(—y) . (15

So to meet Assumption 2.a of Proposition 3, it is suf-
ficient to look for a function ¢ such that the derivative
of (z—®(x,y))? is a concave quadratic polynomial
in X := xexp(—y) + y. By restricting this search to
polynomials in x with coefficients depending on y, we
find that

0(x,y) = ay+ brexp(-y)
is appropriate. Due to (15), DV becomes

DV = —y* exp(—y) + X* exp(y) + Xuexp(-y)
+(z— (a—b)y—bX)
x(v=a(X —y)exp(y) — buexp(-y)) .

Thus
DV < X2(1 +ab)exp(y)

+X[(1+b*)uexp(—y) — bv — abyexp(y))
—aexp(y)(z—(a—Db)y)]
+(z—(a—b)y)

X (v+ayexp(y) —buexp(—y)) .

Specifically the assumptions of Proposition 3 are sat-
isfied by picking a and b as real numbers satisfying
ab < —1 (put u =v =0 to meet Assumption 2,b), This
means that DV is made a concave quadratic polyno-
mial in X. By choosing # and v so that its degree-one
term disappears and its degree-zero term is negative,
we get the globally asymptotically stabilizing output
feedback :

7 = —ayexp(y) 4+ buexp(—y) - [z— (a—b)y]
u = [aexp(y) —b] [z — (a—b)y] exp(y) -

Note that we conjecture that 3[y* + (x+y)2], which is
another control Lyapunov function, cannot be used to
give an output control Lyapunov function.

With this Proposition 3, we know that a possibly
successful design goes along finding a function ¢
and coordinates x making DV concave and radially
negatively unbounded. Such a procedure may appear
awkward in view of the standard approaches coming
from invoking the separation principle.

To illustrate it we consider the case of the linear
system

X = Ax+By+Eu,
y = Cx+Dy+Fu.

We assume it is stabilizable.

We check that Proposition 2 together with Proposition
3 almost (see below for the precise meaning) recovers
the well known necessary and sufficient conditions
for the existence of an output feedback, namely the
stabilizability and the detectability properties (see e.g.
(Dullerud and Paganini, 1999, Chapter 5))

Proposition 4. If the necessary condition (9) holds
then the system is weakly detectable, i.e. there exists
a matrix K, and a positive definite matrix P of appro-
priate dimensions such that

P(A4+KC)+ (&' +C'K'YP <0.

If the system is detectable, then the sufficient condi-
tion of Proposition 3 holds and we can build a stabiliz-
ing output feedback. Moreover this feedback is linear
inyandz.

4. RELAXED SUFFICIENT CONDITIONS FOR
SPECIFIC SYSTEMS

We investigate now if it is possible to relax the condi-
tions of concavity and radial negative unboundedness
in x of DV. We exhibit two classes of systems (in
Paragraphs 4.1 and 4.2 respectively) where our min-
imax approach can be applied although some condi-
tions of Proposition 3 are not satisfied.
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4.1 LU is the sum of the output derivative and the
output integral

We restrict our attention to systems for which there
exists a weak control Lyapunov function U satisfying:

LeU(x) < LU (x) 4, (h(x)) , (16)

where ¢ : R — R™ is a continuous function, Our
motivation is that, in this case, the necessary condition
(10) holds whatever the function ¢ is. Also in this case,
we get:

Q)V(xayaza Uy V) < LgU(x)[u+£1(h(x))]
+z— 0@V = Lro(x) — Led(x)u] -

In the right hand side, when y = h(x) is fixed, x shows
up only through the functions LU, ¢, Ly¢, and Lg¢,
where ¢ is at our disposal. Then we remark that if we
can choose ¢ in such a way that ¢, L0, and L,¢ are
functions not of x but only of L,V (x) and k(x), then the
maximization in x satisfying h(x) = y can be replaced
by the one in L,V (x). Specifically the concavity and
radial negative unboundedness will be expressed in
terms of L,V (x) and not x.

There is a class of systems where this program can be
carried out:

Let us assume that the inequality (16) holds and
LgU(x) can be expressed as

LgU(x) = £ (h{x)) + Lt (h(x))+k(x) , (17

where £5: R? — R™ is a continuous function and £5:
RP — R™ is a continuously differentiable function
satisfying

Lgls(h(x)) =0, (18)

and k: R" — R™is a continuously differentiable func-
tion satisfying :

Lrk(x) = £4(h(x)) , Lgk(x) =0, (19

where £4: RP — R™ is a continuous function.

In particular LU can be the output derivative (take
£, =k =0 and ¢3(y) = y); the output integral (take
¢, = {3 = 0 and l4(y) = y); or, of course, the sum of
the output derivative and the output integral.

Note that for nonlinear systems where L U is the
output derivative, we have the well known results for
Fuler Lagrange systems see e.g. (Loria and Nijmeijer,
1998; Shishkin er al., 1996). We extend these results
to the case of the sum of an output derivative and an
output integral as in the physical configuration of the
system studied in (Prieur and de Halleux, 2004).

Let us define ¢: R"” — R?" as the continuous function

() = (€3(h(x)), k(x)) -

With such a choice, due to (17)-(19), we compute

Q)V(x,y, LU, V) < Lf£3(h(x))(”+el(y)

+43(y) —21)

+k(x) (e 4£1(y) = v2 +La(y)
+3(y) —21)

=) —22 l4(y) + 211 + 2202
+o () (u+4(y) -

We get :

Proposition 5. Consider the case of a Control Lya-
punov function U for (1), where LU (x) satisfies (16)
and LU (x) is a sum of the output derivative and the
output integral as in (17)-(19).

Then we can design an Qutput Control Lyapunov
function V: R” x RY — IR and

n=z-bL{y)-40),

2 = —u+b0)-2-46(0), (20)
a—=40) +£4(y)

b4)

is a continuous output feedback which is globally
asymptotically stabilizing if all the solutions x(t) of
the algebro-differential system:

u=—ti(h(x), (1)

converge to the origin as ¢ tends to infinity.

4.2 LyU is the product of the output derivative and
the output

In this section, we exhibit an other class of systems
where the minimax program can been applied without
applying Proposition 3.

Let us assume that LU () is the product of the output
derivative and the output, and that LU is the output.
More precisely we assume that we have

LiU(x) < &a(h(x))" (k(x) +41(h(x)) (22)

and
LU (x) = &r(h(x)) , (23)
where £;: RP -5 R™ and £,: R = R™ are continuous

functions and k: R” — R™ is a continuously differen-
tiable function satisfying :

Lik(x) = G(h(x) ,  Lek(x) = 0, (4)

where £4: R” — R™ is a continuous function.
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We define ¢: R" — R™ as the continuous function
O(x) = k(x). With this choice, due to (22)-(24), we
compute
DV (x..2,,v) S k()T (f2(y) +La(y) =)
+a ) -zt +oaput.

We get :

Proposition 6. Considet the case of a Control Lya-
punov function U for (1), where L¢U (x) and LU (x}
satisfy (22), (24) and (23).

Then we can design an Output Control Lyapunov
function V: R"” x R? > R and

{u = —2—f1(y)— b0y , 5

2 = fo(y) + fa(y)
is a continuous output feedback which is globally
asymptotically stabilizing if all the solutions (x(z),z(z))
of the algebro-differential system:
%= flx)—gx)(z+L1(h(x)
L4(h(x)) , (26)
t2(h(x))

0

converge to the origin as ¢ tends to infinity.

5. CONCLUSION

The problem of global asymptotic stabilization of non-
linear control systems by a continuous dynamic output
feedback has been addressed. In particular, we have
shown that a possible design is via the solution of a
minimax problem on the derivative of an appropriately
chosen function called output control Lyapunov func-
tion. We have checked that this formalistn allows us
to recover what is known for linear systems. We have
also applied it to specific systems reestablishing this
way some results known for Euler-Lagrange systems.

The present study leaves several issues open. In par-
ticular the gap between our necessary condition and
sufficient should be studied for general nonlinear sys-
tems. We have proved that our necessary and sufficient
conditions coincide for linear control systems under
the standard necessary and sufficient conditions of
stabilizability and detectability. For general nonlinear
systems, this gap can probably be reduced by noting
that the existence of a saddle point may not exist
even when there exists an Output Lyapunov Control
function, More precisely the assumptions 1 and 2 of
Proposition 3 could probably be relaxed.
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