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1. INTRODUCTION

The advent of ion propulsion engines, such as
demonstrated on NASA’s Deep Space 1 space-
craft, have made the consideration of propulsion
under severe control constraints a problem of
great interest. Such engines are particularly at-
tractive due to the reduced weight and space ded-
icated to fuel. This in turn leads to significantly
reduced launch costs.

In particular, we will look at the problem of
transferring a satellite from one orbit to another
while respecting a priori fixed constraints on the
control. Previously, such transfers have generally
been accomplished by finding open-loop optimal
trajectories and then fine-tuning the orbit. How-
ever, when congsidering the problem under low
thrust, this solution is computationally expensive
and may be difficult to implement.

In Chang et al. (2002), the problem of orbital
transfer under low thrust was posed as a stabi-
lization problem for the target orbit. There, the
injection point and final time are unspecified. We
take a similar approach in that the final time is
not specified, but we do asymptotically stabilize
a point on the target orbit.
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This problem provides ug with an opportunity
to make use of several recent nonlinear control
techniques such as those espoused in Sepulchre
et al. (1997). Of particular interest is that these
tools can be used to achieve the goal of asymptot-
ically stabilizing a point on the target orbit while
respecting the control constraints. In Section 2 we
review certain nonlinear control tools. Section 3
presents the mathematical model used for the
orbital transfer problem. Sections 4-6 are devoted
to deriving a bounded state feedback controller.

2. TOOLS

For a control-affine system

& = f(z) +g()u 1)
a control Lyapunov function is a positive definite,
radially unbounded function V : R* — R>g such
that

LV({z)=0,2#0 = L;V(z)<0 (2)

where L,V (z) is the Lie derivative of V along the
vector field g. In what follows, we use the phrase
“L,V term” for the quantity multiplying the con-
trol in the time derivative of a Lyapunov function.
We will similarly use the phrase “L,V term” for
those terms not multiplied by the control.



2.1 Backstepping

The backstepping technique (see Krstié et al.
(1995) and Sepulchre et al. (1997)) applies to
systems in strict feedback form such as

2 = hiz,z)
= f(z,2) + g(z,7)u, ()

where f : R*™1 = R, ¢ : R** - R, and
h: R*" — R® are locally Lipschitz and g(-,-)
is never zero. One considers z as a virtual control,
#(z), for the z-subsystem and obtains a Lyapunov
function for that subsystem when z &(2);
i.e., a continuously differentiable, positive definite,
radially unbounded function V' : R* — R>o with

(4)

We assume that ¢(-) is continuously differentiable
and ¢(0) = 0. One may then “step back” to the
full system. A typical control Lyapunov function
is given by

LhV|m:¢(z) < 0

(5)

which can then be used to design a globally
asymptotically stabilizing feedback.

W) = V) + 5 (- )

For more design freedom, following Praly et al.
(1991), we propose the control Lyapunov function

Wz, 2) =V(2) —I—/ (6)
¢(2)
where 9(-,-) is a continuous function satislying
x # ¢(z) [z - ¢(2)]e(z,2) >0 (T)
such that W is radially unbounded in 2 and there
exist 7 > 0 and £ > 0 satisfying

(2, 2)| > nlz — ¢(=)]-

T

P(z, €)dé

=

o] +12| <6 =
To see that (6) is indeed a control Lyapunov
function we take the time derivative and obtain

W(z,2) = LpyV(z,2)+9(z, 2)[f(z,2) +¢(z, 2)u]

i / w(z,e:)dal hz,o). ()
#(2)

*

We see that the L,V term is 9(z, £)g(z, ). Since
g(-,-) is never zero, if the L,V term is zero and
z # 0 then 9(z,2) = 0. From (7), we then see
that this implies & = ¢(z). Therefore, with  # 0,
(2, z) = 0, and z = ¢(z), we see that (8) becomes

W(z,2) = LV _ ) < 0; (9)

that is, the LV term is strictly negative.

2.2 Forwarding

The forwarding technique (see Sepulchre et al.
(1997) or Praly (2001)), by contrast, applies to
systems in strict feedforward form. In particular,
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we are interested in a specifically structured feed-
forward form

2 = h(z)
& = f(z)+9(@)u

where f : R* 5 R* g:R” - R*", and h: R* = R
are locally Lipschitz, g(0) # 0, and the origin
is globally asymptotically stable for ¢ = f(z).
Therefore, there exists a continuously differen-
tiable, positive definite, radially unbounded func-
tion V2 : R® — Rxg such that L;Va(-) is negative
definite. For the forwarding technique, we search
for a continuously differentiable function M(z)
that solves the partial differential equation

(10)

LM@) = h(), M©O)=0.  (11)
The function
W(a,2) = Va(a) + % (- M@ (12)

then serves as a control Lyapunov function. With
the constraint (11), this is obvious from the time
derivative of W:

W(x,2) = L;Va()

+[L,Va(a) — (2 = Mz)L M) . (13)
The technique known as forwarding modulo L,V
(see Praly et al. (2001)) adds a free parameter
to the PDE (11) which may simplify solving the
PDE. Let k£ : R* — R be a continuous function,
satisfying k(0) # 0, and consider the PDE

LiM(z) = h(z) + k(x) L, Va(z). (14)

We see that (12) still serves as a control Lyapunov
function as

Wz, 2) = —(z — M(2))LyM(z)u + LiVa(z)
+ L,Va(z) [u— k{z)(z — M(z))]. (15)

In some cases, including the problem considered
herein, one may choose the function M(z) in-
dependent of variables directly affected by the
control. In this case L, M(x) = 0, allowing us to
rewrite (15) as

W(x,2) = LVa()
+ LyVa(z) [u — k(z)(z — M(z))] .

Furthermore, we may obtain an additional degree
of design freedom by defining our control Lya-
punov function as

W(z,z) =~(Va(z)) + V1 (z - M(z))  (16)

where v : R>g — Ryg is continuously differen-
tiable with a strictly positive derivative and V; :
R — R>o is continuously differentiable, positive
definite, and such that its derivative only vanishes
at zero. Clearly the second term in (12) satisfies
the requirements of V;. With W so defined, and



L, M(z) = 0, we see that the time derivative
expression for W is

W(z,2) = v (Va(2))L; Va(z)

+ LyVa(z) [y (Vala) Ju — k(2) V] (2 — M(x))].-
An obvious control choice in this case is then
__ LgVa(z) + k(@)Vi(z — M(z))

- ¥ (Va(z)) '
The fact that this feedback asymptotically stabi-

lizes (x,2) = 0 follows from the fact that V; only
vanishes at 0 and k{0) # 0 and g(0) # 0.

(17)

2.3 Passivity

The control affine system (1) is said to be C* dissi-
pative if there exists a continuously differentiable
Lyapunov function V(z) such that LsV(z) <0
for all z € R™. Suppose we append an output
function

y = h(z,u) (18)

to the system (1). Given a subset S of R? the
system is said to be & observable if the solutions
2(t) of the system with « = 0 and satislying

h(z(),0) =0, V>0 (19)

arein S.

Within the context of C' dissipativity and S
observability we can design appropriate control
laws satisfying magnitude limitations.

Theorem 1. Assume (1) is C' dissipative and S
observable with output function

z = (LyV(z) L,V(z)).

Then, for any real number @ € (0,+00], there
exists a continuous control law, strictly bounded
in norm by @, which makes the largest invariant
set of £ = f(z) contained in & globally attractive.

One such control law is given by

w(z) = —min { m, 1} L,V{(z). (20)

3. ORBITAL EQUATIONS

Let (a,e,w, (4, f) denote the orbital parameters
of the space vehicle. The variable @ is the semi-
major axis of the orbital ellipse and e is the
eccentricity, while f is the true anomaly. The
three quantities (,7,w) are the longitude of the
ascending node, the angle of inclination, and the
argument of perihelion, respectively. Let
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p =a(l _62) ’

e = ecos(w+9),
ey, = esinfw+Q),
hy = tan(i/2) cos(?) ,
hy = tan(i/2) sin(QY) ,
L =w+Q+f.

Note that p is the semilatus rectum of the orbital
ellipse and is sometimes called the parameter,
while L is often referred to as the true longitude.

With a,., ag, and ay, denoting the accelerations the
propulsion is able to provide, the Gauss equations
in the local polar coordinate system are described
by the dynamics (Battin, 1987, pg. 488)

d

ZP = 2kpag
% e, = k[Zsin(L)a, + Aag — e,Y ap)
di ey, = k[—Zcos(L)a, + Bag + €,Yay)
; P @1)
— =./=7 Y
di p3 + k& (478
d k
= by = = X cos(L
cét hy ]% cos(L) ay,
a hy = §X SiH(L) ap
where
= Pl
k_\/;Z’ Z=14ecos(f),
A=¢e + (1+2)cos(l),
B =e + (1—|—Z) sin(L) ,
X=1+4h +h,
Y = hysin(L) — hycos(L) .

Our problem then is to design control laws for the
accelerations so that the space vehicle reaches an
orbit with parameters p = py, e; = e, = h; =
hy = 0 (this is a circular orbit in the equatorial
plane) with a true longitude given by

Lot) = [ Lot (22)

P

Furthermore, we wish to achieve the target orbit
using limited accelerations. To ease our presenta-
tion, we write these limitations as

|a"r| < Ay 3 |a'9| < Ay ) |a'h| < Ap .

(mod 2) .

(23)

In order to solve this problem, we rewrite the
dynamics in a form amenable to the application
of the tools summarized in the previous Section.
Since we have a sixth order system and three
controls, the ideal situation would be to have
three decoupled second order systems with one
acceleration driving each second order system.
Unfortunately this is impossible. The best we have
been able to obtain is a decomposition into a
second order system, a first order system and third
order system. Each of them drives the following
and is driven by one acceleration. This leads us to
apply our tools in a hierarchical way.



3.1 Structuring the system

We observe that setting a; = 0 makes h, and hy
constant as well as removing the effect of these
coordinates on the other dynamics. So it will be
sufficient to deal with the (h,, h,) subsystem only
at the end with a, dedicated to it.

In what follows, we will use j2 = —1. With a,, = 0,
the dynamics for the remaining four coordinates
(p, €a, €y, L) simplify to

d d [B 5o
=2 —L=,/=7

dt kpa9> di p3 '

d . . /P

g (ea—ie) = J\/E

+ \/g L e —ey) + (1 + Z)exp(~iL)]ay

exp(—jL)ar

Define # = e cos(f), and T3 = e sin(f). Note
that Z2+ jZ3 = (e, —je, ) exp(jL) and Z = 14Z,.
Consequently,

d,_ . Ip
Q@ (2 + jz3) = ]\/;ar
. 1 _ o
-|-]4/p—(1+$2) (T2 + jZ3)

p . &3
+ .2 2+ .
\/;[ Jl+f2}a9

Furthermore, let 1 = L — Ly, where Ly is the
reference true longitude (22). This then yields,

B Y

Therefore, in (p, 1,22, £3) coordinates we have:

4, e
a? "N o1
d /
ai’lz 'u 1+$2 —1
1
+ —
lV \ﬂ (2
iw = - —(1+w Y23 + 2 P
i 2)° %3 " 8
d _ u _\2- P
2= IR+ 7027 Z
e p3( +Z2)? $2+\/;ar

p 3
+\/;1+w2a97

which is (21) with ap
coordinates.

0 and a change of

The appearance of the control ag in the expres-
sions for & 7, and £ Z; is inconvenient for the
purposes of applying our tools. Consequently, we
propose the change of coordinates:

‘|‘.’l_72)—1, 1‘3:”@1_73.
r

L =%, I2= @(1
Y
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Our system in (p, 1,22, #3) coordinates is then

o
- 1 I
ngl p()( +1‘2) pg
I
L=t
7o pg( +22)°T3 (26)
d i p
S P -1
dt * pﬁ( ) (po( ) )
+ @ar
H

We observe that, similar to our treatment, of ay, by
setting ag = 0, pis constant. However, in this case,
p is still pregent in the dynamics of the remaining
three coordinates; i.e., the first order p subsystem
drives the third order (z1,22,23) subsystem. To
deal with the latter first, and in a simplified way,
we first consider the control ay = 0 and the
coordinate p = pg. More precisely, consider the
system

d [

Ze==/20

g pf‘]( +x2) 13, (27)
d [ 2 Po

S = Lt JBa, .

5 0 g( +22) @2 + #a

To ease the presentation we rescale the time
variable and redefine the control as

2
JEdt =dr, and u =%,
By I

The reduced dynamics can then be written (in the
7 time scale) as

d

7 o= (2 +22) 22

di = —(1+22) 23 (28)
d 2

e (1+2) %2 + u

Our objective for this third order subsystem, then,
is to asymptotically stabilize

cos(z ) =1, @ =13 =0 (29)

while respecting the constraint |u| < ¢.

4. THIRD ORDER SYSTEM

In equation (28), we observe that the (z2,z3)
subsystem is in strict feedback form. Therefore,
from (6), the backstepping technique furnishes a
control Lyapunov function of the form

Vas(ao,23) = Vz(3~‘2)+/
¢2(2=2)

where the sign of ¢»(-) is the same as that of its
argument and ¢(:,-) satisfies the conditions put

z3

P(za, x)dz (30)



forth in Section 2.1. Note that ¢2(2) is the virtual
control for the zo subsystem. Consequently, Va3
is a control Lyapunov function for the (z»,z3)
subsystem. One may therefore construct a control
3 which renders the derivative of Vo3 negative
definite. We do not concern ourselves with the
precige form of either ¢ or ¢3 for the moment.

We next observe that the (x1, (22, 23)) system is in
strict feedforward form. Consequently, we require
a change of coordinates modulo L,V; ie., we
search for a continuous function, M(-), dependent
solely on % (since the control does not act on )
such that M(0) =0 and

- /\4/(.%'2) (1 + .932)2 I3 = (2 + .972) Lo

— k(za,23) LyVag(®2,23) (31)

where k is a continuous function that satisfies
k(0,0) # 0. Clearly, in this case,

o (aa,0) = e a) (32
Note that, from (31), if L,Vag(za,z3) = 0 then

(unless x5 is zero) we necessarily have

LyVas(zg,23) =

(2 + .'L‘Q) &Lo
(1+ 29)2M'(29)

Therefore, from (32) and (7), we have the identity

r3 =

(33)

(2 + :L'Q) Lo
(1 4+ 20)2 M (x2)

Note that M(—1) is not well-defined. In fact, with
the ¢ we define later, as 2o - —1, M'(z2) —
—o¢. In the final step of the analysis, we demon-
strate that solutions never leave the region x5 >
—1. With the relation (34), once we define the vir-
tual control ¢, we may calculate M(xs). There-
fore, from Section 2.2 we have a control Lyapunov
function of the form

Viag(z) = Vi(zy — M(22)) + v (Vas(z2,73))
(35)

pa(w2) = — (34)

where we leave the choice of 4 until later.

4.1 Control Design

With a control Lyapunov function for the third or-
der gystem (28), we may use this control Lyapunov
function to design a feedback stabilizer. The prob-
lem which remains is to deal with the constraint
|u| < e. In order to do this, we will make use of the
control Lyapunov function derived in the previous
section and then tailor the two available degrees of
freedom (M and ) to satisfy the constraint. We
make the following choices (others are certainly
possible, and perhaps more useful):
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21 /_\
Vi(m)) = ¢ sat (5 sin(s)) ds,
0
1
VZ(:UQ) = 5'%37 (36)
. _ 1+ agi(zs)
(@2, 23) = T3 — ¢2(22) 1+ aa?

Let T(ro,z3) := %ﬁfg(w"’)), and Aatg :=
'3

arctan(y/az3) — arctan(y/ago(z2)). We see that
1 1
Vgg(ﬂ?g,.’ljg) = 5113 + 5.77%
_ Pa(2)(1 + g3 (x2))
va

With these choices and the relation in (34) we
therefore obtain

Aatg - 36(z2). (37)

d d
— Vias(z1, 22, 23) = 7' (Va3 ) —— Vas(za, 23)

dr dr
2 y
‘|‘V1,(.Z‘1—J\/l(x2)) [(2 + .’132)332 et M}
h2(z2)
More calculations yield %‘Tfj =- %Aatg and,
consequently,
- Vzg(:l?z,.?}g) = —(1 -|—.T2)2:L'2:L'3
1+ 3adi (2 )
+ b (@) (\O}?j(xz)) Aatg(l + z2) s

+ (23 — Y(xa,23)) (1 + 22)%2 +u). (38)
Collecting terms in (38) we obtain
d .
E "723(513’2,373) = —T(.Z‘g,.%‘g)(l +£L'2)233‘2
+1(x2, 23) [[(z2, 23) + 1]

W . 143042 (ss)
dh(wa) (L+we) es (%)

Aatg

where ['(22,23):= s

The 7-derivative of Via3(-) is then
d

i Vias(z) = = (Vaz) Y (22, 23) (1 + 22) 22

' (Vag Wb (i, xg)[—(ésat (2_ sin(x; — M (.’L‘g)))
3 — ¢2($2)>

(w2, 73)

. (2 + JS‘Q)JS‘Q y
' (Vag) 2 (x2)

-I—F(.Tg,ﬂfg)-l—u] . (39)

4.2 Defining M (via ¢2) and «y

We make the two following definitions to aid in
bounding u: v'(s) = ¢1 + ¢as and

lz)z(.rg) = garctan (gxz) N

where A, ¢, ¢, and ¢y are free (positive) parame-
ters. Note that y(s) = ¢1s+ %%, The selection of

(40)



(40) is made to account for the $3 term present in
I"in (39). From (37) we see that

' (Vas 5

This allows us to account for the (24 z9)zq term
in (39). We observe that

(#2,23)) = &1 + c2Vas(x2,3) > €1 +

, 1+ ag3 ()
WV(Ea,23) = 23 — da(22) —————5—
1+ oz}
1+ az? + w3¢2(w2) + aﬁz(wz))
= (23 — da(z2))
1+ o3
Consequently,
_ 2
1‘3’ ¢2($2) S 1 ‘|‘(;é£1332 S 9 (41)
P(xa,13) 1+ Sa3
4.3 Control Expression
By choosing the control as :
@ar = u = U +ux+us (42)
where
(2 + xz)l‘z
ur = V(21 — M{za)) x
R (o ey ey oy
23 — ¢o(x2) (13)
P(22,73)
Uy = —F(Z‘Q,Z‘g) (44)
ug = —Kp sat (Fulz,/)(:cg, wg)) , (45)
Kp

the time derivative of the closed-loop Lyapunov
function becomes

d
- Ulzz(l‘) = % V123(CU) =

— (e1 + eaVog) 22X (w9, 23) (1 + 22)*
K
—(c1+¢2Vas) Ky (22, 23) sat (K—ew(:sg,:cg)) .
b

Specifically by choosing the control u as in (42)
and coming back to the original time ¢, we may
rewrite the system (27) in the compact notation

d
dt = fcl( )

and we therefore have
d
ﬁvma( z) = Ly, Viss(x) = —1/1%%23(1‘)- (47)

Note that Ljz,Vias(z) is negative definite in
(22,23) and, for (za,23) = 0, u = 0. This yields

(46)

0 = &sat (— s1n(:c1)) . So we get sin{z;) = 0.
Therefore, as time goes to +50, the solution con-
verges to #3 = 23 = 0 and 2; = Qor 3 = 7.
Note that the latter is unstable. In other words the
closed loop system (46) is S observable with the

output function Uy23 and § = {(0,0,0), (7,0,0)}.
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Now, using (34) and (40), we see that, in (42), u is
not, defined at x> = —1. However, we may restrict
our attention to solutions such that zo > —1.
Assume that our initial conditions lie on a circular
orbit. Then e = 0, which implies that zo = p% -1.
Since p and pg are always positive, x5 is, at least
initially, greater than —1. In Section 6, we argue
that solutions, in fact, never leave the set 2o > —1.

The proposed control law has nine free design pa-
rameters: (a,£,\,c1,ca, 2, \, kg, k¢). The param-
eters (c1, A\ A, k) may be fixed to set the local
performance, while (o, &,¢2,2, 1) are then avail-
able to satisfy the control constraints. We do not
explicitly address the local behaviour in this work.

4.4 Control Bounds

We now proceed to show that u is bounded. We
do this by considering each term, u;, us, and us,
individually, assuming (c(, A, A, k¢) are given.

The third term is the easiest, as, from (43) we
clearly see that |us| < k. So, using &g to bound

ug, we have four constants, (o, ¢, ¢o, ), that may
be used to bound the remaining two terms.

We now examine the second control term wus
deﬁned by (44). We can show that the expressmn

5(1 4 2)? obtains its maximum at z, = 2

2+)\2 Az
(it obtains its minimum at 25 = —1) so that
Ae? ‘ g?
g2 + ,\ng( 2)’ < ( A2

Furthermore, we see that

g 2
1+ 3add(za) | 1+ 3027 . (18)

Vo Ve
Let h(s) := arctan (v/a(d2 + s(zxs — ¢2))) so that
R(0) = arctan(\/a¢s) and k(1) = arctan(y/awxs);
in other words, Aatg = h(1) — h(0). We note that
h/(s) = \/&(,’123 - ¢2) 1+a(¢2+;(w3_¢2)_)2 S0 that, by
the fundamental theorem of1 calculus,
Aatg \/C_)t(l‘g - (pz) fU l+a(ﬂ>2+31(cv3*¢2))2 ds.
Hence we have |Aatg] < min{m, a(zs — ¢9)}
and we may write

|zsAatg| = |(z3 — ¢2)Aatg + ¢ Aatg]

<lag - dolr (14a5).  (49)

With (41), we see that Virar

We may then bound |ua| as follows:

2
<a(1+5)

msAatg‘<2ﬂ_ 1+\/—>

(22, 13)

2/
1+ 3ag”%

7 n(1+\/5z§).



We observe that this can be made arbitrarily small
by choosing /e large and the product £4/a small.

We now turn to the first term defining the control
with only (ca, &) not already constrained. We first
show that we have

Y

2
—— <1+ —|y|-
arctan(y) * 7 Iy

(50)

To do so, we remark that the function z —
is well defined and increasing on [0, ). In

A2

particular its derivative is —z% 1?;1?5)”2) and

therefore positive since we have
tan(z)?

1+ tan(z)?

We conclude that 1 — tar}(z) < 2forallz€[0,2).
By letting =z = arctan(y), (50) follows for positive

y's and by symmetry for negative y’s. Therefore

1

1
tan(z)

= sin(z)® < 22 (51)

(24 22)20
(e1 + eoVos (w2, z3))e arctan (2z.)
(2+22) 2\
14 22
‘A(cl + ca13) * mm'

1, 232
7(2-’_”5) } !:25531.

)\Cg

|U1| <2

<2

< 2¢ max i
= )\Cl,

Since & is fixed by an appropriate choice of ¢o, the
size of uy is fully controlled by &. Consequently,

ol < ) + ] + | < 25,
2\ 1+430c°% £
Therefore, given the constant A, in (23), we see
that we can satisfy = |u| = |a,| < A by selecting
Q
appropriate values for (o, e, ¢2, 2, Kp)-

5. FOURTH ORDER SYSTEM

We have designed a feedback law for the reduced
third order dynamics leading to the system (46)
when p = pg. We now consider the fourth order
system (26) with a, chosen as above. We then
write (26) as

% = fale) + (& - 1) 9(.p)

d ) 51 (52)
2= L a
dtp Do R 0
with
H 2
=(1+=z
pg( 2)
g(z,p) = 0 - (53)

(\/;ZO-F 1) pﬁg(l + 1)

We note that (52) is in the form (3) with 2 as
a virtual control. Consequently, we may use the
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backstepping technique. To ease the presentation
we proceed with the simplest choices for the
functions ¢ and # in (6), even though we know
these are not good for performance considerations.
In particular, we note that when % -1 0,
the z-subsystem of (52) reduces to the third-order
closed-loop system (46). Therefore we can choose
zero for the function ¢. This leads us to define our
next Lyapunov function as

Vioaa(x,p) = Viss(2) + p(Va(p))

where

Va(p) :== 2/ — /pologp — [2y/Do — /Do log po]
and Viag is nothing but (35). The function p :
R>o — Ryg, as v previously, is continuously
differentiable with a strictly positive derivative
and will be used to provide an extra degree of
design freedom. Therefore, with (47), we obtain

d [ [p
a - _|F P _
o Vigsa(z, p) = Upas(z) + ( o )

2 1%L ma

(54)

\/1—? w1+ xs

LyVias(z) +

We then define the control ag as
P 2 (1 22)LgVias (2)
o' (Valp))

_ (\/:ZU - 1) (55)

where k,(-) is any continuous function which has
the same sign as its argument.

ag i= —

The time-derivative of the closed-loop Lyapunov
function is then

jt Vizsa(z,p) = —\/% Utzs(z)
1@ Vi) (& -1}k (\/pzo 1),

(56)

With the previous analysis for the third order
system, we can conclude that p = py,z0 =
23,8in(z1) = 0 is stable and attractive for the
fourth order system.

—Ulass(z,p) =

Concerning the bound for ag, we have no problem
with its second term since the function kp(:)
is completely free except for its sign. We do,
however, have a problem with its first term. Its
magnitude with respect to p can be bounded by
an appropriate choice of the function p but there
ig nothing we can do concerning the presence of
2. If follows that we cannot guarantee a global
bound but only a local bound on the domain of
practical solutions.

Having specified the controls ag and a,., the closed
loop system (25) or equivalently (21), with ag =



0 and without the (h,,hy) components, can be
written in a compact form as

= pa®) (57
We also rewrite Viagq from (56) as
d
p No3t(x) = —Ulaza (). (58)

We observe that the closed loop system (57) is S
observable with

SZ{Q)ZP(MezzeyZO,LzLomOdﬂ'}

and output function Usssa.
6. FULL SYSTEM
Coming back to the full system with the controls

ag and a, as specified above and the notation of
(57), we may rewrite (21) in the compact form

% X = pa(x) +o(x, by, hy)ay
d k
fhad . 59
7 he 5 X cos(L) ay, (59)
d ko .
p hy = EX sin(L) ay,
with
0
—ke, Y
o(¥ oy hy) = | 0% (60)
kY
Recall that ¥V = h, sin(L) — h, cos(L). Let
O—(Xa h.’h hy)
k
(2, hy, hy) = | 5 X cos(D) (61)
E'X sin(L)

With (58), we ohserve that (59) is C'-dissipative
from the Lyapunov function

1, 1,
o H B
Furthermore, it is not difficult to see that a
solution which satisfies Uya34(x) =0 and L, W =
0 must have hy = h, = 0. It follows that (59) is §
observable with the output function (Ujasy L, W)
and S={p=p, e, =€, =h, =hy, =0, L=
Ly modn}. Therefore (see Theorem 1), by picking
the control ay, as

ap, = —kp(L,W) (63)

with %, any continuous function with the same
sign ag ite argument, the set § is made attractive
with (p=po, e, =ey, =h,=h, =0, L=Ly+
w) unstable and (p = po, ¢, = ¢y = hy = hy =
0, L = Ly) stable.

T/V(Z‘) = V1234(X) (62)

Finally, we return to the issue of whether or not
it is possible for the solutions to leave the set
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za2 > —1. Let [0,T) be the right maximal interval
of definition of a solution in this set. From our
Lyapunov analysis we know that all solutions, and
in particular x3(t), are bounded on [0,7). If T
is finite, we have lim; 7 z2(¢t) = —1. However,
this is not possible. We observe that, from (26),
23 is driven solely by z3. (One can show that ap
only affects ; in (26).) Therefore, for some ¢ > 0,

——
we know that |1+ 25| < ¢|1 + 2»|. Consequently,
T = +o0 and the previous Lyapunov analysis
implies that z2 — 0.

7. CONCLUSIONS

We have derived a state feedback stabilizer for
otbital transfer under low thrust using several
recent nonlinear control techniques. We note that
we have not addressed the issue of performance.
In particular, we made certain choices for various
functions (such as in equations (36), (40), and
(63)) where these choices were not motivated by
performance issues. We also have not considered
the problem of periodic occultation. Ton engines
are usually dependent on solar power. Solar en-
ergy is clearly not available over an entire orbit
due to the satellite periodically passing through
the Earth’s shadow.
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