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1 Introduction

For nonlinear systems, the implementation of a state
feedback with observer estimates may lead to severe
forms of instability. For example, the system (see [8]) :

. 2 . 2
P =—mm +Iexitu, fe=-—-atai,y=a1, (1)

with state (x1,%2), input v and output y, admits the
globally asymptotically stabilizing state feedback :

u = ¢{z1,12) = —T27} (2)

and the globally exponentially convergent reduced order
observer :

Ty = ~F + 7. (3)
However, the certainty-equivalence controller :
552 = T + 92 ’ u = —52y2 (4)

generates solutions which escape in finite time.

The standard approach to analyzing observer-based con-
trollers is to treat the observer error as a “measurement
error” as in [4, 1, 16]. In this paper we eliminate the
conservatism of this approach by explicitly including the
observer dynamics in stability analysis. This is achieved
with a new detectability concept which, when combined
with an additional condition on the Lyapunov function
for the underlying full-state feedback design, guarantees
stability of certainty-equivalence. An application of our
result to strict-feedbock systems [9] shows that, under
a mild polynomial growth assumption on nonlinearities,
stability can be achieved with a certainty-equivalence im-
plementation of full-state backstepping designs.

For local {3] or semi-global [16] stability, general results
are available under weak notions of stabilizability and
detectability. In this paper we are interested in a global
result, because it fully encompasses the nonlinear fea-
tures of the system and the phenomena on the boundary
of the domain of attraction.

In section 2 we recall some useful technicalities. In sec-
tion 3, we define the notions of stabilizability and de-
tectability that are crucial for our analysis. The main
result is proved in section 4, and applied to several classes
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of systems.

2 Key technical Lemmas

Our objective in defining stabilizability and detectability
here is to allow us to analyze the closed-loop system via
an auxiliary system of the form :

flz,d) (5)
with f continuous. For such a system we have the fol-
lowing sufficient condition for boundedness :

:i;:

Lemma 1 ({10, Chapter 4]) Given d : R — R? as
¢ continuous function, assume the exisience of a non-
negative, radially unbounded, C' function V and of a
continuous non-negative function § satisfying :

¥ e f@dw) + St < 60 (©
Under this condition, if, for some g, the function & i3
in LY([ty, +-00)), then all the solutions of the system (5},
starting from time iy, are right mazimally defined and
bounded on [tg, +00).

In practice it may be difficult to find a Lyapunov func-
tion whose gradient is small enough to satisfy (6). The
following lemma shows how a polynomial function V can
be redesigned to reduce the magnitude of its gradient :

Lemma 2 ([6, Lemma 2]) If V is a positive defi-
nite, radially unbounded and polynomial function, then
Viz) ;= log(1+V(x)) satisfies, for some constant ¢ > 0,
av(z)
<
g ¢

|| Y e R™ . (7

3 Assumptions

The system we consider is :

& = f(:r,u) : ¥y = h(:l!) (8)
with state  in R?, input u in R? and output y in R?
and where the functions f and h are Lipschitz contin-
uous. We assume the availability of an observer and a
controller, as made precise in the following definitions.
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3.1 Stabilizability

Definition 3 (Stabilizability) The system (8) is said
to be stabilizable if there exist a Lipschitz continuous
function ¢ : B — RP and o C!, positive definite and
radially unbounded function V such that the function :

Wig) = -3 (a) fiz, o(z) (%)
15 positive definite. ’

For example, for the system (1), a control Lyapunov
function associated with ¢ given in (2) is :

1oz, (10)

Vizy,z2) = 5

;‘+

Similarly, for the system :

o= sz, d2 = m=axi+u, (1)
a control Lyapunov function and a control law are :
1
V(gnze) = 3+ (m+2m)f),  (12)
$lx1,m0) = —2x; — 3x;a + 5. (13)

For these two examples, Lemma 2 applies because the
Lyapunov functions are polynomial. More generally, we
have :

Proposition 4 If, for the following system :

# = 2 + filz:),
&2 = x3 + falzy,x2),

(14)
3-:7_1. = u + falzy,... 7a),

the functions f;’s are Lipschifz continuous and satisfly :

Ifilz1,...,25)! (15)

< gzt 4 | +HlE™ L |z

where the ¢; 's are real numbers and the r; s are integers,
then there exists a.control Lyapunov function satisfying

(7).

This result is proved by following the standard back-
stepping procedure, with virtual controls obtained from
a domination design as in {15, Proposition 3.35].

3.2 Detectability

Before giving our definition of detectability, we derive
equation (18) below, which encompasses both full- and
reduced-order observer structures. The dynamic system :

= (&, u,y) (16)

which implies the existence of a continuous function &
such that (16) can be rewritten as :

2 = f(&u) + kEuh(@) (M) -] (18)
For the system (1), an observer of the form (18) is :
Ty = —F1 + By + u — ki (51, B, wy 1)1 19
zm'-. = 2 __ .2 ( )
2=—T2+ Yy -yes,

where k) is any C! function with non negative values
and with the notation :

(20)

Likewise, for the system (11), from (2, Example 1], we
get the observer :

EI:EL—I]_.

{5%31 =y+ 3 -2 -y, (21)
Ty=Fa— [T - 3@ - )" +u-3E -1,
which can be rewritten as :
5531' = Iy +§2~3ﬂl ,
Fy = 3:2 - 4u . (22)
— [8— 187, (73 — 37%er + 272e — Lel)er —ef] e

Because their conditions for existence are less restrictive
(see [13]}, we want to consider also reduced-order ob-
servers. When the output is used as a global coordinate,
the system (8) can be rewritten as :

Ilzfl(xlxx27u) 1Ai2=f2($1!x21u) y Yy =21 . (23)
In this case a reduced order observer has the form :
{'i'? = fZ(th?)u)"_ B, (ml)fl(mlst:ru) (24)
Fz = xz-—glz)

where g is a ! function. To show that an equation of
the form (18) can still be written, we first observe that
we have :

(25)

_fl(l‘1,Zg,u)1 .

Bz = falar, B2, u)
+ 22 (1) {fi(zy, Boyu) ~
Then, by letting formally :
£ o=, hlz,z) = o, (26)
we 'get @ -

(27)

h(ils:’c\?)] y

Z1 = fi(F1,Fa,u)
+ ki((Z1,22), u, h((x]_,a’.‘z))),[h(.’l:hwg) -
with :
ki {({Z1, Z2), u, hi{{zi, 22)))

fo t),,-l (T1, T + (g — Tg),u)ds .

(28)

So, in this case, the form (18) is obtained with the nota-
tion :

o~ 551 £
where ¢ is a C? function, is an observer for system (8) T = ( Tq ) = ( T ) ’ (29)
15 I somplooll g 02 e S 1 g
constraint : - k(F, u, h(z)) = ( _g_IA )kl(i, u, h(z)) . (30)
pleuh(@) = few) VW, (D o (51)
1486

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:17 from IEEE Xplore. Restrictions apply.



For the system (11) a possible reduced order observer is
(see [2, Example 1)) :

1

: - 3 ~ 3
Xz=‘—§:1:2*5:‘g———2-y+u, Ta=x2t+ -y,

Sy ()

It can be rewritten simply as :

. ~ A ~ 3
1 =21+ Fe—e 12:$2"53+u“§€2,(32)
with :

€y = EQ — Ty . (33)

Finally, for systems in the form (23), it may be useful to
design a full-order observer but with z; as argument of
the functions instead of 7;. This leads to an observer in

the form :
{ &1 = filz,Bou) + kil e, Ta)er,
Tz = faloy, o, u) + ko(zr,e1,T2)er .
Again, we recover an equation of the form (18) by letting
formally? :

7 = (;;) . h(@) - hlz) = (2;
k=

(34)

) o
(36)

( ~ 0 - fol g%(xhaz — seg,u)ds ) .
ko(Z) + e, B2, 1) 0

For example, for the system :

#1=a2+7}, F2=u, y=a1, (37)
a full order observer is :
Di=Z++2(F -y, D=u-(Fi-y). (38)
A direct way to write (18) is :
{3}1 = +8} - [B+Fy+y+2(F~v), (39)
H=u-(T1-y),
so with a gain quadratic in ¥, :
k:“(ﬁ+é‘1;{+y+2)_ (40)

But, following the above, we can also write {18) as :
=B+ - 2@ —2), H=u~ (5 —z1), (41)

with now a gain & constant.

Definition 5 (Uniform Detectability) The system
(8) is said io be uniformly detectable if there exist
continuous functions k; : R™ x R? x R? — R™ x R™,
kr i R"xRPxRY - R™xR™ and ko : R"* xRP xR — R
and o continuous function o : R® x Ry — Ry such that,
for each z in R", a(zx,-) is of class K, and, for each
funetion u in LS ([0, +00)) and each initial condition
(z,%), the solution (X (t), X(t)) of :

{q: = f(zu) ,
2= f@u) + k@ u k(@) [h(z) ~ 2@,

with the notation :

(42)

1With an abuse of notation since %1, i.e. ey, is not defined from
(23} and (34) only.

k= kik, + ko, (43)

satisfies :
- T —
X0 - X)) + ]0 IX(9) ~ H(EEds  (44)
T -~ —~
+ f k(X (), uls), A(X(S)DIA(X(5)) — (R ()] dt
< alZ, |z - )

for oll t in [0,T), the right mazimal interval of defini-
tion. And, when T = +oo0, we have :

Jm IX(t) - X(t) = 0.

(45)
o

To illustrate the property (44), we observe that, for the
system (1), with the full-order observer (19), we get :

;;ef+e§ = —vel+ed — kel

This implies that (44) holds with k. = 0.

(46)

Another illustration is given by systems for which we can
get a reduced-order observer (24) of the form :

Xy = ATz + 3 Givilai(y) + Hik) (47)
where the scalar functions -;’s are non-increasing :
HTY ez [vi{a; + HiF2) — 1ila; + Hi[Z2 — e2))] (48)

= —|HT e |yila; + HiZ2) — vi(a: + HiT2 — e2])|

This is the case of (31) or, more generally, of the reduced
order observers proposed in [2]. The error system asso-
ciated with this observer takes the form :
€y = Aez (49)

+ 2 Gi(nilai(y) + HiZ2) — milaily) + HiZz —e2])) .
We restrict our attention to the case where its solutions
Eg(t) Satisfy H

+o0
[ 1Bk < a(E0)
o
where @& is a function of class Ko and the G;’s and H;’s
satisfy :
HIG; =0 ¥i#j , HIG; > 0. (51)

For such a case, with (48), we get, with DT denocting the
upper right Dini derivative, .

(50)

D*|HT e;| < |HT Aes (52)
— HTG: [viles(y) + HiZz) — wiledly) + HilF2 —ea])]
1t follows that :
[+°° wilas(Y () + H: Xa(t)
0 - %(a:(Y (¥) + Hi[Xa(t) — Ea2{)]}

o (| + 147 H) 3(B0))
- HTG; ‘
For instance, for (31), we get :

(53)
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le2] < —3lea| — 133 — (82 — e2)®} , (54)

and (44) holds with k= k., i.e. k; =1 and ko = 0.

Finally for {41), since the observer error tends exponen-
tially to 0, uniformly in (z1,z;), we get also that (44)
holds with k = k,, i.e. &, =1 and kg = 0. But for (39),
(44) holds only with k = kg, i.e. k. = 0.

4 Stability of Certainty-Equivalence

For a system (8) which is stabilizable and uniformly de-
tectable, an output feedback designed with the certainty-
equivalence paradigm is :

= f@u) + k(T uy) [y - MZ)], w=¢(F). (55
For stability analysis of the closed-loop system, studies
in the literature have used (z, e)-coordinates, where e de-
notes the observer error

e=3%—z. (56)

A common approach in this framework is to put restric-
tions on —i and % This approach motivated the design
of a state feedback ¢ making the system input-to-state
stable with respect to ¢, as in [4, Chapter 6]. Another
approach, pursued by [16], is to put restrictions on %5.

A drawback of these approaches is that e is treated as a
“measurement error”, and no use is made of the struc-
ture and convergence properties of the observer. Instead,
we use (Z, e)-cocrdinates which explicitly include the ob-
server dynamics. This approach was used earlier in adap-
tive control [11]. It leads to a new set of stability condi-
tions, as derived below.

4.1 Main result
When we use (Z, e)-coordinates, the closed-loop system
is :

&= (2, (2))

+ K@ 9(2),h(E = e)) (&~ ) @, o,
6= @, 0(@) - 5@ — e, (2]

+ K(E,9(2), h(E - e)) [h(E — ) — h(B)]

In this case, a precise result is :

Theorem 6 Assume the system (8) is stabilizable with a
control Lyapunov function V' and is uniformly detectable
with a gain function k. If V and k are such that, with
the decomposition (43), there exists a function L which
is C, of elass Koo and satisfies, for all (z,e),

W) (1) ka(z, 8(x), bz ~ €))

+ 1259 (2) ko(z, d(z), hiz — e))| < 7(lel) ,

. where v is some confinuous function, then the origin is
globally asymptotically stable for the closed-loop system.

(58)

Proof : Let (X(t), E(t)) be any solution of (57) starting
from (z,e). Let [0,7(Z, e)} be its right maximal interval

of definition. From the stabilizability assumption and
(58), we get, for all (%,e),
LV(@) < (59)
Y{lelHr(Z) — h(Z — )| (k- (Z, ¢(T), A(Z —e)| +1] .
So, with the detectability property, this implies in par-
ticular, for all t € [0,T(%, €)),
LIVXW) < LV(E)) + HolF, e} a(F, |el) . (60)

Since the right hand side can be upperbounded by a class
Ko function of (Z,€), T{Z,e) must be infinite and we
have global stability of the origin.

Then, to establish attractiveness, we note that we have :

V(@) < ~W(E) + D(8| +|e]) x (61)
x (T} — h(Z - )| [|k,(Z, $(Z), h(Z — )| + 1]
where, thanks to the global stability, T" is a function,

bounding 2 s Vg and & ko along the solution, whose ar-
gument is the initial condltlon It follows that we have :

/ W(X()ds < V(@) + I(z +[e) ol lel) - (62)

With the help of Barbalat’s Lemma, we conclude that
W(X(t)) and therefore |X(t)] tend to 0 as ¢ tends to in-
finity. With (45), i.e.

) _IETOO |E@®)] = (63)

this implies the global asymptotic stability. m]

4.2 Applications of Theorem 6

For the system (1}, we have seen that the combination
of the state feedback (2) and the reduced-order observer
(3) does not give a stabilizing output feedback. So let us
study now the combination of the state feedback (2) and
the full-order observer (19). We have seen that the uni-
form detectability assumption holds simply with &, = 1.
So with (19) and (10), the condition (58) of Proposition
6is:

N | 2
r Z.{_ |_1'1k1 2:1:1| < v Vi(zi,z2). (64)

It is met with the gain k; satisfying :

0 < k1(F1, %o, u,71) < o] (65)

and with the function :
L(v) = tog(l +v) (66)
which is appropriately C! and of class K. So for in-

stance a globally asymptotically stabilizing output feed-
back is :

Bi=—F, Bo= B +yt —y2E — ), u= —Tay?,
(67)

and therefore, more simply :
Fr=-Fatyt +y®, u= Fay? (68)

For exactly the same reasons, from (31) and (13},
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{22 = _%’E—'Eg_%ya 89
v = —%y—3x2+[x2+%y]5 (69)
is a globally asymptotically stabilizing output feedback
for the system (11).

We consideér now systems in the strict feedback form (14)
or more generally in the form :

& =z2 + filzy),
@2 =z3 + falz1, 22},
{ -'i'm =ZTm+1 T+ fm(rls'--amm) + u, (70)
Tl = Tmtz + fmpi(Z1,. o Tmga, 1),
in = fn(mll”'ixn!u) 3
9 Y=,
where the functions f;’s are globally Lipschitz in
(zg,...,&q), uniformly in (z1,u). We know from [5]

there exists an observer with constant gain k. So Theo-
rem 6 applies for example if :
1. the system :

Emt1 = Tma2 F fut1(T1y o T 1, Tl +0)
: (71)
Ty = fn(mla R P R B 'U) s
is input-to-state stable with (xi,..., &, v) as input.
2. for the system :
£y =z2 + fi(z:1),
T2 =x3 + falz),22) ,
. (72}

Em = Tmy1 + fm(.'.'C],. ..,xm) + v,
we know a control Lyapunov function such that the

2 Eredn) o pounded on R™. With

function yERT coa——
Proposition 4, we know this latter condition is met
when the condition {15) holds.

In particular, this establishes for systems which admit
an output-feedback form? (see [9, (7.29)]) that, when the
nonlinearities in z; are bounded by polynomials, there
is no need for the nonlinear damping technique proposed
in [9, chapter 7). ’

Furthermore since the nonlinear damping is not needed,
we do not need to design the control law by exploiting
the specific partial triangular structure. A direct conse-
quence is that the above input-to-state stability for the
system {71) can be relaxed if we know another design
leading to a control Lyapunov function for the overall

system with %EV‘% bounded. To illustrate this point,

we consider the system :
fr=z2tu, 2= f(T1) +x3 —u, &3 =—f(x) (73)

still with z; as output and where f a € function which
is zero at the origin. This system is non minimum phase.
Except for the presence of f{x;), this system is an ob-

2The function f;’s are linear in (z2,...,Zn).

servable linear system. Hence there exist real numbers
k1, ko and ks such that an appropriate full order observer
is :

T = §2+u—k1(£1—y),
5?2 = fly) + T —u - ka(Z1-y), (74)
T3 = —fly) — k@ -9 .
It leads to a system in the form (34) as :
1 = T2t u-— e,
5?2 = flm) + T3 — v — kpey, (75)
ffa = —f(.’l‘l) - ks €g .

So (44) holds with k = k., i.e. k=1 and ky = 0.

Now, to design the state feedback, it is appropriate to
introduce new coordinates :

x1=zp+z3. (76}

Then, via a backstepping design for the (x;,xs)-
subsystem, completed by the forwarding modulo L,V
procedure of [14], we can get the following pair for the
stabilizability :

Xa=T3, Xp=x1+xz+x3,

Vixg, x2,x1) = Va(xz) + (a1 + x2)? (77)
+ (.«\:’\',‘-'—_ro’tz ,L(:_Slds)2 B

¢z, 22,23) = za+ (22 + x1) + 21 + Vi(as) (78)
+ (A,?, - ﬁi—slds) (_ .f(i«:z) + f(2X2)—f(er\‘x)) )

xatay

Actually this V is not a strict Lyapunov function, but
La Salle invariance principle applies. Its interest is that
condition (58) of Theorem 6 holds with (66), if f meets
a growth condition such that we can find a function V5
with the appropriate properties and satisfying :

ax{ F(2x3)

for some real number c. It is satisfied for instance by :

flx) = z expl(z) . (80)
Then by applying Theorem 6 completed with La Salle
invariance principle, we can show that a globally asymp-
totically stabilizing cutput feedback is :

1

2
,le'(xz)l} < e(l+Walaz)) (79)

Ty = T2t u—k@—vy),

o= flul+33 —u— k(Zi-y).

T3 = —f@y) - ks(@1—y),

u = ${y,T27T3) .
When applying Theorem 6 to the system (70), it is
important to consider the use of (34) for writing the
detectability assumption, i.e. the use of 2, = y and
not of Z; both for writing the observer and the con-
trol. This point is another departure from the nom-
inal separation principle. In fact when u is taken as
u = ¢(Ty, T2, ..., %n) with the estimate 7, instead of the
true ocutput y, we may get instability. For instance, for
the system (37}, an appropriate pair for the stabilizabil-

(81)
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ity is :

(82)
M1, 22) = —(z2 + 71 + 23) — (1 + 32%)(z2 + 23)(83)

1
Vi(zy,22) = 3 (2% + (z2 + 21 +23)?)

So Lemma 2 applies. This implies that the condition
(58) of Theorem 6 holds if the observer gain is linearly
bounded in |Z]. This is the case of {41) corresponding to
a computation of the control as :

u = @z, Ts) . (84)
But it is not the case with {39) corresponding to :
u = ¢(T1,Ta) . (85)

Actually, it turns out that the certainty-equivalence con-
troller {39),(85) leads to closed-loop sclutions which es-
cape in finite time.

5 Further remarks on Theorem 6

In the condition (58), we have not taken advantage of
the stability margin quantified by the function W and
given by the state feedback. It is by using this margin
that this condition can be relaxed. In particular, we can
again approach the problem as the one of enforcing via
the state feedback an input-to-state stability property.
But this time it is not with respect to a measurement
noise but with respect to the disturbance e present in :
& = f(z,u) + k(z,u,hlz — e}) {M{(z) — h(z — €)] . (86}
This implies that the state feedback can be designed only
cnce the observer is known. Fortunately, such an input-
to-state stability property can be obtained at least for
strict feedback systems by applying the nonlinear damp-
ing technique of [7].

Instead of trying to get this input-to-state stability prop-
erty, it has also been proposed to modify the observer.
This is done for instance for output feedback systems
in the interlaced controller-observer design of [9, Section
7.4.1], and for systems which are linear in the unmea-
sured state components as in [12].
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