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Abstract

We study the global asymptotic stabilization by output
feedback for systems whose dynamics are in a feedback
form where the nonlinear terms admit an incremental
rate depending only on the measured output. The out-
put feedback we consider is of the observer-controller
type where the design of the controller follows from
standard robust backstepping. As far as we know, the
novelty is in the observer which is high-gain like with a
gain coming from a Riccatti equation,

1 Introduction

We consider a nonlinear system with coordinates y; to
Yn and z1 to z,, such that its dynamics can be written :

(51 = film) +
2 = foalyrpe) + s
3;'1’1 = fn(yl:---)yn) + zy + u (l)
'él = hl(yl:---»yn:zliu) + 2z
2"’2 = h?(y11--'vyn:zljz27u) + 23
L im = hm(yl,---,yn,zla---‘zm;u)

where y is the measured output in R, « is the input in
R, the functions f;'s are n + 1 times continuously dif-
ferentiable and zero at the origin, the functions h;’s are
continuously differentiable and zero at the origin and,
for all ¢, u, g, 2, ¥ and ©, we have :

[filyrsyz + 2,y i) = filyn 2, -0 0]

< Ay (ol + -+ dl) 5 (2)

|hi(‘yh’y2'i'@b?a---:yn+"¢’m21+9017-~,zi+90i11i)
__hi(yllst--'yyn:zls--'1z'i1u)|
< o) (el + -+ [l o + -+ al) L (3)

where ¥ is a n + 1 times continuously differentiable
strictly positive function.
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We address the problem of global asymptotie stabiliza-
tion of the origin with output feedback.

This problem has received a lot of attention. But until
recently, the contributions leading to an explicit expres-
sion of the feedback were assuming that the f;’s at least
were linear in y; to y. (see (5, Section 7], [7, Section
6.3] or (9, 8]) for instance) or that + was a constant (see
[4, 2] for instance).

Actually, for the system (1), it is known how to get a
controller from the observer dynamiecs, with robustifi-
cation to the observation error. This design is based on
the technique of observer backstepping, tackling with
the observation errors either via nonlinear damping (see
[5, Section 7.1.2]) or via interlacing (see [5, Section
7.4.1]). Such a design allows us to deal with error struc-
tures more intricate than those obtained with the lin-
earity or constant v assumption. In particular it may

- make possible to take advantage of some sign or gain

margin in the observer. The sign margin property for
instance has been used in [1] for systems exhibiting a
monotonicity property.

The objective of this paper is to use a gain margin prop-
erty. This leads us to use a high gain like observer. For
such observers, it is known (see [4] for instance) that
the value of the gain is dictated by the global Lipschitz
constant of the non linearities if it exists. Here this
Lipschitz “constant” is not constant but depends on
the output. This forces us to modify the gain on line.
This creates some resemblance with the adapted high-
gain observers used typically in universal controllers for
(perturbed) linear systems (see [3] for a survey or {12]
for a more recent contribution for instance). In fact
there is an important difference since our gain up date
law depends on the increments of the nonlinearities and
not on the non linearities themselves. Actually our up-
date law is a Riccatti equation and, for this reason, we
view our observer more something like a Kalman filter
{compare with [8]) than an adapted high-gain observer.

Unfortunately, as all the previcus results for the class
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of systems (1), we do require a “minimum phase” as-
sumption for the inverse dynamics which we phrase as :

Minimum phase assumption :

The system :
2-1 = h-l('U].,---,Un,zl,'UO—Z]_) + z2
2'2 = hz(Ul,..-,Uﬂ,Zl,ZQ,'L’U—Zl) + 3
) (4)
Zmo o= h(vi, o, 00,2000 Zma Vg — 21)
with input (vo,...,v,) and state (21,...,2m) is Jnput-

to-State Stable (see [10]).

The dynamic output feedback controller we propose has
the structure of an observer-controller. The observer is
high-gain like but with an on-line adapted gain. Its
design is given in Section 2. The controller, presented
in Section 3, is derived with the observer backstepping
technique. In section 4, we analyze the behavior of the
closed loop system.

2 Observer design

To express the observer more easily, we rewrite the sys-
tem (1) in the following more compact form :

£ = gqilz,u) + 22

j:p—l = gpvl(a:l:--'ya:p—lau) + Tp (5)
& = gplTr,. .., Tp, u)

noo= T

where p = n+m, z in R™*™ collects the n components
#’s and m components z;’s and the functions g;'s are
the f;’s or h/’s respectively. From the inequalities {2)
and (3}, we have, for all 4, v, z and &,
lgi{mi, 22 + &2, . 2+ &y u) — gi(z1, 22, .- @i, 0]

< v (Gl +.. -+ &) - (6)

The observer we propose is :

¢ .

Z1 =gy, u) + Ta + kv — T4

) fp_l =gp_1(y1,'fg,...,§p_1,'u) + EEp
+ ko1 P gy — Ty

éﬂ :gp(yl:‘%?J'--ng,U) + kapiyl —-El]

F o={r,y)

(7)
where r is an extra state, £ is a n + 1 times contin-
uously differentiable function to be defined below and
the k;’s are constant chosen such that {always possible)
there exist strictly positive real numbers ¢ and  and a
symmetric matrix ¢ satisfying :

RO +0TQ < ~a@Q , ¢l <Q<I, (8

where :
—k 1 0 ... 0
0=1": R (9}
ks 0 ... 0 1
—k, 0 ... ... 0

The corresponding observation error :
E=z-7F (10)

satisfies the following equation :

(& = & - kg
Ep—l = 'fp - kp—lrp_lfl

{ —lop-1{nn, 29— &2y v py — Epo1, 1)
. _gP—l(ylszP-"lIP—l,u)]

‘Ep = — kPT'pfl
—lgply, 22 — &2, ., 1p —&pyu)
\ —gp(v1: 72, - - -, Tp, )]

(11)

To go further, we want to make sure that the observer
state component r stays bounded away from 0, say
larger than 1. For this we impose to the function £
to satisfy, for all v,

g(l»yl) > 01 (12)

and we choose the initial condition r(0) strictly larger
than 1. Then, as by now routine in the analysis of error
dynamics of high gain observers (see {4] for instance),
we introduce the following change of coordinates :

&

& = e il (13)

The novelty here is that b is not taken as 0 or —1 as
usual. Instead it is a strictly positive real number cho-
sen (sufficiently large) to satisfy :

bQ > QD + D@ = -bQ, (14)
where I7 is the diagonal matrix :
D = diag(l,...,p) . (15)
With the ¢;’s coordinates, we get :
( £1 = reg — rhigy —~ (1+b)§el
ép—l = rep — T‘kp_151 - (p—l-i—b)%ap_l
ge—1(y1,za—r2 ey, Lz, —rP T e g u)
_ —gp—1{y1,%2,..,Tp—1,u)
TPTE
gp = —rhkyer — (p+bie
gp{yeT2—r TPeg, Ly —rPtle, )
_ [ —gplw . T2, Tp,u)
ret+

(16)
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With (8) and (6), we get the inequality (if r > 1} :

eTQe < —arsTQs—2££TQ(D+bI)5 (17)
P T2+b|62| +...+ Ti'!'blé'i}
+2’Y(yl) 22 IETQil T1+b ]
< —arsTQs—QEETQ(D—be)E
P P
+29(m) D IEQil Y lsil , (18)
=2 i=2
< —aT‘ETQE—Q;ETQ(D+bI)E
+29(w1) (P — 1) |7Qlel ,  (19)
P 2(p—1
¢ (orenl- 2200 00
~227QDe . (20)

In view of this we choose the function ¢, i.e. #, as:

P o= lry) = “%T(% [’""1]—2—(3\/;_1)‘7(1;1)) .
(21)

Since (y; ) is strictly positive, (12) holds. Also we have
the following identities which will be useful in the forth-
coming computations :

r 2(p-1) _ T, a
ar+2b;— 7a () = br + 3{21‘-}-1], (22)
a ot 41
g[2qr+1] = -2%- + —\ﬁ——’r(yl) +a. {(23)
This yields (if r > 1) :
Qe < - (bg + %[2’r+ 1]) eTQe — 2£5TQD5 .
(24)
Hence, if 7 > 0, with {14}, we obtain (if r > 1} :
Qe < — (b; + % [2r + 1]) e7 Qe (25)
+b-eTQe
T
< -Flr+1eQe, (26)
< —aelQe. (27)
And, if # <0, with (14) and (23), we obtain (ifr 2 1) :
efQe < — (bi + % [2r + 1]) el Qe (28)
T
-b z €TQ€ ,
. r
< - (2bf n % [2r + 1}) eTQe | (29)
T
< (s ra) e, o)
< —aeTQe. (31)

To summarize, with our choice for the k;’s and the func-
tion £, at each point in the closed loop state space where
r > 1, we have :

r—

70 < —agTQe . (32)

3 Controller design

To design the controller, we work from a part of the
observer equation (7) rewritten with the coordinates
(T‘, y11§27" '1§ﬂ) :

ar 2 (p—1
Po= —hr (g -1 - el
o= fHlm) + %+ e
Uy = Pln,G) + G+ ker®te
G = falun B Ba) + v+ kit
(33)
where we have let :
U = v — 31 . (34)

We follow exactly the same steps as in [5, Section 7.1.2]
(see the Appendix for details). This way we get recur-
sively n functions oy (r, ¥1, 92, ..., 5} which aren+1—4
times continuously differentiable respectively and sat-
isfy :

ai(r,0,0,...,0) = 0. (35)

In particular a;4q is obtained from the gradient of o;
with respect to all its arguments. So it is in this process
of getting these functions a;'s that we need to differ-
entiate may be up to-n times the functions appearing
in (33), i.e. the f; and +. Finally, we note that, for
getting the nonlinear damping terms (see [5, p. 289]),
we use the inequality {32} (which holds only if r > 1).
This construction leads to the control :

v = aﬂ(rayha?)"'agﬂ) (36)
and provides the variables :

G = n, (37)
Gyr = Wy — o(ryLte,.. %) . (38)

It gives also the inequality (if r > 1) :

p—

n n
2 2 T 2 2 _ 2 7
+ THeT Qe < —y — L= = Qe (39
% ;ZZC Q " ;:24 5 Qe . (39)
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Finally our output feedback controller is :

o= (-1 ) r0) > 1
G o= fln) + Bt ke - 5)
B = Ank) + 5+ ki -0)
U = falunBo,..8) + B +u
) + kn ™ (1 — )
% = hl{y, ¥, -0 U, 21.u) + 2
+ kg (1 — 1)
Zp = YTy Ty 1y e e Fy 1)
+ Kb T (31— 1)
(v = aalnyn¥a .. ¥n) — 21

(40)

4 Analysis of the closed loop system

The dynamics of the closed loop system can be de-
scribed using the coordinates :

("'75:1}1;3/2,-'-11/m21=---a2m) -

They satisfy the following set of equations :

(¢ =—ir (80— 11— 22y()) , r(0) > 1
él =Trey — Tklé'l - (l-f-b)f;El

€p1 =TEp — Thp161 — (P—1+b)Zepy

gp—1{yr, 22— e, up o —rPTITPeg0) 1
—Gp—1(¥1,22,.-,Tp-1,1)
TP—TTh J

€ = —rkpey — (p+b)lep

gp(y],12-I"2+h52,...,.rp~v1‘p+b5p,u) T
—gplv1.T2, - 2p,u)
ro+b

Y\ o= fil) + 5 + e
Yo fz(yl ) + Ga + kprithe

fﬂ(y1:§27- . 'san) + a'ﬂ(T: i, 372? .- '!@\71)

yn =
+ kn rn+1+b £1
il = 22
+ hl(yl,§2 + T:2+b62= .. '1@_7! + rn+bsn7
v21, =z — P 4 ay)
P =
+ hm(ylyih + 7'2+5527 s Iy\n + rn+bsn
1+b
\ ,21,...,Zm,—21—rn+ + Eﬂ+l+an)
(41}

3811

where we have used the notation, for ¢ € {1,...,n},
o= G + e {42)
and, fori e {n+1,...,n+m},
i = Zin . {43)

These dynamics have the following properties :

1. The right hand side is defined on (0, 4-00) x R*m+m)
where it is continuously differentiable, It follows
that, to each initial condition in (0, +oo) x R2"+m)
it corresponds a unique solution.

2. The expression of 7 has been chosen such that :

r=1 = F > 1. (44)

It follows that the set (1,+oc) x R*(+m) is for-
ward invariant and its boundary {1} x R2(ntm) ig
repellent. Hence any solution, initialized in this set,
remains in it and, if its right maximal interval of
definition is bounded, it is unbounded (since its r-
compoenent cannot go to 1). So, for any such solu-
tion, (39) holds.

3. We have an interconnection structure. The subsys-
tem with coordinates (r,&,¥1,%2,. .., ¥,) with input
z sends the signals :

W = _Tn+1+65 net tO0n, v = Y1, (45)

2+b n+b

U2_y2+7" -,Un—y*’r-f‘

to the z-subsystem whose dynamics are then given
v (4). So, with the arguments introduced in
[11] and our minimum phase assumption, it follows
that asymptotic stability with domain of attraction
(1, +00) x RE"+™) holds if the (v, 2, 41,52, - . -, Bn)-
subsystem has, uniformly in z, an asymptotically
stable equilibrium with (1, +oc) x R?"*™ as domain
of attraction (see (50) below for what we mean by
this).
4. With the help of (32) and (39), we see that, in the set
{1,+00) x R2*+™ the (r, £, 91, §2, - - -, Gn )-Subsystem

has only one equilibrium at (r*,0,...,0) with :
6(p—1)
=1+ ———24(0). 46
2o (46)

5. The function r — r* —r*log(r/r*} is C!, proper and
non-negative on (0, +co). It is zero if and only if
r =r*. It satisfies :

—r— log(r/r*T

A CREE = ORI N

o
- 3b (r —r )2 (48)
22D = o) = o)
< Loy 4 2D ) ) (9)
-  6b abq
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6. With (35) and (38), we know that we can use
{C2,--.,¢n) instead of (¥z,...,¥n) 85 coordinates.
Their equilibrium point is also 0.

We conclude that to show the asymptotic stability
of the point (r*,0,...,0) with domain of attraction
(1,+00) x R¥»*+™) yniformly in 2, it is sufficient to
show that for some C!, unbounded and strictly increas-
ing function & : [0, +o00) — [0,+0c), the derivative of :

Vir,p1. 82, -, ¥ni€) = (50)
[r—r —rlog(r/r)] + @ (4 + S, ¢F +£7Qe)

is negative definite uniformly in z. In view of (39) and
(49), we pick ¢ : [0,+00) — (0,+00) as a continuous
non decreasing function satisfying, for all y;,

(7(0) - 7(91))2

h
Such a choice is possible since ﬂg)_—:(ﬂ)- is a continuous
fanction. Then in the definition of V above, we use :

f: plo)do .

With (39) and (49), we get that, in (1, +o0) x RT™,
we have :

- abyg

‘P(y1 (51)

3(s) (52)

y ] »\2 6 (p — 1)2 P
< = M —
V< g+ T (60 - () (5)
- 2 4 24 eTQe ) |y + 24 2T
4 (y1 ;C Q ¥y ;C 5 Q
Since ¢ is non decreasing and satisfies (51), this yields :
y e 2 6(p—1)° _ 2
vV < -G_b(T ™)+ —a}"q”—(‘f(ﬂ) ¥y 1)
— e (ul) ¥
_ 2 .2+ET I I;2+EET e (54
¢ (yl gﬁ, Q ;c 5 € Qe|(54)

< —%(T—T*)Q - %w(yf)yf
- (Z ¢+ ETQE) [Z ¢+ %ETQE} (55)
=2 i=2

The right hand side of (55) is non positive and zero
if and only if we are at {r*,0,...,0). Hence we have
established the asymptotic stability of this point uni-
formly in z. Also this inequality holding everywhere
in the set (1, +00) x R2"*+™ which is forward invariant,
this whole set is the domain of attraction.

To conclude, for the system (1) satisfying the inequal-
ities (2) and (3) and the minimum phase assumption,
the dynamiec output feedback we have proposed pro-
vides asymptotic stability of the point (»*,0,...,0)
with domain of attraction (1, 4o0) x R2(n+m),

3812

5 Conclusion

We have shown that, by combining an adapted high
gain observer and observer backstepping, we can design
globally asymptotically stabilizing output feedbacks for
systems admitting the form (1) where the nonlinearities
have an incremental rate depending only on the mea-
sured output as specified by the inequalities (2} and
{3).

The main contribution here is in the observer gain up
date law. The key to get such an update law is in
the coordinate scaling commonly used in the analysis of
high gain observer. In our case, this scaling, ¢; = ;%g

depends not only on the rank ¢ in the integrator chain
but also on b, a parameter directly related the “observer
poles” (see (8) and (14)).

Appendix : Construction of the functions a;’s

For the sake of completeness, we reproduce here with
some adaptation what can be found in {5, Section 7.1.2).

Consider the system :

a 2(p=1
o= *%T(% [r— 1} - 2220 ’7(@/1))
o = fily) + 5+ ?Pe
$ G2 = fly,®) + 5 + kar®tte
L% = fily B T0) + v+ kit

(56)
where the €;’s are components of a vector £. Aiming
at establishing a result by recurrence, we assume the
existence of functions a; which are n + 1 — j times
continuously differentiable respectively, satisfy :

a;(r,0,0,...,0) = 0. (57)
and are such that, by letting :
i1 = P41 — o(ru, ... L 05) . (B8)
we have :
vy G+l Qe (59)
=2
2 L. a(®n—d) g
< -y - j;(j - TE Qs + 2( (v — ay)

Now, we consider the system (56) with the ¥,-equation
replaced by :

Vo= Filyv B, o8) + Gy + ket The (60)
with %4 satisfying :
§i+l = fi+1(yla§27"'a@}+l) + Vil (61)
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+ k‘"+17‘i+2+b£1 .

With (58), (59) gives :

41
i+ > G +eTQe (62)

j=2
< -y ZC2 - a(zn al2n -8 1,

+ 2641 (Ci + §i+1 - di)

where in particular we have :

& = %‘[-% (3[1"*1] Mv(yn))]
%3;‘ [fl(‘yl) + 7+ T‘ZH’Ez]

.y i[:) + §i+1 + k,‘Ti+]+b£1]

{63)
We observe that the term {; + f;,-H — &; admits the
following decomposition :

+3y [fl(y19y2: .-

Ci+gi+1 — & = vy + gy Be, . i) (64)
+vi(ryn, G, o Bi) e + Srte

with a straightforward identification of the function
and ;. Also note that (57) implies :

da;

S(r,0,0,...,0) = 0. (65)

And, since the f;’s are zero at the crigin, with (57) and
(65), it follows in particular :

pi{r,0,...,0) = 0. (66)
Finally, by completing the squares, we get :
2G4 (MEl + %‘Tz%fz) (67)

2
8ng ~2 2 Ba
< (“'1 + —*ayl

4125 a TP,
= =6 r )+EEQE-

Using this inequality in (62), we obtain :

~

i+1
vty C+eTQe (68)
i=2 ' _
< -4 Z CJ M el Qe

2n

+2¢1 [Ui+1 +pilr, 1, Y2, Tigr)

2
ng, (o2 90" gim
+2a<z+1 (V, + 3y1 T .

So by defining ;4 as :
it (T, 41, 025 -+ 2 Big1) = — 3G (69)

%E'Ci+1 (V + %" r4+2b)}

_[ i(r’y11§2:---,§1‘+])+ o

we get (compare with (59)) :

i4+1
ity G +eTQe (70)
i=2 i+1
S _yl ZCJ a(2'n, ’E:'i‘ 1)) ETQE

+ 2C11 (Vg1 —ouya) .

Note also that a;4+; Is n — ¢ times continuously differ-
entiable and satisfies :
a,—+1(r,0,...,0) = 0. (71)
References
(1] M. Arcak, P. Kokotovié, Observer-based stabiliza-

tion of systems with monotonic nonlinearities. Asian
Journal of Control, Vol. 1, pp. 42-48, March 1999,

[2] J.-P. Gauthier, H. Hammouri, 8. Othman, A sim-
ple observer for nonlinear systems, application to biore-

actors, IEEE Transactions on Automatic Control, Vol.
AC-37, No. 6, June 1992.

(3] A.Ilchmann, Non-identifier-based high gain adap-
tive control. Lecture Notes in Control and Information
Sciences 189, Springer Verlag. 1993.

[4 H.XK. Khalil, A. Saberi, Adaptive stabilization of
a class of nonlinear systems using high-gain feedback.
IEEE Transactions on autematic control, Vol. AC-32,
No. 11, November 1987.

5] M. Krstié, 1. Kanellakopoulos, P. Kokotovié, Non-
linear and adaptive control design. John Wiley & Sons,
New York, 1995.

[6] W. Lohmiller, J.-1. Slotine, On contraction anal-
ysis for nonlinear systems, Automatica Vol. 34, No. 6,
pp. 683-696, June 1998

[7] R.Marino, P. Tomei, Nonlinear control design. Ge-
ometric, adaptive, robust. Prentice Hall 1995

[8] L. Praly, I. Kanellakopoulos, Asymptotic stabiliza-
tion via output feedback for lower triangular systems
linear in the unmeasured state components. Proceed-
ings of the 39th IEEE Conference on Decision and Cen-
trol, December 2000,

(9] L. Praly, Z.-P. Jiang, Stabilization by output feed-
back for systems with ISS inverse dynamics, Systems &
Control Letters 21 (1993) 19-33.

(10] E.D. Sontag, Smooth stabilization implies coprime
factorization. JEEE Transactions on Automatic Con-
trol, April 1989.

[11] E.D. Sontag, A.R. Teel, Changing supply functions
in input/state stability property. IEEE Transactions on
Automatic Control, August 1995.

(12] Y. Xudong, Universal A-tracking for noniinearly-
perturbed systems without restrictions on the relative
degree. Automatica 35 (1999) 109-119.

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:18 from IEEE Xplore. Restrictions apply.



