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Abstract

We show that semiglobal stabilization of a large class of feedfor-
ward nonlinear systems is achieved by low-gain linear feedback pro-
vided that the separation of the gains is sufficient. Particular situa-
tions are identified where the tuning of the gains only requires increas-
ing powers of a single parameter. A recursive tuning of independent
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parameters is necessary in the general case to avoid vanishing regions
of attractions.

1 Introduction

This paper deals with the problem of semiglobal stabilization of nonlinear
systems by using linear feedback: given the system

ẋ = F (x) +G(x)u, F (0) = 0, x ∈ IRn (1.1)

whose Jacobian linearization is controllable, when and how is it possible to
tune the gains of a linear controller u = Kx in order to include an arbitrarily
large bounded prescribed set in the region of attraction of the equilibrium
x = 0?

Since its original formulation in [1], the above problem has stimulated
important contributions under the form of necessary or sufficient structural
conditions on the nonlinearities of (1.1) to achieve arbitrarily large regions of
attraction. Regarding the necessary conditions, counterintuitives obstacles
to semiglobal stabilization have been discovered in the analysis of the peaking
phenomenon [10, 2, 9]. Regarding the sufficient conditions, most results have
been derived from the simplification of nonlinear designs which achieve global
stabilization. Thus, for strict-feedback systems

ż = f(z) + g(z)ξ1
ξ̇1 = ξ2 + a1(z, ξ1)

...

ξ̇n = u+ an(z, ξ1, . . . , ξn)

(1.2)

which consist of a core system ż = f(z) controlled through a chain of nonlin-
ear integrators with all the nonlinearities in feedback form, the backstepping
methodology provides a recursive construction of a Control Lyapunov Func-
tion (CLF [7]) which can be employed for the design of a globally stabilizing
control law. A similar recursive approach shows that semiglobal stabilization
can be achieved by linear (high-gain) feedback, provided that the separa-
tion between the different gains of the control law is sufficient. The linear
semiglobal design results in a drastic simplification over the Lyapunov global
design but an insufficient separation of the gains may cause the region of
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attraction to schrink. These results are well documented in the literature
(see for instance [8, chap.6] for a survey and additional references, including
[11]).

As a complement to backstepping designs, forwarding Lyapunov designs
have recently been developed [8, 6] for the global stabilization of feedforward
systems

ξ̇1 = ξ1h1(ξ2, · · · , ξn, z) + φ1(ξ2, · · · , ξn, z) + ψ1(ξ2, · · · , ξn, z)u
ξ̇2 = ξ2h2(ξ3, · · · , ξn, z) + φ2(ξ3, · · · , ξn, z) + ψ2(ξ3, · · · , ξn, z)u

...

ξ̇n−1 = ξn−1hn−1(ξn, z) + φn−1(ξn, z) + ψn−1(ξn, z)u

ξ̇n = ξnfn(z) + φn(z) + ψn(z)u
ż = f(z) + g(z)u

(1.3)
which consist of a core stable system ż = f(z) augmented by a chain of
nonlinear integrators with all the nonlinearities in feedforward form. The
forwarding methodology provides a recursive construction of a Control Lya-
punov Function (CLF [7]) which can be employed for the design of a globally
stabilizing control law. The objective of the present paper is to show that,
similarly to the case of systems in feedback form, semiglobal stabilization
of feedforward systems is achieved with a (low-gain) linear feedback. It has
been shown ([5]) that a low-gain strategy with a single tunable parameter
achieves semiglobal stabilization when the core system is augmented by a
chain of integrators. We show that, when linearly bounded nonlinearities in
strict feedforward form are added to the integrators, the same results holds.
In the general case (1.3), the separation between the different gains of the
control law must be sufficient because an insuffic! ! ient separation of the
gains may cause the region of attraction to shrink; the single parameter ap-
proach has to be replaced by a recursive approach which allows a sufficient
separation of the low gains. In addition to this asymptotic result, we also
show how the Lyapunov functions constructed in the recursive global Lya-
punov designs can be employed to tune the gains of the linear controller in
order to achieve a prescribed region of attraction.!

Our results complement the existing semiglobal results for the systems
(1.2) and show that semiglobal stabilization by linear feedback can be achieved
for any nonlinear system which can be obtained by successive backward and
forward augmentations of a core stable subsystem.
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Our nested low-gain linear design can be compared to the nested satu-
ration design of Teel [12] for strict-feedforward systems, that is, when the
functions hi in (1.3) are identically zero. Teel showed that global stabiliza-
tion results can be obtained in this case if the linear gains are replaced by
nonlinear saturations. The nested saturation design also requires a sufficient
separation of the (nonlinear) gains to achieve global stabilization.

The paper is organized as follows. In Section 2, we describe the two
building blocks of recursive semiglobal designs, that is, the semiglobal stabi-
lization by linear feedback of the backward and feedforward augmentation of
a stable subsystem by one integrator. In Section 3, we extend the semiglobal
result to a particular class of feedforward systems (1.3) for which the different
gains of the linear controller can be tuned with increasing powers of a single
parameter ε. We also show through simple examples that such a tuning of
the gains does not allow the semiglobal stabilization of general feedforward
systems and may lead to vanishing regions of attraction. The general case is
then treated in Section 4, through the recursive application of a semiglobal
forwarding result.

2 Backstepping and forwarding an integrator

with linear feedback

The two building blocks of recursive designs consist in the backward and
feedforward augmentation by one additional integrator of a core system

ż = f(z) + g(z)u, f(0) = 0, z = (z1, . . . , zp)
T ∈ IRp (2.4)

for which we assume (possibly after a preliminary feedback) that the equilib-
rium z = 0 of ż = f(z) is globally asymptotically stable (GAS) and locally
exponentially stable (LES). By standard converse theorems (see Appendix),
there exists a smooth Lyapunov function U(z) which satisfies the following
for some constants α1 and α2 > 0:

(i) ∀z ∈ IRp : α1‖z‖2 ≤ U(z)

(ii) ∀z ∈ IRp : LfU(z) ≤ −α2‖z‖2
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A backward augmentation of the system (2.4) by one integrator results
in

ż = f(z) + g(z)ξ

ξ̇ = u
(2.5)

The high-gain feedback u = −kξ, k large, enforces a time-scale separation
between the convergence of ξ(t) to ξ = 0 and the remaining dynamics ż =
f(z). An estimate of the region of attraction is obtained by taking the time-
derivative of the Lyapunov function V = U(z) + 1

2
ξ2, which is

V̇ = LfU(z) + LgU(z)ξ − kξ2 ≤ −α2‖z‖2 + LgU(z)ξ − kξ2

Completing the squares, we obtain that V̇ is negative definite in the set Ω
where |LgU(z)| < 2

√
kα2‖z‖. This means that the region of attraction con-

tains the largest level set of V contained in Ω. Because V is independent of
k and Ω tends to the entire state space as k →∞, the control law u = −kξ
achieves semiglobal stabilization of the equilibrium (z, ξ) = (0, 0).

A forward augmentation of the system (2.4) by one integrator results in

ξ̇ = z1
ż = f(z) + g(z)u

(2.6)

The linear change of coordinates

y = ξ + qT z, q = −F−T e1, F = Df(0), e1 = (1, 0, . . . , 0)T (2.7)

transforms (2.6) into

ẏ = qTg(z)u+ qTf1(z)
ż = f(z) + g(z)u

(2.8)

where f1(z) = f(z) − Fz only contains the nonlinear part of f(z). If the
Jacobian linearization of (2.6) is stabilizable, then qTg(0) 6= 0 and we assume
(up to the multiplication of y by a constant) that qTg(0) = 1, that is,

qTg(z) = 1 + qTg1(z), g1(z) := g(z)− g(0)

Instead of the high-gain employed for the system (2.5), we now use the
low-gain feedback

u = −εy, (2.9)
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where a small value for ε > 0 enforces a time-scale separation between the
convergence of z to a neighborhood of z = 0 and the remaining dynamics
ẏ = −εy+0(‖z‖2). An estimate of the region of attraction of the equilibrium
(y, z) = (0, 0) is obtained by using the Lyapunov function [6]

V (y, z) =
√

1 + y2 − 1 +
∫ U(z)

0
γ(s)ds (2.10)

where γ(s) is a positive non integrable function to be determined (
∫∞
0 γ(s)ds =

+∞ is necessary to ensure that V is radially unbounded). The time-derivative
of V along the solutions of (2.8) is

V̇ = −ε y2√
1 + y2

+ εψ(y, z) + γ(U(z))LfU +
y√

1 + y2
qTf1(z)

where the cross-term

ψ(y, z) = − y2√
1 + y2

qTg1(z)− γ(U(z))LgU(z)y

satisfies ψ(0, z) = ψ(y, 0) = 0, Dψy(y, 0) = 0, and Dψz(0, z) = 0.
The terms indepedent of ε satisfy

γ(U(z))LfU +
yqTf1(z)√

1 + y2
≤ −γ(U(z))α2‖z‖2 + |qTf1(z)|

Because qTf1(z) is at least quadratic near the origin and U is radially un-
bounded, we can construct a function γ(s) ≥ 1 such that, for all z,

−γ(U(z))α2‖z‖2 + |qTf1(z)| ≤ −α2‖z‖2

With this function γ, we have completed the definition of the Lyapunov
function (2.10). Let Ω be the desired region of attraction of (ξ, z) = (0, 0).
Because V is radially unbounded, we can choose K large enough such that

Ω ⊂ UK = {(ξ, z)|V (y, z) ≤ K}

Inside the compact set UK, there exist constants k1 > 0 and k2 > 0 such that
|ψ(y, z)| ≤ k1|y|‖z‖ and 1√

1+y2
≥ k2. The time-derivative V̇ then satisfies in

UK
V̇ (y, z) ≤ −εk2y2 + εk1|y|‖z‖ − α2‖z‖2
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Completing the squares, we conclude that V̇ is negative definite inside UK
provided that the constant ε > 0 is chosen small enough to satisfy

ε <
4k1k2
k23

We conclude that the region of attraction increases to the whole state space as
ε→ 0, which proves the semiglobal stabilization. Local exponential stability
follows from the fact that V and V̇ are quadratic near the origin. 2

Two conclusions must be retained from the above analysis: on the one
hand, an asymptotic result, which guarantees that the linear low-gain feed-
back (2.9) achieves stabilization in any given compact set provided that the
gain ε is sufficiently low (which had already been proven in [5]). On the
other hand, the determination of an upper-bound on ε from the Lyapunov
function (2.10) in the case when a Lyapunov function is known for the sub-
system ż = f(z). In the next two sections, we will extend these conclusions
to more complex situations in which several integrators are added to the
original system, with nonlinearities in feedforward form.

3 Forwarding a chain of integrators with lin-

ear feedback

The next result extends the construction in Section 2 to a forward augmen-
tation of the core subsystem by a chain of integrators. The analog result for
a backward augmentation can be found in [11].

Theorem 1 [5] Consider the system

ξ̇1 = ξ2
ξ̇2 = ξ3

...

ξ̇n−1 = ξn
ξ̇n = z1
ż = f(z) + g(z)u

(3.11)

where ξ ∈ IRn and z ∈ IRp. Assume that the Jacobian linearization of (3.11)
is stabilizable and that the equilibrium z = 0 of ż = f(z) is GAS/LES. Let
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p(s) = sn + an−1s
n−1 + · · · + a1s + a0 be an arbitrary Hurwitz polynomial.

Then the feedback

u = −
(
a0ε

nξ1 + a1ε
n−1ξ2 + · · ·+ an−2ε

2ξn−1 + an−1εyn
)

(3.12)

where yn = ξn + qT z as in (2.7), achieves semiglobal stabilization of (ξ, z) =
(0, 0), that is, the region of attraction of (ξ, z) = (0, 0) tends to entire state
space as ε→ 0.

Proof: Using scaled coordinates as in [5]

yi = εn−iξi ∀ i ∈ {1, · · · , n− 1}

and yn as in (2.7). Let A be the controller form matrix with characteristic
polynomial p(s) and let P > 0 be solution of the Lyapunov equation ATP +
PA = −I. Then we use the Lyapunov function

V (y, z) =
√

1 + yTPy − 1 +
∫ U(z)

0
γ(s)ds (3.13)

where γ(s) is a positive non integrable function. Proceeding as in section
2, we achieve semiglobal stabilization and V can be employed to obtain an
upper bound on ε such that the system is stabilized in an a priori fixed set.

2

The above result can be extended to strict feedforward systems under a
linear growth assumption for the nonlinearities:

ξ̇1 = ξ2 + φ1(ξ2, · · · , ξn, z, u)

ξ̇2 = ξ3 + φ2(ξ3, · · · , ξn, z, u)
...

ξ̇n−1 = ξn + φn−1(ξn, z, u)

ξ̇n = z1 + φn(z, u)
ż = f(z) + g(z)u

(3.14)

where

‖φi(ξi+1, · · · , ξn, z, u)‖ ≤ γ1,i(‖(z, u)‖) + γ2,i(‖(z, u)‖)‖(ξi+1, · · · , ξn)‖ (3.15)
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for some C1 positive functions γ1i, γ2i, which satisfy γ1i(‖(0, u)‖) = γ2i(‖(0, u)‖) =
0.

The proof of Theorem 1 readily extends. On the contrary, when the
growth assumption (3.15) is removed , the control law (3.12) does not achieve
semiglobal stabilization for general strict-feedforward systems. This is illus-
trated by the following example.

Example 1 The system

ξ̇1 = ξ2 + z − (ξ2 + z)3

ξ̇2 = z

ż = −z + u

has the strict feedforward form (3.14) but does not satisfy the growth as-
sumption (3.15). The change of coordinates (2.7) is y2 = ξ2 + z, which yields

ξ̇1 = y2 − y32
ẏ2 = u

The control law of Theorem 1 is u = −εy2 − ε2ξ1 and, using the scaled
coordinate y1 = εξ1, the closed-loop system is

1
ε
ẏ1 = y2 − y32

1
ε
ẏ2 = −y2 − y1r

(3.16)

The set
E = {(y1, y2)|y2 − y1 ≥ 2, y2 ≥ 1}

is invariant, that is, the solutions of (3.16) starting in E remain in E for all
t ≥ 0. This is verified by showing that initial conditions on the boundary of
E do not leave E: Defining ζ = y2 − y1, we have

ζ̇ |ζ=2= 2ε(y32 − 3y2 + 2) ≥ 0 if y2 ≥ 1

and
ẏ2 |y2=1= ε(ζ − 2) ≥ 0 if ζ ≥ 2

Because E is invariant and does not contain the equilibrium (y1, y2) = (0, 0),
it has no intersection with the region of attraction, regardless of ε > 0. In
particular, the region of attraction does not extend along the axis ξ1 = 0
beyond the point (ξ1(0), y2(0)) = (y1(0), y2(0)) = (0, 2).

9



In the above example, the region of attraction is limited in one direction
of the state space as ε → 0. The situation is even worse if we consider
general feedforward systems (non strict). The following example shows that
the region of attraction may decrease with ε and even vanish as ε→ 0.

Example 2 Consider the feedforward system

ξ̇1 = ξ2 + z + ξ1(ξ2 + z)2 (3.17)

ξ̇2 = z (3.18)

ż = −z + u (3.19)

Using the change of variables (y1, y2) = (
√
εξ1,

ξ2+z√
ε

), and the control law

u = −ε(y1 + y2) of Theorem 1, we obtain the subsystem

1
ε
ẏ1 = y2 + y1y

2
2

1
ε
ẏ2 = −y2 − y1

(3.20)

The set

E = {(y1, y2) : (y1 ≥ 0 and v1 := 2y1 + y2 ≥ 6)

or (y1 > 1.5 and v2 := (y1 − 1.5)(2− y2) ≥ 1)}

is invariant for the system (3.20) because

ẏ1 |y1=0,y2≥6> 0, v̇1 |v1=6,1≤y2≤6> 0

v̇2 |v2=1,y2≤1> 0

Because y = (0, 0) 6∈ E and ȳ = (0, 6) ∈ E, we conclude that ȳ does not
belong to the region of attraction of y = (0, 0). In the original coordinates,
ȳ = (0, 6

√
ε), which shows that the region of attraction vanishes as ε→ 0.

In the next section we will see that the vanishing region of attraction
in Example 2 is due to an insufficient separation of the gains ε and ε2 as
ε → 0. The class of strict-feedforward systems (3.14) with a linear growth
assumption (3.15) thus covers a special situation in which several integrators
can be forwarded in one design step, the different gains of the controller being
tuned with increasing powers of a single parameter ε. To avoid vanishing
regions of attractions in the general case (4.24), it will be necessary to proceed
in n different steps, a new tuning parameter εi being defined at each step.
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4 Recursive semiglobal stabilization of feed-

forward systems

To achieve the semiglobal stabilization of feedforward systems (1.3) in a
recursive way, we will now extend the result of Section 2 in two directions
–compare with (2.6): first, to allow a recursive application of the result, it is
necessary to start from a core system which is not necessarily GAS: we will
only assume that the equilibrium z = 0 of ż = f(z) is locally exponentially
stable (LES) and has a region of attraction A which contains the compact
set Ωz ⊂ IRp to be included in the prescribed region of attraction. This
is only a minor modification with respect to Section 2 because, as shown in
Appendix, converse theorems guarantee the existence of a Lyapunov function
U(z) which satisfies the following for some constants α1, α2 > 0 (∂A denotes
the boundary of A):

(i) α1‖z‖2 ≤ U(z) and limz→∂A U(z) = +∞

(ii) LfU ≤ −α2‖z‖2

A second extension with respect to Section 2 is that we consider the more
general forward augmentation

ξ̇ = h1(z) + ξh2(z) + h3(z)u, h1(0) = 0
ż = f(z) + g(z)u

(4.21)

where h1(0) = 0 and h2(z) is at least quadratic near the origin, that is,
h2(0) = 0 and Dh2(0) = 0.

The linear change of coordinates

y = ξ + qT z, qT = −Dh1(0)F−1

transforms the first equation of (4.21) into

ẏ = (h3(0) + qTg(0))u+ h.o.t.

where h.o.t. denotes higher-order terms. If the Jacobian linearization of
(4.21) is stabilizable, then h3(0) + qTg(0) 6= 0. Up to the multiplication of y
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by a constant, we assume without loss of generality that h3(0) + qTg(0) = 1.
We then rewrite the system (4.21) as

ẏ = h̃1(z) + yh2(z) + (1 + hT3 z + h4(z))u,
ż = f(z) + g(z)u

(4.22)

where

h̃1(z) := h1(z)−Dh1(0)z−h2(z)qT z+qT (f(z)−Fz), h̃1(0) = 0, Dh̃1(0) = 0

and

hT3 z + h4(z) := h3(z)− h3(0) + qT (g(z)− g(0)) h4(0) = 0, Dh4(0) = 0

Then we have the following result.

Theorem 2 Let Ω = Ωξ × Ωz ⊂ IR × A be any compact set. Then there
exists ε̄ > 0 such that, for all 0 < ε ≤ ε̄, the equilibrium (ξ, z) = (0, 0) of
(4.21) is locally exponentially stable with the control law u = −εy and the
region of attraction includes Ω.

Proof: We define the Lyapunov function

V (y, z) =
∫ U(z)

0
γ(s)ds+ ln(1 + y2)

where γ(s) ≥ 1 is a continuous function so that V (y, z) is positive definite
function and radially unbounded in IR×A. Its time-derivative is

V̇ (y, z) = −ε 2y2

1 + y2
+ εψ(z, y) +γ(U)LfU +

2y

1 + y2
(h̃1(z) + yh2(z) + εyh4(z))

(4.23)
where the cross-term ψ(y, z) is

ψ(y, z) =
2y2

1 + y2
hT3 z − γ(U)LgU(z)y

Because the functions LfU(z), h̃1(z), h2(z), and h4(z) are all at least quadratic
near the origin, and U is radially unbounded in A, we can choose γ(s) such
that

γ(U)LfU +
2y

1 + y2
(h̃1(z) + yh2(z) + εyh4(z) ≤ −α‖z‖2 ∀z ∈ A
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We obtain in this way

V̇ ≤ −ε 2y2

1 + y2
+ εψ(z, y)− α‖z‖2

The choice of γ completes the definition of V . Because U is radially un-
bounded inA, there exists a constantK > 0 large enough such that ‖(ξ, z)‖ ∈
Ω ⇒ (ξ, z) ∈ UK = {(ξ, ‡)|V(†, ‡) ≤ K}. There exist two constants k1 > 0
and k2 > 0 such that |ψ(y, z)| ≤ k1|y|‖z‖ and 2

1+y2
≥ k2 inside the compact

set UK . Completing the squares, we conclude that V̇ is negative definite
inside UK provided that the constant ε > 0 is chosen small enough to satisfy

ε <
4k1k2
α2

Local exponential stability follows from the fact that V and V̇ are quadratic
near the origin.

2

A recursive application of Theorem 2 yields the following conclusion. (The
corresponding result for systems in the feedback form (1.2) can be found in
[11]).

Theorem 3 Consider the feedforward system

ξ̇1 = ξ1h1(ξ2, · · · , ξn, z) + φ1(ξ2, · · · , ξn, z) + ψ1(ξ2, · · · , ξn, z)u
ξ̇2 = ξ2h2(ξ3, · · · , ξn, z) + φ2(ξ3, · · · , ξn, z) + ψ2(ξ3, · · · , ξn, z)u

...

ξ̇n−1 = ξn−1hn−1(ξn, z) + φn−1(ξn, z) + ψn−1(ξn, z)u

ξ̇n = ξnhn(z) + φn(z) + ψn(z)u
ż = f(z) + g(z)u

(4.24)
where for each i, hi(0) = 0 and Dhi(0) = 0, that is, hi is at least quadratic
near the origin. Assume that the Jacobian linearization of (4.24) is stabi-
lizable and that the equilibrium z = 0 of ż = f(z) is locally exponentially
stable with a region of attraction A ⊂ IR

√
. Let Ω = Ωξ×Ωz ⊂ IRn×A be an

arbitrary compact set. Then there exists constants ε̄i > 0 such that, for any
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0 < εi ≤ ε̄i, the equilibrium (ξ, z) = (0, 0) of (4.24) is locally exponentially
stable with a linear control law of the form

u = −
n∑
i=1

εiyi, yi =
n∑
k=i

αikξk + qTi z

and its region of attraction contains Ω. (The coefficients αik and the vectors
qi depend on the parameters εk, k > i.)

5 Conclusion

This paper has addressed the semiglobal stabilization by linear feedback of
a large class of feedforward nonlinear systems. We have used the Lyapunov
construction proposed in [6] for the global stabilization of feedforward sys-
tems to estimate the gains of the linear controller needed to achieve a pre-
scribed region of attraction. We have identified particular situations in which
the tuning of the gains can be achieved with increasing powers of a single
parameter. We have shown that such a simple tuning may cause vanish-
ing regions of attraction for general feedforward systems. In this case, the
tuning of n independent parameters must be achieved in a recursive way to
guarantee arbitrarily large regions of attractions.

A Converse theorems

The converse theorem used in Section 2 can be deduced from standard con-
verse theorems, see for instance [3]. A simple proof, given in [8, Lemma B.1.],
defines the Lyapunov function U(z) as the line integral

U(z) =
∫ ∞
0
‖z̄(s)‖2ds (A.25)

where z̄(s) is a solution of the scaled system

˙̄z =
1

1 + ‖f(z̄)‖2
f(z̄) := F (z̄), z̄(0) = z

The time-derivative of U along the solutions of ż = f(z) yields

U̇ = LfU(z) = −(1 + ‖f(z)‖)‖z‖2 ≤ −‖z‖2
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On the other hand, thanks to the linear growth of F

‖F (z)‖ ≤ L‖z‖, L = max

{
1, sup
‖z‖≤1

∥∥∥∥∥∂f∂z (z)

∥∥∥∥∥
}

we can use
d

ds
‖z̄‖2 = 2z̄TF (z̄) ≥ −2L‖z̄‖2

to obtain ‖z̄(s)‖2 ≥ e−2Ls‖z‖2 and prove

U(z) ≥
∫ ∞
0

e−2Ls‖z‖2 ds = α1‖z‖2

The same definition (A.25) can be used for the converse theorem in Sec-
tion 4, that is, when the region of z = 0 is an open set A ⊂ IR

√
. We only

need to establish the additional property

lim
z→∂A

U(z) = +∞ (A.26)

Choose δ > 0 such that the ball B(0, δ) of radius δ > 0 is contained in A.
For each z ∈ A\B(0, δ), define T (z) ≥ 0 as the time needed for the solution
z̄(s) to reach the ball B(0, δ), that is,

T (z) = inf
t≥0
{t : ‖z̄(t)‖ ≤ δ}

Then we have for each z ∈ A\B(0, δ):

U(z) ≥
∫ T (z)

0
‖z̄(s)‖2ds ≥ T (z)δ

By standard stability theorems (see for instance [3, Theorem 33.2]), T (z)→
∞ as z → ∂A, which proves the property (A.26).
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