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Abstract. This paper deals with nonlinearly parameterized uncertain systems in
the presence of input/state stable (ISS) dynamic uncertainties. A novel constructive
control scheme is proposed to generate a minimal-order self-tuning globally stabilizing

controller.
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1. INTRODUCTION

The class of uncertain nonlinear systems studied in this
paper is described by :

z = q(z,21)
& = aiziyy + fi(z,z,u,0%),
ant + fo(r,z,u,0%)

1<i<n-1(1)

Tn

where u € IR is the control input, z = (zy,.. .,mn)T €
IR™ is the measured components of the system state and
z € IR! is the remaining unmeasured component of the
system state, the a;’s are unknown nonzero constants
and 6* € IR? is a vector of unknown constant parame-
ters. Assume that the f;’s and ¢ are unknown, Lipschitz
continuous functions.

Throughout the paper, the following assumptions are
made on the system (1) :

(H1) For each 1 < ¢ < n, the sign of a; is known. For
notational simplicity, assume that a; > 0 for all 7.

1 This author wishes to acknowledge the funding of the activi-
ties of the Cooperative Research Centre for Robust and Adaptive
Systems by the Australian Government under the Cooperative
Research Centres program.

(H2) There exists an unknown positive constant 9* such
that, for all z in IR®, z in IR! and all 1 < i < n,

il S 9" ir(|(z1, ... @)]) + 9*¢ia(lz])  (2)

where ¢;; and ¢;» are two known nonnegative smooth
functions with ¢;1(0) = ¢;2(0) = 0.

The class of uncertain nonlinear systems (1) to be con-
trolled is motivated by recent studies on global stabiliza-
tion of triangular systems in robust and adaptive control
settings (see (Krsti¢ et al., 1995) and references therein).
Comparing to these studies, broader classes of triangular
systems with dynamic uncertainties have recently been
considered in (Praly and Jiang, 1993; Jiang et al., 1994).
Robust output-feedback or partial-state feedback stabi-
lizing controllers have been designed using a nonlinear
small-gain argument (Jiang ¢ al., 1994). Related work
on the similar problem within Lyapunov approach can
be also found in (Tsinias, 1995).

The purpose of this paper is to relax the main assump-
tion in (Praly and Jiang, 1993; Jiang et al., 1994) where
the bounding gain functions are exactly known. The con-
trol objective is to find a second-order dynamic feedback
of the form u = p(z, x), x = @w(x, ) with x € IR? such
that all solutions of the closed-loop system are bounded.
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Furthermore,

Jim (J2(0)]+ |=())) = 0. )

To achieve this objective, additional assumptions on un-
measured dynamics z will be given in Section 2. The con-
tributions of the paper are twofold: firstly, the uncertain
systems under consideration are nonlinearly parameter-
ized and subject to stable dynamic uncertainties. Nei-
ther the classical matching conditions nor any kind of
growth conditions on the system nonlinearities as used
in (Pomet and Praly, 1992; Praly ef «l., 1991; Jiang and
Praly, 1992; Jiang, 1995) are required here. Secondly, a
new systematic design procedure is presented and it in-
corporates a minimal-order adaptive law and an intro-
duction of certain scalar dynamic signal. It should be
mentioned that the idea of using an available dynamic
signal to inform about the size of dynamic uncertainties
is well-known in adaptive linear control (Praly, 1990).

2. DEFINITION AND ASSUMPTIONS

The reader is referred to (Sontag, 1990) for basic defini-
tions of class K, Ko, and K L functions.

Motivated by the concept of input-to-state stability (ISS)
and ISS-Lyapunov function introduced in (Sontag, 1990;
Sontag and Wang, 1995), a notion of exp-ISS Lyapunov
function is now needed.

Definition 2.1 A C! function V is said to be an exp-
ISS Lyapunov function for system & = f(x,u) if

o there exist functions 1, - of class K such that
Yi(lz]) < V(z) < va(|z]), Yz €R™  (4)

e there exist a constant ¢ > 0 and a K -function v
such that

W () fla) < ~eViz) +2(ul)  (5)

It was shown in (Sontag and Wang, 1995, Proof of The-
orem 1) that a control system # = f(z,u) is ISS iff it
has an ISS-Lyapunov function. Further, it was shown in
(Praly and Wang, 1994, Proof of Lemma 3) that a con-
trol system & = f(x,w) has an ISS-Lyapunov function
iff it has an exp-ISS Lyapunov function.

Lemma 2.1 If V is an exp-1SS Lyapunov function for
a control system z = q(z,u), t.e. (4) and (5) hold, then,
for any constants ¢ i (0,¢), »° > 0 and any initial
condition z°, for any function ¥ such that ¥(u) > ¥(|ul),
there exist a finite T° > 0, a nonngeative constant D(t)
defined for allt > 0 and a signal described by :

ro= —er + y(u(t)), r(0)=r° (6)

such that D(t) =0 for all t > T° and :
V(z(t)) < r(t) + D() (M)

for allt > 0 where the solutions are defined.
Proof: follows from Gronwall’s lemma.

The following assumptions are relative to the unmea-
sured dynamics z in system (1).

(H3) The z-system in (1) has an exp-ISS Lyapunov
function V, in the sense of Definition 2.1, i.e., there ex-
ist Keo-functions 1, 12, a positive constant ¢ and a
Koo-function v such that

vi(lz)) < Va(2) < ¥ofle]), VzeR'  (8)
av,

(r’; (z)q(xvz»u) = "CVZ(Z) + 7(|Ill) (9)

IN

A

Moreover, ¢ € (0, ¢), v and ¥, are known.

(H4) v is of class C? whose first-order derivative is
zero at zero, i.e. 8v/8s(0) = 0. There exist class Koo-
functions p; (1 <7 < n) such that

lim ¢iz 0 Y7 0 (Id+ p)(r)/V/r < +oo  (10)

with ¢;5 as introduced in (H2).

Remark 2.1 Upon specializing (1) to linear systems,
(H3) is checked if the linear system z = ¢(0, z) is asymp-
totically stable with a known stability margin. In this
case, it is easy to see that (H4) is also satisfied.

3. CONTROL DESIGN PROCEDURE

First notice that, thanks to Assumption (H4), there ex-
ists a smooth nonnegative function ¢q such that

Y(lz1]) < zipo(er) (11)

So, by Lemma 2.1, available signal r defined by :

Po= —ir + aipo(z), r(0)=r">0 (12)

possesses the property

V.(2(8)) < r(t) + D() (13)

for all ¢ where the solutions are defined, with D(t) de-
fined for each ¢ > 0 and D(¢t) =0 for allt > T° (T° >0
being finite and depending continuously on the initial
conditions r°, 2°).
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Step 1 : Let ¥ be a positive constant satisfying :

'19* 19#2
9 > max{;l—, a%} = b (14)

and let 3(t) be an update estimate of ¥. Consider the
positive function

_ 1 s 1 = 2

with A > 0 an adaptation gain and r defined as in (12).

By Assumptions (H1) and (H2), differentiating V; along
the solutions of (1)-(12) gives :

. I*
Vi <zizo + o (lelgni(a]) + lz1]d12(]2]))

~

1 -~
—ér + z3po(z1) + X(ﬁ—ﬁ)ﬂ (16)

Since ¢11 is smooth and is zero at zero, there exists a
smooth function ¢y, such that

lz1loni(lz1]) < 2ieu(zr), Ve elR - (17)

From (13), (14), assumptions (H3) and (H4), by com-
pleting the squares and using (Jiang et al., 1994, eq.
(6)), it follows successively :

9" a
—|z1|p12(]2]) < l—'|$1|¢12°1/)f1(7"+D(t))
a ay

J
< ;l—llxlldnz o7 o (Id + p1)(r)
19*
+ oleldnze ¥t o (Id + p7 1) (D(2))
19#
< ‘(‘I‘I'lzll‘f’lz oyt o (Id 4 p1)(r)

1 2, 1 ‘
Sgrdgaten(n)’ + gai+d(t)  (18)

4

where (12 is some nonnegative smooth function and
dy(t) is defined by :

LS

9 2
i) = (Fonov o+ DW)) (19)
1
Notice that dy(¢) = 0 for all ¢ > T°.
Consequently, in view of (17) and (18), (16) implies :
: 1 1 ,
i<z (22 + ot dzipni(ey) + 19%1019012(7')

Introducing the following notation :

A
ri(z1,7) = Azieon (1) + ﬁwfsolz(r)z (21)
- l ~
wi(z1,7,9)=—(k1 + 3)11 — Jz1p11(21)
~1
—0%2315012(7‘)2 —z1po(z1)  (22)
Ty =2 — wilzy, T, 5) (23)

where k; > n — 1, (20) gives :

Vi < —k1ad 4 2,55 — %7‘ + dy ()
1 ~ I
+ 3@ =90 - ) (24)

Note that (24) holds as long as ¥ satisfies (14). Also
note that w; (0, r, ¥) = 0 for all 7 and 9 and that for any
r and 5, (z1,29) — (21,T2) is a global diffeomorphism
preserving the origin.

Step i (2 < i < n) : Assume that, at Step (¢ — 1),
there exist smooth functions 7; and w; (1 < j <i-—1),
7 (0, .. .,0,1’,3) = w;(0,. ..,(l,r,a) =0V(r, 3), so that,
with :

Ty =21, Tj41 =Zj41— wj(:cl, cey T, Ty 19) (25)

the time derivative of the positive function

i—1
S o U 15 902
i1 = ;Qajzj +r o+ ox(@-0) (26

along the solutions of (1)-(12) satisfies :

i1 _
. . e _ — (o4
Vicp < _Z(kj -i+1 -f-])a:]? + Ti_1Ti — Pr
i=1
1 -~ PN . A
+dimi () + (9 =~ 1imy) + (0 - 2)(I - 7i-1)?

i—1

+23 G- =)@ =) (@T)
j=2

where k; > n— j, di_1(t) > 0 and = 0 for all ¢ > T°.
Assume further that there exists an unknown b;_; > 0
such that (27) holds as long as ¥ > b;_;.

It is proven in the sequel that (27) holds also for ¢ as long
as ¥ > b; for certain positive (unknown) real number b;.
In case ¢ = n, set z,41 = u and in this case, T4y = 0

and 9 = Tn-

Consider the positive function

1 _
Vi =Viar + 2—‘111012 (28)
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By assumption, its time derivative along the solutions
of (1)-(12) satisfies :

i—1 -
V,' < —Z(kj -1+ l+j)f]2»+f,‘_1fi— 5,.-6:-1-’(‘
Jj=1
1 -~ N . 5y
+di..1(f) + X(ﬂ - 19)('19 - Ti——l) + (l —_ 2)(’(9 — Ti_l)z
i-1 .
+2) (= (5 =500 = mis1)
j=2
— 1 6w, 1,Q5
+T; [’L‘i+1 + a—ifi ,; B—a',-—( a] i+l + fJ)
1 dw;_y 1 Qwi_y %
- - — 19 2
- e+ stpo) - T (29)
Let ¥ be a real number satisfying :
* %2 . 2 2
ﬂzma‘x{bi—lvﬁ_)’dz )al_])a—éi"')az;]-a%}
a;  a; a; = a af ' a;
=, (30)

With the help of Assumptions (H1) and (H2), by virtue
of the fact that mapping (zy,...,z;) — (F1,...,%;) is
a global diffeomorphism preserving the origin, lengthy
but simple calculations imply the existence of some non-
negative smooth functions ;) and ;3 such that

i

1.1 o
Ti—fi<-Y T4 ——
’”a,-f—4j: 6><2‘1

+9F2 i1 (21, .., 20,7, 0) + dia (2) (31)

Ow;_y aJ ll_l_2
—m,Z Bz, (Sozitt o f;) < Z]Z_:lmj

-~ c
+191’. 8012(17114 . .,1,,7",19)‘}' WT

-1 2
1 611}2'_1
s 1( 2=t} 4 dat)

(32)

where d;1(t) and d;2(t) are defined by :
9 | »
di(t) = ;_-¢iz oy7 o (Id + p; " )( D(t))

i—1

" 2
dis(t) =" (%¢j2 ot o(Id+ p;‘)(D(t)))

j=1
Notice that d;;(t) = d;2(t) = 0 for all ¢t > T°.
On the other hand, completing the squares yields :

z; — L dwi- 1( er + x? ) € ¢
- _— p
a  or o) = g oi-1

+ 9F%(

8“}1 1

1
+47~'1 )* (322~ %r + z2p?)

It remains to examine the last term in (29). Observing

(33)

I7ici] < [(Z1s. . Tic)iica(er, ..oy 2, T, 3) (34)
where T, is a nonnegative smooth function, with (30)

and by completing the squares,

1 Owi_1 5 1':_1 9 Ow;_1
i WP ISR
e TREE AL

(T — )2 (35)
Accordingly, in view of (31), (32), (33) and (35), (29)

implies :

< Z(Ic —i+j)z? ——r-+-d(t)
j=1
+X(19—19)(1;9\—75_1)+(i—2)(3—Ti_1)2

i—1
+2) (5 - 1)(
i=2

4T |2ip1 + 5 +15-+15-§ duiy)*
i i+l -1 p) i 4 i 6:61'

75— Ti-1)(0 = Tiz1)

j=1

sz 1

+IT;(pir + piz) + ITi(—— )2 (322~ 2r + 22p3)

awz—l

+9T;( )2(1+ ?,-2_1)] +(ri-1 — 19)2 (36)

where d;(t) = d;1(t) + dia(t). Notice that d;(t) = 0 for
all t > T°.

Introducing the following notation :

wz
= Ti-1+/\5i [9011 +‘Ptl+( I)ZX
Soi-2 2 2 Ow;—y
(3¢2""r + 2195) + (—=— 57 (1 + 7
= Ti- + E,?T(,-_l),-(xl,...,x,-,r,ﬁ) (37)
1 ~
w; = —(k; + Z)T, —&i(Z1, ..., 2, P, DT — Ty
1_ 3 (aw,._l)z - [aw, )
-7 — 9F; V(1 +72))
4 ; Oz; )
aw; 1 )
+H(—)? (3227 %r + 2190) + pin + iz
or
Tit1 = Tig1 — wi(zy,..., e, 5)
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where k; > n — i and &; is any nonnegative smooth
function, (36) implies :

1 _
Vi < =3k — i+ )T+ TTis — o+ di(t)
j=1
— KT} + 22(1 = (5 — 71 ‘9 —-7i-1)  (38)
j=2
+(3- ﬂ);@- )

Direct calculations yield :

+ (=20 = 7o) + (i — D)2

i—1

2> (G- 1)(r — 7= DO = 7im1) + (= 2D —7is1)?

j=2

(it = 9) = 22(1—1 7 = 1-0)(7 = i)

Him D= 7?4230 - 00 = o) )
i=2

+ G -1 —7)?. (39)
Using the important fact in (37) :

T —Tic1 = Tironi(zy, ., 0) (40)

by choosing «; such that

i1
ki > (2> G = D = o)y
j=2

+ (i = DEITE L (41)

from (38), it follows :

c
+:c Tip1 — 57

Vi<~ Z(k — i+ )T 5

=1
1 - X A
+di() + (0 = ) = 7) + (i - D — 1)
+23 (7 = 175 = 5-0( = ) (42)
ji=2
This means that (27) holds again for 7 as long as (30) is
satisfied.

Therefore, by induction, smooth functions w, and 7,
are constructed at Step n such that, with :

-~

D =1a(Z1s ... Zn, 7 V) (43)

Z,,T, 5) , (44)

u=wn(21, ...,

the time derivative of the positive function

=22L bt @07 (@)

along the solutions of (1), (12), (43) and (44) satisfies :

n

Vo < =S (kj—n+ )8 — oor + dalt) (46)

omn
Jj=t

where dp,(t) > 0 and = 0 for all ¢t > T°.

4. MAIN RESULT

Theorem 4.1 Under Assumptions (H1)-(H4), for any
instial condition (x°,2°,r° 19") in R" xIR' x Ry x IR,
the associate solution (a:(t),z(t),r(t), 3(t)) of the closed
loop system (1), (12), (43) and (44) is well defined on
[0,400), unique and bounded. Furthermore, there ezxists
a positive real number Jdo, such that

Jim (2@ + 1=(t)] + () =0 (47)
Jim_ B(t) = Voo . (48)

Proof (Outline}: Since d,(t) is defined for each t > 0
and equal to zero for all ¢t > 7, from (46), it follows :

Valt) < Va(2(0),7(0), B(0)) + / dn(s)ds (49)
0

This, in conjunction with (45), (25) and (13), implies
that the corresponding solution (z(t), z(t), r(t), 9(¢)) of
the closed-loop system is well defined on [0, +0o0) and
bounded.
Since d,(t) = 0 for all t > T°. (46) implies :

Vo < =D (kj —n+j)z]

i=1

——r t>T°

2n

The proof is completed with the help of LaSalle’s invari-
ance principle and equations (22), (25) and (37).

Remark 4.1 Theorem 4.1 applies to systems (1) hav-
ing the origin as a fixed equilibrium point (see (H2)).
If this is not the case, for example, ¢;1 and/or ¢;2 are
not zero at zero, it is useful to employ the idea of o-
modification proposed in (Ioannou and Kokotovié, 1984)
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in the design of adaptive law to prevent the possible pa-
rameter drift instability. However, in this case, only the
global boundedness property can be established for the
closed-loop solutions. With this in mind, extension to
the tracking case is direct.

Example 4.1 Consider the nonlinear system :

z=—z + .Z‘%

By = a1ze + O1x1%2% + 03z (50)
Ty = aru + 941‘% + 9522121

where a; > 0, az > 0, 6;(1 < ¢ < 5) are unknown
constant parameters and z is unmeasured.

Clearly, Assumption (H1) is checked. Assumption (H2)
holds with :

d11(s) = se¥57  dia(s) = s,
¢21(S) = 0,552, ¢22(S) = 0.584
9* = max{|6,]e"% , |03] , 2064l , |05]}

It is direct to verify that Assumption (H3) holds for the
z-subsystem with :

Vi(z) = 2%, ¢ = 12. ~(s) = 1.25s* (51)

Finally, Assumption (H4) is satisfied.

Therefore, applying the control design procedure in Sec-
tion 3 yields a self-tuning globally regulating partial-
state feedback controller for system (50).

5. CONCLUSION

A class of uncertain nonlinear systems with nonlinearly
appeared unknown parameters and stable dynamic un-
certainties was considered in this paper. Inspired by
some early work in adaptive linear control (Praly, 1990),
an available dynamic signal is introduced to bound the
dynamic uncertainty. The philosophy underlying the pro-
posed constructive control scheme is an iterative use of
the now standard “adding one integrator” techniques
(see, e.g., (Byrnes and Isidori, 1989; Tsinias, 1989)).
The main advantages of earlier adaptive control algo-
rithms for feedback linearizable systems are also kept:
for example, one does not demand neither the matching
condition nor the usual growth conditions as required
in previous work (Pomet and Praly, 1992; Praly et al.,
1991; Jiang and Praly, 1992; Jiang, 1995). However, the
control design procedure proposed in this paper brings
new advantages: nonlinear parametrization is allowed
and the common feature of overparameterization in ear-
lier adaptive schemes is removed here.
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