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Abstract 

It, is well known that in systems described 
by Euler-Lagrange equations the stability of the 
equilibria is determined by the potential energy 
function. Further, these equilibria are asymp- 
totically stable if suit.ab1e damping is present in 
the system. These properties motivated the de- 
velopment of a passivity-based controller design 
methodology which aims at modifying the poten- 
tial energy of the closed loop and the addition 
of the required dissipation. To  achieve the lat- 
ter objective measurement of the generalized ve- 
locities is typically required. Our main contribu- 
tion in this paper is the proof that damping injec- 
tion wzthout velocity measurement is possible via 
the inclusion of a dynamic extension provided the 
system satisfies a dissipation propagation condi- 
tion. This allows us to  determine a class of Euler- 
Lagrange systems that can be globally asymptot- 
ically stabilized with dynamic output feedback. 
We illustrate this result with the problem of set- 
point control of elastic joints robots. Our research 
cont,ributes, if modestly, to  the development of a 
theory for stabilization of nonlinear systems with 
physical structures which effectively exploits its 
energy dissipation properties. 

1 Problem Formulation 

We consider in this paper plants described by 
Euler-Lagrange equations (in short, EL systems) 
of the form 

where q p , Q p  E R " p  are the generalized co- 
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ordinates and the external forces respectively, 

grangian function, T p ( q p ,  &) is the kinetic energy, 
which we assume to be of the form T P ( q P r  i p )  = 

is the potential energy which we assume is twice 
differentiable and bounded from below, that is 
b(qP) + c _> 0 for some c E 2. The exter- 
nal forces consist of dissipative and control action 
terms Qp := Mpup - a F p ( 4 p ) ,  a 4 P  with the control 
signals up E Rmp, mp 5 n p ,  and hi, E R n p X m p  

full column rank. 3p(4p)  is the Rayleigh dissi- 
pation function which defines a memoryless pas- 
sive (resp., input strictly passive) operator Qp H 

a F p ( * p ) ,  a 4 p  that  is, 

. C p ( q p , P p )  := T p ( q p 7 Q p )  - V p ( q p )  is the La- 

& - P p ( q p ) 4 p 7  D p ( q p )  = q % p )  > 0, and V P ( ? P )  

holds for all qp E R n p  and o 2 0 (resp., a > 
0). Furthermore, we assume the points with zero 
generalized velocities ( ip  = 0) are equilibria of 
(l.l), tha t  is, a ~ ~ ~ p ) l j p = ~  = 0. 

To simplify the presentation we will assume, 
without loss of generality, Mp of the form M p  = 
[0 I ImpIT, and introduce the following partition 
of qp into nonactuated and actuated components' 
respectively 

I Q p l  := Mp q p  = [ Inp-mp I 0 ] q p ,  Q p 2  := M p q p  

Furthermore, we will assume the actuated vari- 
ables are available for measurement and the non- 
actuated variables to be the regulated coordi- 
nates. 

The  problem we study in this paper is formu- 
lated as follows: 

That is, generalized coordinates whose corresponding 
row in the input matrix contains a zero (resp., nonzero) 
entry M p .  
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Output feedback global stabilization 
problem. Consider the EL system (1.1) with 
measurable outputs q p 2  and regulated outputs qpl 
with constant desired value qpld.  Then, design a 
controller q p 2  I-+ 'up that makes the closed loop 
system globally asymptotically stable (GAS) at an 
equilibrium point (.) such that Qpl  = q p l d .  

It is well known [12] that EL systems define 
passive operators. Since passive systems enjoy 
some useful1 robustness properties, and passivity 
is invariant under feedback interconnection, i t  is 
of some interest to consider the utilisation of pas- 
sive controllers to stabilize EL plants. On the 
other hand, in EL systems the stability of the 
equilibria is determined by the potential energy 
function. Further, these equilibria are asymptot- 
ically stable if suitable damping is present in the 
system. These input-output and internal stability 
properties of EL systems motivated the develop- 
ment of the passivity-based energy shaping plus 
damping injection controller design methodology 
[14], I191 [12], 1131 (see also [lo] for an interest- 
ing historical review of this idea). This technique 
aims at modifying the potential energy of the sys- 
tem and the injection of the required damping 
with a controller that preserves the passivity in 
the closed loop. The utilisation of this technique 
is stymied in some applications by the fact that 
measurement of the generalized velocities is typ- 
ically required to add the damping. The main 
contribution of this paper is to prove that, for 
a class of EL systems, damping injection is still 
possible with only output feedback via a dynamic 
eztension. The class of plants is characterized by 
a dissipation propagation condition. 

The present research was motivated by the re- 
sults on output feedback stabilization of robots 
with flexible joints of [l] and [8], which extend 
to the output feedback case the controllers of [ 2 ] ,  
[20]. Other efforts aimed in the direction of our 
research have been reported in [15], [ll], [4], [5]. 

The organization of this paper is the following'. 
In Section 2 we recall some input-output and in- 
ternal stability properties of EL systems which 
are relevant for control purposes. In particular we 
derive here the key dissipation propagation con- 
dit,ion for asymptotic stability of underdamped 
systems. In Secbion 3 we consider EL controllers 
and define a class of EL systems for which the 
passivity-based methodology yields a GAS closed 
loop. In Section 4 we apply this result to the flexi- 
ble joint robot stabilization problems. Finally, we 
give some concluding remarks in Section 5 .  

Notation 11 . )I - Euclidean norm; L;, Lze - 
spaces of n-dimensional square integrable func- 

2Due to space limitations we give here an abridged ver- 
sion of  the full paper, which is available upon request to 
the first author. 

tions and its extension; 11 . 112, - L; norm; (.I.) 
- inner product in L;. A state-space system 
x = f ( 1 : ) ,  1: E R" is zero-state detectable from 
the output y = h(z),  if for all initial conditions 
~ ( 0 )  E R" we have ( y ( t )  0 j limt+a,x(t) -+ 

0). 

2 Properties of EL Systems 

In this section we will present some input-output 
and internal stability properties of EL systems. 
At this point notice that an EL system with gen- 
eralized coordinates q E R" and input u e R" 
is fully characterized, via an equation of the form 

In the sequel we will refer to the latter set as EL 
parameters of the EL system. 

2.1 Input-Output Properties 

It is well known [12] that EL systems have some 
nice energy disszpatton propertzes. In particular 
we have the following: 

Proposition 2.1 (Passzvity) 

(1.1) by the quadruplet V ( q , i ) ,  V ( q ) ,  F ( d ,  W .  

An EJ, system defines a passzve operator [7] 
from the inputs U to the actuated generalized 
velocities M T 4 .  That is, there exists P E R. 
such that 

(ulh.rTi) 2 P 
for all u E Lg,. Further, this property is 
strenghtened to output strzct passzvzty if t,he 
Rayleigh dissipation function defines a n  in- 
put strictly passive operator. In this case 

for some cr > 0, E 7Z and all (1  E LE 

Proof. The propert,y can be easily establislied 
taking the time derivat.ive of the Lagrangian func- 
tion and using the EL equat.ions t,o get. 

Now, noting that the term in brackets i n  t.he left. 
hand side coincides w i t h  the syst.ems t,ot.al e n q y  
H ( q ,  4) := T(q, q )  + V ( q )  and integrating from 0 
to t we establish the key energy balance equation 

s t o r e d  energy - 
d i s s i p a t e d  

supplied 

The proof is completed using the condit,ions on 
the Rayleigh dissipation function and the fact 
that V ( q )  is bounded from below. 
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Remark 2.1 From (2 .1)  we see that one way 
of stabilizing an EL system, insuring its total 
energy is stricly decreasing, is selecting a com- 
pensator that defines a strictly passive operator 
- M T q  H U. This is easily achieved via propor- 
tional feedback of the generalized velocities [12]. 
However, when the latter are not available for 
measurement the energy has to be dissipated in 
another dynamical system as we show in the next 
section. 

Reiiiark 2.2 Notice that the operator U w M T 4  
may be output strictly passive even if energy is 
not dzssipated “in all directions”. Namely, it is 
enough to insure q’? 2 aJIMTql12. This fea- 
t.ure will be exploited below to achieve partial 
damping injection for asymptotic stabilization. 

2.2 Lyapunov Stability Properties 
Fully Damped Systems 
The proposit,ion below establishes conditions for 
znternal stabaltty of EL systems. 

Proposition 2.2 (GAS wtth full  dampzng) 
The equilibria of an EL system with U = 0 
are ( q , i )  = ( q , O )  where q is the solution of 

= 0. The equilibrium is unique and 
s t a h  if the potential energy is an strictly 
convex function, that is if 2 €In > 
0. Further, this equilibrium is GAS if the 
Rayleigh dissipation function is input strictly 
passive. 

Proof. See (121. 
000 

Remark 2.3 It is important to underscore the 
fact that the passivity properties of propostion 
2.1 are independent of the shape of the potential 
energy function. This fact, together with proposi- 
tion 2.2,  allows us to naturally split the controller 
tasks into (potential) energy shaping for stabi- 
lization a t  the desired equilibrium and damping 
injection to make this equilibrium attractive. 

Underdamped Systems 
In the following proposition we show that asymp- 
totic stability can still be insured even when en- 
ergy is not dissipated “in all directions” provided 
the inertia matrix D ( q )  has a certain block di- 
agonal structure, and the dissipation is suitably 
propagated. This result, though extremely sim- 
ple, will be fundamental for our output feedback 
stabilization problem where damping will be in- 
jected only in some of the generalized coordinates. 
To distinguish between the damped and undamped 
coordinates we introduce the following partition 
of q:  

which in the following section will denote the con- 
troller and plant generalized coordinates respec- 
tively. 

Proposition 2.3 (GAS with partial damping) 
The equilibrium of an EL system with U = 0 
and strictly convex potential energy function 
is GAS if 

i)  D(q) := [ Dpk) D c ( q c )  1 ,  where 

iii) For each qc ,  the function 
only isolated zeros in q p .  

= 0 has 

Proof. From proposition 2.1 we have that 
the system is passive with storage function 
H l ( q ,  4) := H ( q ,  4)  - V ( @ ) ,  which under the as- 
sumptions on the potential energy is positive def- 
inite and proper. Now, using condition ii) we get 
the dissipation inequality 

H l [ q ( t ) ,  Q ( ~ ) I - H ~ M ~ ) ,  4(0)1< -a J’ Ilic(r)tdr 5 0 

(2.2) 
Using the arguments of theorem 3.2 of [6] we also 
have that along the trajectories of the w-limit set 
the left hand side in (2.2) is zero, thus Q , ( t )  E 0. 
From the structure of D(q) it is easy to prove [18] 
that the EL equations with U = 0 are of the form 

where C c ( q c ,  Qe), Cp(qpl q p )  are suitably de- 
fined matrices. From (2.4), and the fact that 
F 1 , j 6 = o  = 0, it is clear that qc 0 + aqc E 
0. %he proof is completed using continuity of q p r  
condition iii) and proceeding as in theorem 3.2 of 

ono 

Remark 2.4. In the next section we will use 
proposition 2.3 for asymptotic stabilization via 
partial damping injection with a dynamic exten- 
sion. In this case the conditions of block diagonal 
structure of D ( q )  and partial dissipation ii) will 
be satisfied by design. Henceforth, the only rele- 
vant condition is the damping propagation iii) . 

Remark 2.5. Condition iii) may be replaced 
by the assumption that the system is zero-state 
detectable from the “output” F. Further, 
we can remove the restriction of block diagonal 
structure of D ( q )  if instead of iii) we impose de- 
tectability from the output q c .  

PI. 
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3 Stabilization of Euler-Lagrange 
Systems 

We now use the input-output and internal sta- 
bility properties established above to solve the 
output feedback global stabilization problem for 
a class of EL systems. That is, we want to de- 
fine a class of controllers which, preserving Ihe EL 
structure, suitably modifies the potential energy 
and dissipation properties of the EL plant. 

3.1 Damping Injection via 

To this end, we first define the desired closed-loop 
system EL parameters {T(q, q ) ,  V(q),  F(4), 0) 

where q = [q:,q:lT, qc E Rnc are the general- 
ized coordinates of the EL controller with EL pa- 
rameters {Tc(qcl &), VC(gc, q p 2 ) ,  Fc(Qc) ,  0). That 
is, the controlIer dynamics are given by 

Dynamic Extension 

as T(h44 := Tp(qp,Qp) + T c ( q c , q c ) ,  V ( q )  := 
Vp(qp) + Vc(qc,Qp2), T ( i )  := Tp(4p) + Fe(&) 

where we have chosen the potential energy of 
the controller dependent on only the measurable 
output qp2. In this way, q p 2  enters into the con- 
troller via the term - while the feedback 
interconnection between plant and controller is 
naturally established by 

It is clear that the dynamic extension we just in- 
troduced injects damping through the controllers 
Fc(&), while Vc(qc,qp2) shapes the systems pc- 
tential energy. 

The resulting feedback system may be depicted 
as shown in Fig. 1,  where the dynamic equations 
of the plant 

~. (3.3) 
define the operator E, : up H q p 2 ,  and the oper- 

ator E, : q p 2  H up is determined by (3 .2) ,  (3.1). 

d=i 
I I 

q pld  

3Since we are dealing here with a regulation and not a 
tracking problem there are no external inputs to the plant, 
which explains our choice of 0 as the "input matrix". 

Fig. 1. Feedback System. 

3.2 Main Result 

From the results presented in the previous sec- 
tion we see that to attain the GAS objective V ( q )  
must have a global minimum at  the desired equi- 
librium, F(4) must satisfy some suitable passivity 
properties and the system must verify a dissipa- 
tion propagation condition. These requirements 
are summarized in the proposition below whose 
proof follows mutatzs mutandi from the deriva- 
tions above and proposition 2.3. 

Theorem 3.1 (Output feedback stabrlrzatton) 
Consider the EL plant (3.3) and assume: 

A . l  (Dtsstpation propagation) The following im- 
plication holds (U, E const and Qp2 E 0) 3 

limt-oo 41 - 0, 

A.2 (Energy shapzng) 
We can find a function Vc2(qp2) : Rmv + R+ 
such that 2 e l n v  > 0, where 

V1(q,) := V p ( q p )  + K 2 ( P P 2 )  

and ' ~ ~ ~ p ) l q v  = 0 with q p l d  = lo]qp 
Under these conditions, the EL controller 
(3 .1) ,  (3.2) where qrw 2 c ~ l l q ~ 1 1 ~  for 
some a > 0, and 

Vc(qe,pp2) := i ( q c  + A I ~ P ~ ) ~ A ~ ( Q ~  + A i q p ~ ) +  

+ VCZ(PP2) 
(3.4) 

with A1 a full rank matrix and A2 > 0, 
solves the output feedback global slabzlt-ataon 
problem. 

Remark 3.1. It is important, to underscore t.he 
fact that the dissipation propagation condition 
given here is independent of the controller. Ilence, 
the success of our controller design hinges only 
on the ability to find a function Vc2(qp2) that 
achieves the energy shaping4. However, looking 
back at the argument to build the proof we see 
that Vc2(qp2) could be used to relax A.2 since I / , ,  

depends on this term. 

Remark 3.2. A.l may be replaced by t.he 
(stronger) assumption of zero-state detectabil- 
ity from Qz. Further, if D p ( q p )  is block diago- 
nal then we can use the (weaker) condition that, 

= 0 defines a bijection qpl  H q p 2 .  

Remark 3.3. The action of the controller 
above has the following nice passivity interpre- 
tation. First, notice that the EL system (3.3) in 
closed loop with the control signal (3 .2)  defines 

4So~ne structural conditions for the solvability of this 
problem are given in (121. 
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a passive operator -avc$g’9c) H q p 2  with stor- 
age function Tp(qprqp) + Vp(qp) .  On the other 
hand, the controller (3.1) defines a passive op- 
erator Q p 2  H with storage function 
T c ( q c ,  Pc) + Vc(qpz,  q c ) .  These properties follow, 
of course, from the passivity of EL systems es- 
tablished in proposition 2.1. 

a 9 ~ 2  

3.3 Reduced Order “Dirty 
Derivative” Controller 

It is clear from the theorem above that the kinetic 
energy of the controller plays no role on the sta- 
bilizat.ion task. Furthermore, the conditions on 
the Rayleigh dissipation function of the theorem 
are satisfied with Fc(Qc) = illQc112. Thus, with 
this choice of Fc(qc) ,  and setting Tc(qc,qc) = 0 
we obtain the following corollary. 

Corollary 3.1 The controller 

solves the oulput feedback global stabilization 
problem for EL systems verifying A.l  pro- 
vided Vc2(qp2) satisfies A.2 above. 

000 

Remark 3.4. Notice that (3.5) may be written 
as 

with p := $. Choosing A I ,  A2 diagonal we 
see that the first right hand term is the “dirty 
derivative” of q p z ,  thus providing a theoretical 
justification to the common practice of using this 
technique to estimate velocities [8]. A similar re- 
sult has been shown in [16] for general system- 
controller structures using high gains. 

4 Example: Flexible Joint Robots 

If we assume that joint flexibility can be mod- 
elled by a linear spring we obtain an EL 
system with generalized coordinates qp := 
[qTl,  qT2IT, q p l ,  q p 2  E 72% being the link and mo- 
tor shaft angles respectively. The control vari- 
ables are the torques at the shafts, thus mp = % 
and M p  := [OIZm,]T. We are interested in set- 
point control of the link angles (to a given con- 
stant value Q p l d ) ,  and we assume only the motor 
shaft angles are measurable. 

The kinetic and potential energies of a flexible 

joint robot are given by5 

where 

with D12(qpl) strict upper triangular, Dp(qp l )  = 
DT(qpl) > 0 is the robot inertia matrix, J E 
R m p x m p  is a diagonal matrix of actuator inertias 
reflected to the link side, Ii‘ is a diagonal ma- 
trix containing the joint stiffness coefficients, and 
Vg(qpl )  is the potential energy due to the gravi- 
tational forces. 

Assuming zero damping, that is, Fp(yp)  = 0 
we get the dynamic equations of the flexible joint 
robot as 

DP (el )$ + c p  (Qpl I Q p  ) i p  + 9, ( q p  1 1 +IC, Q p  = Mp up 
(4.2) 

where gp(qpl) := [g~l(qpl),O]T = al/g(pplJ aqPl and 
Cp(qpl, qp )  is the Coriolis matrix. 

Imp and 
We consider the controller6 (3.5) with A1 = 

1 
Vcz(qp2) = +Ip2 - 6 ) T w q p 2  - 6) 

where Ir‘l, A2 are symmetric positive definite ma- 
trices, and 6 is a constant vector that we choose 
below to satisfy the conditions of theorem 3.1. 

(Dissipation propagation) 
Condition A . l  is verified since setting q p 2  = const 
and up E const implies, using the structure of 
Diz(qpl), Cp(qpl ,  $) [201, that qpl = const. 

(Damping injection) 
From the definition of Fc(Qc), it is clear that the 
damping condition (1.2) is satisfied with LY = 1. 

(Energy shaping) 
TO verify A.2 notice that setting wlrp = 0 
yields 

which has a (unique) solution of the required 
form fp = [qTld,  * I T  with 

6 = q p l d  + (IC-’ + z i ‘ F 1 ) 9 p l ( q p l d )  

The second part of condition A.2 is 

’For further details on this model see, e.g., [20]. Notice 
that the model we consider here contains, as a particular 
case, the model of [18] where Dp(qpl) is assumed to be 
block diagonal. 

6This controller was reported in [8] for the case of di- 
agonal K1, A2. 

385 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:25 from IEEE Xplore.  Restrictions apply. 



In [l] the fact that 1 1 ~ 1 1  < p is used to 
show that the Hessian matrix is positive definite 
if i ~ 1 ,  I( > +PI,, . 

5 Conclusions 

We have given in this paper conditions for out- 
put feedback global stabilization of EL systems. 
The controller, which we choose to be also an EL 
system, is designed using the energy shaping plus 
damping injection ideas of the passivity-based ap- 
proach. Our main contribution is the proof that 
damping injection without velocity measurement 
is possible via the inclusion of a dynamic et ten-  
sion provided the system satisfies a dissipation 
propagation condition. This condition, rules out 
the possibility of having wandering trajectories 
for the nonactuated variables q p l ( t )  when the con- 
trol signal up and the actuated variables q p 2  are 
constant. As pointed out in remark 3.1 further 
investigation is required to exploit the depen- 
dence of up on Vc2(qp2) to get a better -system 
theoretic- understanding of the class of EL sys- 
tems that satisfy this assumption. 

One potential drawback of our design technique 
is that to achieve the energy shaping exact knowl- 
edge of the systems potential energy is required. 
See the definition of 6 in the example. In a re- 
cent report [17] we managed to relax this assump- 
tion for the rigid robot control problem. Current 
research is under way to extend this result to a 
wider class of EL systems. 
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