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Abstract

For systems admitting a certain global output normal
form with input-to-state practically stable (ISpS) in-
verse dynamics, practical regulation of the output can
be achieved by output feedback knowing only the rel-
ative degree, the sign of the so called “high frequency
gain” and a monotone function bounding the nonlin-
earities for large signals. This result is only stated
and discussed here. Its proof can be found in [16].

1 Problem statement

Our goal is to achieve global practical output reg-
ulation by output feedback with minimal informa-
tion. Our approach is to propose a family of dynamic
output feedback controllers parameterized by integer
numbers, real numbers and real functions. Then,
with a particular controller chosen, we characterize
a class of systems such that the control objective is
achieved for each plant in the class.

2 Main result
2.1 The family of controllers

For the system we want to control, let u be its sin-
gle input and y be its (possibly corrupted) output
measurement. The family of controllers we propose
is characterized by the following r + 2-dimensional
dynamic system :

o= B+ bGI0-E) )
Ty = T3 + L(pf(y)—1T1)
5.:\1- =:l}r+1 + &, (P (y)_ml)+u
Try1 = +£r11 (07 (¥) — 31) + (1)
. exp| —
ic\ =0 ( max VrG,zz ..... ’r’)~w DT)

1+| 7111‘27 ,x,.,k)[

with k initialized at any strictly positive value. This
controller is parameterized by the following items :

1 - a positive integer number r which will correspond
to the relative degree of the system to be controlled,

2 - real numbers ¢;’s, chosen as Hurwitz gains, which
are coefficients of the characteristic polynomial of
what will be interpreted as an observer,
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3 — a smooth real function p7, introduced to “invert”
the “sensor mapping”,

4 — a real number o chosen in [0, exp(1)],

5 — a real number @ whose square root is the thresh-
old we assign for the output to remain below, i.e. it
is a dead-zone,

6 — a C! function u, and a positive C? function V;
which are derived from choosing three C! functions
of class K : v+, I' and T'p.

In the following we consider the controller to be fixed,
implying that all these parameters are given.

2.2 The class of plants

By means of four assumptions, we now characterize a
class of nonlinear systems such that global practical
output regulation will be achieved using a given con-
troller of the form (1). The first two assumptions ad-
dress the feasibility of using dynamic output feedback
while the third assumption insures the compatibility
of the system with the given controller. The fourth
assumption is a technical condition needed only if the
control objective is convergence to a desired set point.
These assumptions are dlscussed in more detail in sec-
tions 3 and 4.

Assumption ST (Structure) : The system to be
controlled can be globally described by :

2= h(z,z1,1)
Zi =zip1 + fi(z,21,8), i€ {1,...,m~1}
Em = Tme1 + fm(z,21,t) + u
Tmy1 =0
yzg)(z’mbt)

ol

)
with a single input u, a single measurement y, coordi-
nates (z,21,...,Zms1) in R® xRR™*Y, and functions
fi’s, b and p sufficiently smooth.

Let ®(z,z1,t) be the vector in R™*+! whose compo-
nents are the f;'s with f,41 = 0, except for the first
one, obtained from the equation satisfied by g :

<I>1(z,z1,t) = -‘?ﬁ(z,rl,t)h(z .’tl,t) (3)
8:::1 (Z xl,t)fl(z zl’t) + 1(z’m17t) .

Assumption QL (Quahtatlve)
QL1 : The z-subsystem is ISpS. That is : there exist
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functions B3, of class KL , and =, of class K! and a
positive real number d such that, for any real numbers
to and T, with to < T, for any initiel condition z
and any C° function z, : [to,T) — IR, there exists
a unique solution z(t) of :

= h(z,z:(t),t) z(to) = 2. (4)
It is defined on [to,T) and, for all s and t satisfying
tg<s<t<T, we have :

01 < 806N 0= )+ 7 (s {lea}) +
N ®)
If d is equal to 0, the system is said to be ISS.

QL2 : There exist a C* nondecreasing positive func-

tion 7, and two positive real numbers ¢ € (0,1] and
d, € R4, satisfying, for all (z,t) in R" x IR,

QL2.1 j£1] < dp, (6)

p(z,21,t) = 0 =

QL2.2 : ¢ < —(z z1,t) < vp(lzal) Ve, € R.

(7

QL3 : There exist two functions vy, and v, of class
K and three positive real numbers C, s; and dg such
that :

QL3.1 : for all (z,21,t) in R®* x R x R,
[2(z,2z1,1)| < 1o (l21]) + %(lz)) + de (8)
QL3.2 : 7.(8) < Cs Vs € [0,s], (9)

QL3.3 :(7z, +7:°27)(5) < Cs Vs e[0,s1] .(10)

Assumption QT (Quantitative) :
Letr, p¥, Vot I and T, be given by the controller.

QT1 : There exisis a positive real number dpj such
that, for all (z,z1,t) in R" x R x IR,

|21 = p}(p(z, 21, 1))] < vpr(aal) + dyy . (11)
QT2 : There ezxists a positive Teal number sy such

that we have :

QT2.1 : (72, +7:027)(s) <T(s) Vs € [s52,00) (12)
QT2.2 : 7,(s) — 7p(0) < Tp(s) Vs € [s2,00) , (13)
QT3 : The relative degree m is equal to 7.

Assumption T (Technical) : There ezist two
strictly positive real numbers s* and ¢ > 2 such that :

B(s™,) € L([0,+00)) . (14)
Qur main result is the following:

Theorem 1 By applying the controller (1) to any
dynamic system satisfying assumptions ST, QL and
QT, we obtain existence, uniqueness and boundedness
of all the solutions of the closed loop system. More-
over, if o is chosen strictly positive, the oulput y of
each of the solutions satisfies :

limsup |y(t))®> < @ . (15)
t—oo

1See [17] for a definition

1943

Furthermore, if ds, d, dp, d + are zero and assump-

tion T is satisfied, then the “Jead-zone” w can be set
equal 10 0, and, in this case, all the solutions con-
verge to a Q-dimensional manifold where we have in
particular 2 =0 and z; = ... =z, = 0.

3 Feasibility of output feedback

3.1 Assumption ST: the normal form

Byrnes and Isidori, in [1], have given necessary and
sufficient conditions under which a system can be
written globally in the form :

i’:’H(Z,X1)

Xi:Xi+1 ie{l,...,r—l}
Xr = F(z,X1,.. ., X )+ G(2,X1, ..., Xr)u
y=X1

(16)
Compared to this form, assumption ST imposes two
restrictions : the functions f;’s must depend only on
(z,z1) and the function g must be identically equal
to 1; and it allows one relaxation : the output mea-
surements may be corrupted, i.e. y # Xi.

3.1.1 f; depends only on (z,z;)

Rewriting (2) with the time derivatives of z; as coor-
dinates, we get, when (2) is time invariant, p is the
identity function and z,4; is zero,

z=H(z,X1)

X.‘:X,'.H iE{l,...,r—l}

k=3 Ale X)) + (an
i=1

y=X;

where (-)(r_') denotes the (r — i)th Lie derivative
along the vector field given by (2). This exhibits a
very particular structure for the function F in (16).
The motivation for this restricted structure is the sev-
eral counterexamples, given in [13], to global output
feedback stabilization for systems in the form (16).

Instead of the constraint (17) imposed here, one
may restrict the behavior at infinity of F, H and G.
For example, Khalil and Saberi have proved :

Theorem 2 ([8]) If, for the system (16),
a) the zero solution of the following system is glob-
ally exponentially stable :

= H(z,0), (18)

(19)

c) the sign of G(z,X1,...,X,) is definite and known,

d) H and F are globally Lipschitz continuous and G
ts bounded,

then there ezists a dynamic output feedback controller

which guarantees global ezponential stability of the

origin of the closed loop system.

3.1.2 The input vector field, G = 1
Again, by comparing (17) and (16), we see that G

in (17) must be known, depend only on X; and have
a constant sign (then change G(X1) v into u). Khalil

by  H(0,0) =0 F(0,0,...,0) = 0,
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and Saberi need only that G be bounded and bounded
away from 0. Further, they allow it to depend on all
the variables. In [11, 10, 6], Marino and Tomei and
Kanellakopoulos et al., respectively, impose that G
depends only on X; but this function is known only up
to a multiplicative strictly positive real number (see
Theorems 4 and 5 below). In our framework, this
latter case can be considered as sensor corruption.
Indeed consider the following system :

z="h(z,%1,1)
'f =Tiy1 + f,(z :::l,t)
Z, =0u + f.(z,%1,t)
y=o
with @ an unknown strictly positive real number.
Then, by letting :

ie{l,...,r—1} (20)

5E i),
we can rewrite this system as :
z2=h(z,21,1)
i =ziq1 + fi(z,21,1)

T =

(21)

ie{l,...,r-1}

. 22
zr=u + fr(z,21,1) (22)
y=0=z

with :

f,'(?, .’B],t) = _L———i(z' 02,‘1,'!) .

This system is in the form (2), with :
p(z,z1,t) = 0z, . (24)
Then it is easy to show that, with 8 any positive real

number, if assumption QL holds for (20) then it also
holds for (22). Note that QT1 and QT2.2 hold with :

Pi(¥) = 0, 73(s) = s, Tp(s) = s. (25
3.1.3 The role of z,,,41
In (16) and (17), £m41 = 0. In our context, a nonzero
value for #,,41(0) may be useful for handling nonzero
set points or nonvanishing nonlinearities. For exam-

ple, consider the following system with input u and
output ¥,

h(z,z1,t) = ﬁ(z,ﬁzl,t) }
(23)
9

Z=h(Z,%,t)

Ti =Tit1 +7-(7 El,t)lE{l “1}

z, =u+ f.(Z,%1,1) (26)
y=%

Let us denote by 7, the desired rest point for the
output J. We assume that this particular value §,
is achievable, ie. there exists a real number ug such
that the system (26) above with the constant control
ug has an equilibrium point, whose components are
denoted (Z4,T1q, - - -, Trd), satisfying :

Yg = Tid - (27)
We remark that this implies :

Tizl(fd,fu,t) ie{2...,r} 28)
ug = —f.(Z4,714,t) VEER.

Under this condition the system (26) can be rewrit-
ten in the form (2) whose desired rest point for y

Tig = —

1944

is 0. Indeed, this is obtained by letting, with 7 in

{1,,..,7‘},

5

n-E (29)

fi(zaxlx )_ (Z xl!t) - f(zdyxld)t)
Tryp1 = U4
Y=Y — Y4 )

3.2 The qualitative assumptions
3.2.1 Assumption QL1 : the z-subsystem is
ISpS
Detectability with no input information implies at
least that the origin is a globally asymptotically sta-
ble solution of the zero dynamics :
z = H(z,0). (30)

The interest of such a stability property is well known
for linear systems : it is sufficient to know the relative
degree r and the sign of the so called high frequency
gain to be able to design a dynamic output feedback
providing global asymptotic stabilization.

Unfortunately, such a property does not extend to
the nonlinear case as shown by the counterexamples
given in [13]. Imposing the ISpS property is one pos-
sible way to go around the difficulty. The ISS, and
therefore ISpS, properties hold for the special cases
considered in (8], [9, 10, 11, 12] and [6]. The ISS
property has been introduced by Sontag in [17].

3.2.2 Corrupted output measurements

The actual system output z; is not directly measured.
Instead we have access to y as :

y = p(z,21,1) (1)
where g is supposed to represent the effects of a sen-
sor. However, the constraint QL2 implies that, for
each (z,t), the &; to y relation is strictly increas-
ing and the function p(:,z1,-) is bounded for each
zy. This means that, for each z;, the measurement
y differs from the actual output z; by only a finite
amount, uniformly in (z,1).

3.2.3 Assumptions QL3

The function ® being smooth, there exists a smooth
function @ such that, for all (z,2;,t) in R" xR xR,

O(z,21,t) = B(z,21,) (5,) + 0(0,0,8). (32)

Then, if the functions &(z,z1,+) and &(0,0,-) are
bounded for each (z,z1) in IR™ x IR, it follows that
assumptions QL3.1 and QL3.2 are satisfied with the
following well defined quantities :

Yo, (8) =25 sup {Ig(z,:cl,t)l}
) < Izll‘lhs s
1:(s) =2s sup {|6(z,:c1,t)|} (33)

|l‘1l < |]IL‘< s
de = sup,em{IQ(O, 0,91}

In particular 7, is linearly bounded on a neigh-
borhood of 0. It follows that QL3.3 is an assumption
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only on the composition v, o 2y which captures, with
an L°-norm, the behavior of the input-output oper-
ator given by the z-subsystem with ; as input and @
as output. Precisely, with v the function of the ISpS
property of the z-subsystem, QL3.3 is satisfied if :

T 1 £
z| £ 29(s)
. teR
lim sup <
50 s

{{2(z,0.9]}

+00 .

(34)
This holds in particular if 4 is linearly bounded on a
neighborhood of 0. This can always be satisfied by
increasing d in (5). However, with d not zero, only
practical regulation can be achieved. Nevertheless if,
besides assumption QL1, the system :

2 = h(z,0,%) (35)
has a zero solution which is locally exponentially sta-
ble, then v can be chosen linearly bounded on a neigh-
borhood of 0 together with d being zero.

To be more specific, let us consider the case where
(see [9, 10, 11, 12, 6]) :
— the time dependence is introduced by time varying
parameters § : IR — C C IR?, with C compact :

E(Z,xl,t)zia(zﬂl,g(t)) » }
h(z,21,t) = ho(z,21,0(%)) ,

where, maybe thanks to a reparameterization, the
functions ®y and hy are smooth on IR™ x IR x IR?

(36)

- the function hy is linear in 2, 1.e. :
he(z,21,0) = A, (8)z + H(z1,0) (37)

where the matrix A4,(6(¢)) is such that its transition
matrix ¢ satisfies, with some strictly positive real
numbers ¢ and «,

|6(t, to)| < c exp(—a(t —to)) ¥(t, t0) € R®  (38)
— the nonlinearities are zero at the origin :
H(0,6(t)) =0, ®¢(0,0,0(2))=0Vt€IR  (39)

In this case, we can take :

Yo, (8) =25 [sgp {[®a]} + sup {I@I}] (40)
re(6) = 2 [ {[Be]} +sup {[Bol}| (40

)] @

where the suprema are taken with respect to (z, z1,6)
in the sets :

S = {lzl Zjls s} 5, = (IS fml< e
Sy = {lzlllési 2= s} sy = {lmlg L ion
s={ls} ==

So assumption QL3 is satisfied.

2} o
Ll ssp

() =s < [sup {

Ss

(43)

1945

4 Relaxing the required information

Given that we only consider plants for which as-
sumptions ST and QL are satisfied, Theorem 1 states
that assumption QT makes precise what information
about the plant is required to guarantee that a par-
ticular controller will achieve the control objective.
The inequalities involved in assumption QT attempt
to encompass a wide class of systems including uncer-
tainties (see section 5 for an example). When more
information about the system to be controlled is avail-
able, many results are available in the literature. For
example consider the following particular case of (2) :

i=A,z + H(z1)

& = ziy1 + fi(z1)
z,=F,z + fr(zl) + u
y=n

te{l,...,r—1}

(44)
where A, and F, are matrices of appropriate dimen-
sions and the functions f;’s and H satisfy :

HO)=0, fi(0)=0 Vie{l,...,r}. (4b)

For this system, when all the matrices and functions
are known, Marino and Tomei in [9, 10] and Kanel-
lakopoulos et al. in [7] have proved, via three different
techniques, the following result :

Theorem 3 ([9, 10, 7]) If, for the system (44), the
matriz A, is strictly Hurwitz and (45) holds, then
there exists a dynamic oulpuil feedback controller
which guarantees global asymptotic stability of the ori-
gin of the closed loop system.

Various attempts have been pursued to relax the
required information about the system (44). As far
as we are aware and now with Theorem 1, results for
the following cases are available :

1 — unknown parameters entering linearly,

2 — unknown parameters entering nonlinearly,

3 - nonlinear zero dynamics,

4 - a bounding function dominating only “at infin-
ity”,

5 — nonvanishing nonlinearities,

6 ~ corrupted output measurement as in section
3.2.2.

Theorem 1 covers these six points simultaneously.

4.1 Unknown parameters entering linearly
Marino and Tomei in {11} and Kanellakopoulos et al.
in [6] have considered the case where, may be after
reparameterization, the system can be written as :
z =A,(0)z+ H(zy,6)
z; = i1+ f,‘(Il,e) 1€ {1, S 1}
T, = Fz(g) z+ fr(-’cl;a) + g(e)u
y=o
where A;(#), F.(6), H(z1,6), fi(z1,8) and g(6) de-

pend linearly on some parameter vector # contained
in a closed subset C of IRP and satisfy :

H(0,8) = 0, £:(0,08)=0 VéecC. (47)

For the case where the vector # is unknown, Marino
and Tomei and Kanellakopoulos et al. have proved :

(46)
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Theorem 4 ([11, 6]) If, for the system (46),

a) for each vector 0 in C, the matriz A,(6) s strictly
Hurwitz, .

b) (47) holds,

¢) for each wvector @ in C, the real number g() is
say posilive,

then there exists a dynamic output feedback controller

such that, for each vector 8 in C, all the solutions of

the closed loop system are bounded and their compo-

nents z, 1, ..., =, tend to 0.

4.2 Unknown parameters entering nonlin-
early

Marino and Tomei in [10] have considered the case

where (46) holds but with an arbitrary dependence

on the parameter vector 8. They have proved :

Theorem 5 ([10)) If, for the system (46),

a) the set C is compact and known,

b) for each vector 6 in C, the matriz A,(0) is strictly
Hurwslz,

c) (47) holds,

d) for each vector 0 in C, the real number g(f) is
say positive,

then there exists a parameterized dynamic output

feedback controller such that, with appropriately tu-

ned parameters and whatever the vector 0 in C is, the

origin of the closed loop system is globally asymptot-

ically stable.

Marino and Tomei have further relaxed the as-
sumptions of this Theorem in [12]. Adaptation of the
controller parameters is introduced in order to allow
self-tuning and assumption (47) has been relaxed.

4.3 Nonlinear zero dynamics

In [15], Praly and Jiang have proved, for the system
(2) with :

z,41 =0, h(o: 0) =0, f’(O’O) =0, (48)

Theorem 6 ([15]) If, for the system (2),

a) assumption QLI holds with d =0,

b) (48) holds,

c) (12) holds for s3 = 0,

d) (10) holds,

then there ezists a dynamic output feedback controller
which guarantees global asymptotic stability of the
equilibrium of the closed loop system.

4.4 A bounding function dominating only “at
infinity”

According to QT2.1, a controller, parameterized by
a function T, is appropriate for a particular system
with perfect output measurement, i.e. = &y, if
the behavior of the input-output operator given by
the z-subsystem with z; as input and ® as output
is captured, in an L%-sense, by the function T’ when
SUPg<,<i{|Z1(t)|} is large enough. In the specific case
where (36)-(39) hold, QT2.1 can be rewritten as :
for all s large enough, we have :

I'(s) > 2s s:p{l@g(z,xlﬂ)l} + 282 (49)

+2p(s) sup {[Bo(z, 21, 0)|} + 2sp(s)

1946

where S is given in (43) and S7 and p(s) denote :

s= (Mg} o
SRR b R
6] <s

This expression is obtained by using the fact that,
C being a compact subset and the functions being
smooth, expressions like supg, {i@g(z, z1, 9),} or pos-
itive real numbers like c/o can be bounded by s or
p(s), for s large enough. Therefore we see that the
lower bound (49) for I'(s) does not depend on the
compact set C nor on the ratio £. In particular, in
the case where the assumptions (36)-(39) are satis-
fied, the extra assumption [12, (5.58)] is not needed
to deal with the case where the compact set C is un-
known.

Also, if, in (2), the functions A, f and p were linear,
we could simply take :

I(s) = 2. (52)

Before concluding, we remark that, in the case of
linearly parameterized bounds on the nonlinearities,
the existence, for large enough signals, of a bound-
ing function independent of the parameters has been
mentioned previously by Kanellakopoulos [5]. In fact
the approach in [5] differs from what we follow here.
Nevertheless this idea of Kanellakopoulos was one of
the key ingredients which led us to the statement of
Theorem 1. Its main consequence is that the evo-
lution of the controller parameter k£ can be frozen,
i.e. o can be set equal to 0, without destroying the
boundedness of all the solutions.

4.5 About assumption T

The function S in the ISS or ISpS property captures
the behavior of the system when the effects of the
initial condition dominate those of the forcing input.
Our assumption T implies, in nonrigorous terms, that
the solutions of the zero dynamics (30) should be
in some L? space, if their initial condition is small
enough. This is a very weak assumption (see [16]).

5 An example : Robust output regulation

To illustrate how very little information about the
system to be controlled is required in Theorem 1, we
consider the following disturbed “linear” system :

A (%) (y+d,) = B (%) (u+d)  (53)

where A and B are polynomials in the time derivation
and dy and dy are outputs of a nonlinear system with
y as inputs, i.e. :
# = hy(21,9,1)
dy = C](Zl,t) . (54)
du = 03(21, Y, t)
Theorem 1 applies, if :
a) We know the difference of the degrees of the poly-

nomials 4 and B and the sign of the highest degree
coefficient of B
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b) The system (54) is ISpS and the polynomial B is
strictly Hurwitz. -

¢) The origin is a locally exponentially stable solution
of :

3 = hi(z1,0,8) (55)

d) We know the bounding function I' associated with
the system (54).

6 A further comment

With Theorem 1 and the ensuing discussion, we
have stated that practical output regulation can be
achieved in a fashion robust to unmodeled effects
which can be captured by the ISpS z-subsystem and
the measurement corruption p. However, the con-
troller we propose to obtain this result is of a high
gain type. In fact two classes of high gains are in-
volved :

1. a nonlinear one for large signals embedded in the
fact that the functions I' and I'y, should grow fast
enough,

2. alinear one k which is tuned on line by increasing
it as long as the output is not within a prescribed
distance of the desired rest point.

In these regards, one can see our result as an ex-
tension to some nonlinear systems of the series of
publications devoted to high gain adaptive stabiliza-
tion (see [2] and references therein). However, as in
the linear case, one may wonder about the robust-
ness of the achieved stability. The high gain struc-
ture may be incompatible with neglected dynamics
which would reduce the relative degree. Also, the
dead-zone threshold w should not be set to 0. Other-

wise the adaptive structure with £ positive is likely to
exhibit a drift phenomenon as described by Ioannou
and Kokotovic in [3].

In [14], Pomet gave a set of sufficient information
for feedback regulation. Both qualitative and quan-
titative assumptions were also needed. It would be
a very interesting issue to compare these two sets of
sufficient information which have some definite simi-
larities.
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