
TPI -3:20 

t l  = Sz + [ l ( P , + ( Y )  -21)  
z2 = s + e2 (P,$(Y) - 21) 

2, = z r + l  + t r  (B,+(Y) - 21) + U 

z r + 1 =  +&+I (P,+(Y) - 21)  

\ 

A 

1) A ex.(- max { V, ( Y,IZ - I...,z’r,k - ̂ > -msO 
k = U  

1+1% ( G - 2  , . . . I  &Z) I 
ur,2 (Y, 22 , . . . j z r  7 z) - 2r+1 U 

1 

Proodlngr ot tho 32nd Conto- 
on r)rclrlon 8nd Contrd 

San Antonlo, T-88 D w ”  1993 

+ (1) 

ON OUTPUT FEEDBACK STABILIZATION FOR SYSTEMS 
WITH ISS INVERSE DYNAMICS AND UNCERTAINTIES 

01 91 -221 6/93/$3.00 0 1993 IEEE 1942 

L. Praly 
Centre Automatique et Systkmes 

Ecole des Mines de Paris 
35 rue St Honor4 

77305 Fontainebleau c4dex 
FRANCE 

3 - a smooth real function 632, introduced to  “invert” 
the “sensor mapping”, 
4 - a real number U chosen in [0, exp(l)], 

5 - a real number w whose square root is the thresh- 
old we assign for the output to  remain below, i.e. it 
is a dead-zone, 
6 -- a C 1  function ur,2 and a positive C2 function V ,  
which are derived from choosing three C1 functions 
of class K : r,:, r and rp. 
In the following we consider the controller to  be fixed, 
implying that all these parameters are given. 
2.2 The class of plants 
By means of four assumptions, we now characterize a 
class of nonlinear systems such that global practical 
output regulation will be achieved using a given con- 
troller of the form (1). The first two assumptions ad- 
dress the feasibility of using dynamic output feedback 
while the third assumption insures the compatibility 
of the system with the given controller. The fourth 
assumption is a technical condition needed only if the 
control objective is convergence to a desired set point. 
These assumptions are discussed in more detail in sec- 
tions 3 and 4. 

Assumption ST (Structure) : The sys tem t o  be 
controlled can be globally described by : 

i =  h ( z , z l , t )  
x. - - x i t i  + f i ( z , z i , t ) ,  i E {I, .  . . ,  m - 1) 

i m = z m + 1  + f m ( Z , x l , t )  + U 

Y = P ( t ,  E l ,  t )  
& + 1 =  0 

(2) 
with a single input U ,  a single measurement y, coordi- 
nates (2, X I , .  . . , zm+l) in IR” xIRmtl ,  and functions 
fi ’s, h and p sufficiently smooth. 

Let @(z, 21, t )  be the vector in Etm+’ whose compo- 
nents are the fi’s with fm+l = 0, except for the first 
one, obtained from the equation satisfied by y : 

% ( z ,  2 1  9 t )  = 2(4 X I ,  t ) h ( z ,  XI, t )  (3) 

+ ~ ( ~ , z l , t ) f l ( % , z l , t )  + g ( Z , z l , t )  . 

Assumption QL (Qualitative) : 
QL1 : The 2-subsystem is  ISpS. That  is : there exist - 
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functions PI of class KC , and y, of class K1, and a 
positive real number d such that,  for any real numbers 
t o  and T ,  with to < T ,  f o r  any initial condition zo 
and any CO function 21 : [to,T) -+ IR, there exists 
a unique solution z ( t )  of: 

i t  is defined on [to,T) and, for all s and t satisfying 
to 5 s 5 t < T ,  we have : 

i = h ( t l z l ( t ) , t )  , Z ( t 0 )  = zo . (4) 

If d is  equal t o  0 ,  the system as said t o  be ISS. 

QL2 : There exist a C1 nondecreasing positive func- 
t ion yp and two positive real numbers C E (0,1] and 
d ,  E IR+, satisfying, f o r  all ( z , t )  i n  IR" x IR, 
QL2.1 : p ( z , z i , t )  = 0 * (211 5 dp , ( 6 )  

- 

QL3 : There exist two functions yrl and yt of class 
E d  three positive real numbers C ,  s1 and do such 
that : 

QL3.1 : for all ( z ,  2 1 ,  t )  in  IR" x IR x IR, 
I@(z>x1it)I I yz1(IzlI) + 7 z ( l z l )  + do (8) 

QL3.2 : y 2 ( s )  5 C S  V S  E [O,S~] , (9) 

QL3.3 :(yzl + yz 0 27) ( s )  5 CS VS E [0, SI] .(IO) 

Assumption QT (Quantitative) : 
Let r ,  p t ,  y,:, I? and rr. be given b y  the controller. 

QT1 : There exists a positive real number d p t  such 
that, f o r  all ( z , x l , t )  in  IR" x I R  x IR, 
- 

121 - f d ( d z , x l > t ) ) l  5 Y,+11) + dp: . (11) 
QT2 : There exists a positive real number s2 such 
l h a i w e  have : 

QT2.1 : (yz1 + yz 0 27) ( s )  I r(s) VS E [ s 2 , ~ )  (12) 
QT2.2 : 

QT3 : The relative degree m is  equal to  r .  

Assumption T (Technical) : There exist two 
strictly positive real numbers s* and q 2 2 such that : 

~ p ( s )  - yp(0) 5 rp (s )  VS E [s21 m) 7 (13) 

- 

P(S*l . )  E LP([0, +..)I ' (14) 
Our main result is the following: 

Theorem 1 B y  applying the controller (1) to  any 
dynamic system satisfying assumptions S T ,  Q L  and 
Q T ,  we obtain existence, uniqueness and boundedness 
of all the solutions of the closed loop system. More- 
over, if c is chosen strictly positive, the output y of 
each of the solutions satisfies : 

limsupJy(t)I2 5 w . (15) 
t-03 

.See fi7] for a definition 

Furthermore, if do, d ,  d,, d p t  are zero and assump- 
t ion T is satisfied, then the "dead-zone" w can be set 
equal to  0 ,  and, i n  this case, all the solutions con- 
verge t o  a %dimensional manifold where we have an 
particular z = 0 and x1 = . . . = xr = 0. 

3 Feasibility of output feedback 
3.1 
Byrnes and Isidori, in [l], have given necessary and 
sufficient conditions under which a system can be 
written globally in the form : 

Assumption ST: the normal form 

1 i = 'H(2, Xl) 
X j  = xj+l 

X r  = .;c( 2, XI , . . 
i E  { l , . . . , r -  1) 

xr ) + G(zI X I  9 . . Xr)u 
y = X 1  

(16) 
Compared to this form, assumption ST imposes two 
restrictions : the functions fi's must depend only on 
( z , z 1 )  and the function g must be identically equal 
to 1; and it allows one relaxation : the output mea- 
surements may be corrupted, i.e. y # XI.  

3.1.1 
Rewriting (2) with the time derivatives of 21 as coor- 
dinates, we get, when (2) is time invariant, p is the 
identity function and xr+l is zero, 

fi depends only on (z,x1) 

1 i = a(%, Xl) 

i=l 

Y=x1 

where (.fr-*) denotes the (r - i)th Lie derivative 
along the vector field given by (2).  This exhibits a 
very particular structure for the function T in (16). 
The motivation for this restricted structure is the sev- 
eral counterexamples, given in [13], to global output 
feedback stabilization for systems in the form (16). 

Instead of the constraint (17) imposed here, one 
may restrict the behavior at infinity of 3, 1-1 and 6. 
For example, Khalil and Saberi have proved : 

Theorem 2 ([SI) Ih  for the system (16), 
a) the zero solution of the following system is  glob- 

ally exponentially stable : 

i = X ( z , O )  , (18) 

b) 'H(0,O) = 0 , F(O,O,. . . , O )  = 0 , (19) 

c) the sign of G ( z ,  XI,. . . , X,) is definite and known, 
d) 'H and 3 are globally Lipschitz continuous and 6 

is bounded, 
then there exists a dynamic output feedback controller 
which guarantees global exponential stability of the 
origin of the closed loop system. 

3.1.2 The input vector field, = 1 
Again, by comparing (17) and (16), we see that 6 
in (17) must be known, depend only on X1 and have 
a constant sign (then change G(Xl) U into U) .  Khalil 
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and Saberi need only that 6 be bounded and bounded 
away from 0. Further, they allow it to depend on all 
the variables. In [ll, 10, 61, Marino and Tomei and 
Kanellakopoulos et al., respectively, impose that 8 
depends only on X1 but this function is known only up 
to a multiplicative strictly positive real number (see 
Theorems 4 and 5 below). In our framework, this 
latter case can be considered as sensor corruption. 
Indeed consider the following system : 

i = X ( z , f 1 , t )  

Li = f i + 1  + ? i ( . ~ , ~ l , t )  

y = z 1  

- 
(20) 

i E ( 1 , .  . ., r - 1) 
kr = e u  + J r ( z , ~ l , t )  

with 0 an unknown strictly positive real number. . -  

Then, by letting : 
1 

t i  = -4 i E  (1, e 
we can rewrite this system as : 

i = h ( r , q , t )  
xi =zi+l + f i ( Z , Z l , t )  

x r  = U + f r ( t . , z l , t )  
y = e t l  

i E 

with : 

(22) 
1 , .  . . , r  - 1) 

This system is in the form (2), with : 

Then it is easy to show that, with 0 any positive real 
number, if assumption QL holds for (20) then it also 
holds for (22). Note that QT1 and QT2.2 hold with : 

P ( V l , t )  = 821 * (24) 

P$(Y) = 0 , 7,,+(s) = s I rp(s)  = s . (25) 
3.1.3 The role of t,+1 

In (16) and (17), xm+l z 0. In our context, a nonzero 
value for z,+1(0) may be useful for handling nonzero 
set points or nonvanishing nonlinearities. For exam- 
ple, consider the following system with input U and 
output 8, 

t = qz, fl, t )  

2, = u + - j , - ( ~ , ~ l , t )  1 (26) 
& = ~ i + l + - f , ( ~ , ~ l , t )  i ~ ( 1 ,  ..., r - 1 )  
- 
- y = 5 1  

Let us denote by jjd the desired rest point for the 
output 8. We assume that this particular value ;jid 
is achievable, ie. there exists a real number Ud such 
that the system (26) above with the constant control 
ud has an equilibrium point, whose components are 
denoted ( F d , F l d , .  . . , Erd) ,  satisfying : 

We remark that this implies : 

x i d  = - f i - l ( ~ d l ~ l d , t )  

(27) 
- 
Yd = z l d  . 

- - } (28) 
i E (2 , .  . ., r }  - 

'Ud = - f r ( y d , z l d , t )  vt E m .  
Under this condition the system (26) can be rewrit- 
ten in the form (2) whose desired rest point for y 

is 0. Indeed, this is obtained by letting, with i in 
(11 * . * ,  I - } ,  

z = F - F d  

h( z ,  1 1 ,  t )  = K(F, z 1 ,  t )  

f i  ( z ,  2 1  , Xi t )  = x i  = - -  Ti (z, - f l  Xid t )  - 7; ( z d  j f l d t  t )  I ( 2 9 )  

Z r + l  = u d  

?/=G - 3 d  

3.2 The qualitative assumptions 
3.2.1 Assumption QL1 : the z-subsystem is 

Detectability with no input information implies a t  
least that the origin is a globally asymptotically sta- 
ble solution of the zero dynamics : 

The interest of such a stability property is well known 
for linear systems : it is sufficient to know the relative 
degree r and the sign of the so called high frequency 
gain to be able to design a dynamic output feedback 
providing global asymptotic stabilization. 

Unfortunately, such a property does not extend to 
the nonlinear case as shown by the counterexamples 
given in [13]. Imposing the ISpS property is one pos- 
sible way to go around the difficulty. The ISS, and 
therefore ISpS, properties hold for the special cases 
considered in [8], [9, 10, 11, 121 and [SI. The ISS 
property has been introduced by Sontag in [17]. 
3.2.2 Corrupted output measurements 
The actual system output c 1  is not directly measured. 
Instead we have access to y as : 

where 53 is supposed to represent the effects of a sen- 
sor. However, the constraint QL2 implies that, for 
each ( z , t ) ,  the 21 to y relation is strictly increas- 
ing and the function p(. ,z1, .)  is bounded for each 
tl. This means that, for each 21, the measurement 
y differs from the actual output X I  by only a finite 
amount, uniformly in ( z , t ) .  

3.2.3 Assumptions QL3 
The function 0 being smooth, there exists a smooth 
function CP such that, for all (z, X I ,  t )  in IRr x IR x IR, 

@(t ,z i , t )  = % , x i , t )  ( i l)  + @ ( O , O , t ) .  (32) 

Then, if the functions s(z,21,.) and @(O,O,.) are 
bounded for each (z , t1 )  in IR" x IR,, it follows that 
assumptions QL3.1 and QL3.2 are satisfied with the 
following well defined quantities : 

ISpS 

i. = N ( 2 , O )  . (30) 

Y = p ( z , z : l 1 t )  (31) 

do = SUPIGIR{I@(O, 0 , t ) I l  I 
In particular yz1 is linearly bounded on a neigh- 

borhood of 0. It follows that QL3.3 is an assumption 
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only on the composition yz o 2y which captures, with 
an LDO-norm, the behavior of the input-output oper- 
ator given by the 2-subsystem with 21 as input and CP 
as output. Precisely, with y the function of the ISpS 
property of the z-subsystem, QL3.3 is satisfied i f :  

c 1 

a-0 S 

(34) 
This holds in particular if y is linearly bounded on a 
neighborhood of 0. This can always be satisfied by 
increasing d in (5). However, with d not zero, only 
practical regulation can be a.chieved. Nevertheless if, 
besides assumption QL1, the system : 

has a zero solution which is locally exponentially sta- 
ble, then y can be chosen linearly bounded on a neigh- 
borhood of 0 together with d being zero. 

To be more specific, let us consider the case where 
(see [9, 10, 11, 12, 61) : 

- the time dependence is introduced by time varying 
parameters B : JR, -+ C c IRP, with C compact : 

z = h ( t , O , t )  (35) 

- 

} (36) 
q 2 , z l l t )  = ~ o ( t . , . 1 , e ( t ) )  1 

h ( z 1 2 1 , t )  = h ( Z , 2 I 1 B ( t ) )  , 
where, maybe thanks to a reparameterization, the 
functions @ e  and he are smooth on IR” x IR x IRp 
- the function he is linear in z ,  i.e. : 

h s ( z l t i , o )  = AZ(B)z + H ( ~ t . 1 ~ 0 )  (37) 
where the matrix Az(B(t))  is such that its transition 
matrix q5 satisfies, with some strictly positive real 
numbers c and cy, 

- the nonlinearities are zero at the origin : 

In this case, we can take : 

Id(t ,  t o l l  5 c exp(-a(t - to))  V ( t ,  t o )  E IR2 

H ( 0 ,  B ( t ) )  = 0 , Oo(O,O, B(t)) = 0 Vt  E IR 

(38) 

(39) 

r 1 

where the suprema are taken with respect to (2, 21 , 0) 
in the sets : 

(43) 
So assumption QL3 is satisfied. 

4 Relaxing the required information 
Given that we only consider plants for which as- 
sumptions ST and QL are satisfied, Theorem 1 states 
that assumption Q T  makes precise what information 
about the plant is required to guarantee that a par- 
ticular controller will achieve the control objective. 
The inequalities involved in assumption Q T  attempt 
to encompass a wide class of systems including uncer- 
tainties (see section 5 for an example). When more 
information about the system to be controlled is avail- 
able, many results are available in the literature. For 
example consider the following particular case of (2) : 

I i = A , z  + H ( z ~ )  
;i.. % - - i t 1  - + f l ( X 1 )  i E { 1 , . . . , r - 1 }  

j., = Fz 2 + fr(x1) + 21 

Y = 21 
(44) 

H ( O ) = O ,  f i ( o ) = o  v i € { l ,  . . .  , r } *  (45) 

where A ,  and F, are matrices of appropriate dimen- 
sions and the functions fa’s and H satisfy : 

For this system, when all the matrices and functions 
are known, Marino and Tomei in [9, 101 and Kanel- 
lakopoulos et al. in [7] have proved, via three different 
techniques, the following result : 

Theorem 3 ([9, 10, 71) Ifi f o r  the system (441, the 
matrix A,  is strictly Hurwitz and (45) holds, then 
there exists a dynamic output feedback controller 
which guarantees global asymptotic stability of the ori- 
gin of the closed loop system. 

Various attempts have been pursued to relax the 
required information about the system (44). As far 
as we are aware and now with Theorem 1, results for 
the following cases are available : 
1 - unknown parameters entering linearly, 
2 - unknown parameters entering nonlinearly, 
3 - nonlinear zero dynamics, 
4 - a bounding function dominating only “at infin- 

5 - nonvanishing nonlinearities, 
6 - corrupted output measurement as in section 

Theorem 1 covers these six points simultaneously. 
4.1 Unknown parameters entering linearly 
Marino and Tomei in [ l l ]  and Kanellakopoulos et al. 
in [6] have considered the case where, may be after 
reparameterization, the system can be written as : 

ity”, 

3.2.2. 

i = A,(0)  z + H ( z l , B )  
ii = z i t 1  + f i ( x ~ , B )  i E {l, . .  . , r  - 1)  
xr  = Fz(B) z + fP(z1, e)  + g(B)u } (46) 

Y = I 1  

where A,(@) ,  &(e), H ( s l , O ) ,  f i ( z 1 , O )  and g(@) de- 
pend linearly on some parameter vector 8 contained 
in a closed subset C of IRP and satisfy : 

H(O,B) = 0 , f i ( O , O , 8 )  = O VB E C . (47) 
For the case where the vector 0 is unknown, Marino 
and Tomei and Kanellakopoulos et al. have proved : 
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Theorem 4 ([11, 61) If ,  for the system (46), 
a) for each vector 0 zn C ,  the matrix Az(0) zs strictly 

Hurwitz,  
b) (47) holds, 
c) for each vector 0 in C ,  the re01 nvmber g(0) is  

say positive, 
then there exists a dynamzc output feedback controller 
such that, for each vector 0 in C ,  all the solutions of 
the closed loop system are bounded and their compo- 
nents z ,  21, . . ., 2, tend t o  0. 

4.2 Unknown parameters entering nonlin- 

Marino and Tomei in [lo] have considered the case 
where (46) holds but with an arbitrary dependence 
on the parameter vector 0. They have proved : 

early 

Theorem 5 ([lo)) I f ,  for the system (461, 
a) the set C is  compact and known, 
b) for each vector 0 in C ,  the matrix Az(0)  is strictly 

Hurwitz, 
c) (47) holds, 
d) for each vector 0 in C ,  the real number g(0) is  

say positive, 
then there exists a parameterized dynamic output 
feedback controller such that, wi th appropriately tu- 
ned parameters and whatever the vector 0 in C is, the 
origin of the closed loop system i s  globally asymptot- 
ically stable. 

Marino and Tomei have further relaxed the as- 
sumptions of this Theorem in [12]. Adaptation of the 
controller parameters is introduced in order to allow 
self-tuning and assumption (47) has been relaxed. 
4.3 Nonlinear zero dynamics 
In [15], Praly and Jiang have proved, for the system 
(2) with : 

Z r + 1  = 0 h(O,O) = 0 , f i (0 ,O) = 0 , (48) 
Theorem 6 ([15]) I f ,  f o r  the system (21, 
a) assumption QL1 holds with d = 0 ,  
b) (48) holds, 

d) (10) holds, 
then there exists a dynamic output feedback controller 
which guarantees global asymptotic stability of the 
equilibrium of the closed loop system. 

4.4 A bounding function dominating only “at 
infinity ” 

According to  QT2.1, a controller, parameterized by 
a function I?, is appropriate for a particular system 
with perfect output measurement, i.e. y = 21, if 
the behavior of the input-output operator given by 
the z-subsystem with XI as input and Q as output 
is captured, in an Loo-sense, by the function I? when 
~up, ,~~<~{lz l ( t ) l}  is large enough. In the specific case 
where (36)-(39) hold, QT2.1 can be rewritten as : 
for all s large enough, we have : 

C) (12) holds for ~2 = 0, 

(49) 

where 5’1 is given in (43) and S7 and p(s)  denote : 

This expression is obtained by using the fact that, 
C being a compact subset a n d t h e  functions being 
smooth, expressions like supSa { l@e(z, XI, 0)l) or pos- 
itive real numbers like c / a  can be bounded by s or 
p(s) ,  for s large enough. Therefore we see that the 
lower bound (49) for r(s) does not depend on the 
compact set C nor on the ratio 2. In particular, in 
the case where the assumptions (36)-(39) are satis- 
fied, the extra assumption [12, (5.58)] is not needed 
to deal with the case where the compact set C is un- 
known. 

Also, if, in (2), the functions h,  f and p were linear, 
we could simply take : 

r(s) = s2 . (52) 
Before concluding, we remark that, in the case of 

linearly parameterized bounds on the nonlinearities, 
the existence, for large enough signals, of a bound- 
ing function independent of the parameters has been 
mentioned previously by Kanellakopoulos [5]. In fact 
the approach in [5] differs from what we follow here. 
Nevertheless this idea of Kanellakopoulos was one of 
the key ingredients which led us to  the statement of 
Theorem 1. Its main consequence? that the evo- 
lution of the controller parameter k can be frozen, 
i.e. U can be set equal to  0, without destroying the 
boundedness of all the solutions. 
4.5 About assumption T 
The function p in the ISS or ISpS property captures 
the behavior of the system when the effects of the 
initial condition dominate those of the forcing input. 
Our assumption T implies, in nonrigorous terms, that 
the solutions of the zero dynamics (30) should be 
in some Lq space, if their initial condition is small 
enough. This is a very weak assumption (see [16]). 

An example : Robust output regulation 
To illustrate how very little information about the 
system to be controlled is required in Theorem 1,  we 
consider the following disturbed “linear” system : 

5 

where A and B are polynomials in the time derivation 
and du and d y  are outputs of a nonlinear system with 
y as inputs, i.e. : 

(54) 
i l  = h ( z 1 , y , t )  
dy = c1 (z1, t )  
du = c3(z1, y,t) 

Theorem 1 applies, i f :  
a) We know the difference of the degrees of the poly- 

nomials A and B and the sign of the highest degree 
coefficient of B 
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b) The system (54) is ISpS and the polynomial B is 

c) The origin is a locally exponentially stable solution 
strictly Hurwitz. 

of : 

21 = h l ( z l , O , f )  (55) 
d) We know the bounding function l- associated with 

the system (54). 

6 A further comment 
With Theorem 1 and the ensuing discussion, we 
have stated that practical output regulation can be 
achieved in a fashion robust to unmodeled effects 
which can be captured by the ISpS z-subsystem and 
the measurement corruption p. However, the con- 
troller we propose to obtain this result is of a high 
gain type. In fact two classes of high gains are in- 
volved : 

1. a nonlinear one for large signals embedded in the 
should grow fast fact that the functions I? and 

enough , 
h 

2. a linear one k which is tuned on line by increasing 
it as long as the output is not within a prescribed 
distance of the desired rest point. 

In these regards, one can see our result as an ex- 
tension to some nonlinear systems of the series of 
publications devoted to high gain adaptive stabiliza- 
tion (see [2] and references therein). However, as in 
the linear case, one may wonder about the robust- 
ness of the achieved stability. The high gain struc- 
ture may be incompatible with neglected dynamics 
which would reduce the relative degree. Also, the 
dead-zone threshold w should not - be set to 0. Other- 
wise the adaptive structure with IC positive is likely to 
exhibit a drift phenomenon as described by Ioannou 
and Kokotovic in [3]. 

In [14], Pomet gave a set of sufficient information 
for feedback regulation. Both qualitative and quan- 
titative assumptions were also needed. It would be 
a very interesting issue to compare these two sets of 
sufficient information which have some definite simi- 
lari ties. 
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