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Abstract

We propose a slight extension of a result recently esta-

blished by Kanellakopoulos, Kokotovic and Morse in (2]

about the global adaptive stabilization of systems in a

strict feedback form. A reinterpretation of their design

algorithm in terms of the control Lyapunov function ap-

proach allows us to :

1. extend the design to a slightly broader class of sys-
tems.

2. propose a new algorithm which involves half as many
parameters to update as the original Kanellakopou-
los et al.’s scheme.

1 Introduction

Adaptive control of nonlinear systems has already re-
ceived a great deal of attention. Full state feedback
and output feedback adaptive schemes are available for
local or global stabilization or tracking (see [3] and ref-
erences therein). Unfortunately, these schemes apply
only to linearly parametrized nonlinear systems which
are constrained cither by the location of their unknown
parameters or by the type of nonlinearities.

Kanellakopoulos, Kokotovic and Morse [2] have rece-
ntly introduced a new design which, at least for systems
in a pure feedback form, allows us to obtain stabilizing
adaptive controliers without requiring one of these two
above mentioned constraints. This new design is based
on the iterative interlacing of two techniques : the Lya-
punov design of adaptive controllers [5] and the stabi-
lization of a chain of integrators (see [4, Example 3.2]
for example). Here, we shall pursue this idea of iterative
interlacing.

The two basic ingredients will be studied in section
2. The stabilization of a chain of integrators will be pre-
sented via the control Lyapunov function technique [8,
Theorem 3.c] instead of the change of coordinates of
[4, Example 3.2] used by Kanellakopoulos et al. {2].
The interest of this technique is its ability to deal with
non smooth cases — the case where the diffcomorphism
would have singularities (see [7]). This will be discu-
ssed briefly in section 4. The second ingredient used
by Kanellakopoulos et al. is the Lyapunov design of
adaptive controller. Such a design will be recalled here.
In section 3, we show how to use these ingredients to
design iteratively adaptive controllers. Kanellakopoulos
ct al. proposed to interlace change of coordinates and
Lypunov design. Here, among other things, we shall re-
mark that the change of coordinates or more precisely
the control Lyapunov function technique can be applied
twice before applying an adaptive control Lyapunov de-
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sign. This remark will allow us to propose an adaptive
controller with half as many parameters to update as in
Kanellakopoulos et al.’s scheme. Section 4 is devoted to
the application of our proposed designs. We note that
they apply to a slightly broader class of systems than
the set of strict feedback systems.

Notations and Definition :

1. For an ordinary differential equation numbered (1),
with p a constant real vector,
= f(z,p), _ ()
and a function V(z, q), we denote V |(,) (z,p,q) the
function of (z,p,q) given by :

. v
Vi (@29 = 5-(2,9) f(zp) @
2. m > 1 denotes an integer number.

Due to space limitations, our proofs being more or
less straightforward are omitted (see [1] for a more com-
plete version).

2 Design Ingredients
2.1 Adding one integrator

The first problem we address is :
Knowing that a system is stabilizable, is it still stab-
ilizable if we add one integrator ?
This problem has received a great deal of attention (see
[4] and {7]). Let us reproduce these well known results
but in a statement more appropriate to our problem.

We consider a single input nonlinear system :

z = f(z,u,p) &)

where z € R" is the state, u € R is the input, p €
R is a parameter vector, and f is a C™*! function on
R” x R x R'. We assume the existence of :
1 - a dynamic state feedback :
Xe = z,X
{ u = Z:EI,X:,)I)) @
where the dynamical extension X, is in R¥, 1o is of
class C™ and u, is of class C™+! .
2 - areal positive C™*! function Vy(z, X., p) and a real
positive C° function Wy(z, X, p)
such that :

(A1) for all (z,X,,p) in R* x R¥ x R/, we have :

¥ |s)-(a) (£, Xe,p) < — Wo(2,X.,p) - (6)

Namely, the dynamic state feedback (4) makes the func-
tion Vp have a time derivative along the solutions of (3)
less than —W,.
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Let us now add one integrator to the system (3) :

z = f(z,y,p)

y=v+g(z,y,9)
where y is a new scalar state component, v is a new
scalar input, ¢ € R" is a new parameter vector and g
is a C™ function on R"t! x R'1. We have the following
Lemma [8, Theorem 3.c] :

(6

Lemma 1 (Adding one integrator)

With assumption (Al), consider the following two real
fulnctions V1 of class C™ and W, of class C°, with r in
R :

Vi(2,y, Xe, 1, p) = Vo(z,Xe,p) + 3 (v — uo(z, X, 7))? (7)

Wi(z,y, Xe, r, p) = Wo(z, X, p) + (y — tuo(z, Xe, 7))? (8)

and the following C™ function :

(2,4, Xe,p,¢,7) = —9(2,9,9) — (y — o2, Xe,7)) (9)
+ %2 (z,Xe,7) f(2,9,9) + $5(z,Xe,7) Yho(z, Xe)

1
- Qal;n(x)xevp)/ W(Ilyyxeyr’pys)ds
(]
with :
of
o = gy () uo(z,Xe,r) + [y — oz, X, )]s, p) - (10)

By applying, to the system (6), the controller :

{Xe = woéx,xe)

v =1Uy f,yvxe,Py'LP)
we obtain, for all (z,y,X.,p, q), by evaluating at r = p,

(12)

1y

‘/1 I(G)—(ll) (xv Y, XC)p) S - Wl(z) Y, Xe>P; p) .
Remark 1:
1 - From (12), we see that the functions u,, V; and W,
satisfy assumption (A1) for the augmented system (6).
It follows that Lemma 1 applies again to this system (6)
augmented with another integrator. Therefore, we can
recursively add integrators. Note however that one de-
gree of smoothness is lost at each addition. Namely,
starting with C™ functions, only m integrators can be
added this way. Nevertheless, using the so called desin-
gularizing function technique introduced in [7], it may
be possible to add more integrators. This possibility will
be discussed in section 4.
2 - For the meaning of Lemma 1, the presence of the
parameter vectors p and ¢ is not important. However,
in view of the iterative design proposed in the next sec-
tion, it is important to know how these parameter vec-
tors appear in V;, W, or u,. It is to allow us to describe
more precisely this appearance that we have introduced
the dummy variable r. In particular, we can make the
following key observations :
2.1 - V; does not depend on r if u, does not.
2.2 - u, always depends not only on the new parameter
vector ¢ but also on the old one p.
2.2 Removing the parameter dependence in the
control law

In Remark 1 above, we observed that when we add one
integrator, the new control law depends on the param-
eter vector. We are now facing a second problem :

Knowing a parametrized stabilizing control law for a
linearly parametrized system, is it possible to design
a stabilizing controller not depending on the system
parameters ?
Precisely, consider a single input nonlinear system
as one element of the following family of systems,
parametrized in 6,

a(ze) + A(ze)b + b(ze)T (13}

where z, € R" is the state, 7 € R is the input, § € R is
a vector of unknown constant parameters, and a, A and
b are C™ functions on R". For this family, we assume
the existence of :
1 - a dynamic state feedback
X = (2., X)
{E: u(z:,X,B) 14
where the dynamical extension X is in R¥, 4 is of
class C™ and u is of class C™, .
2 - a real positive C™*! function V(z,,X,6,6) and a
real positive C° function W(z.,X, 0, 6) satisfying :

(A2.1) %(ze, X, (3, 6) is independent of 4.

(A2.2) &Y (z.,X,8,0) is lincar in .

(A3) there exists a known C™ function h: R" x
R¥ x R} — R/ satisfying :

z, =

ov ~ oV ~ ~
ﬁ(zcsx)elo) - (El'_e(ze,x’o’e) b(l’e)) h(zhx’o)(ls)

such that :
(A4) for all (z., X,0) and by evaluating at § = 6,

4 l(lS)—(M) (xe,X,0) £ -~ W(z,X,0,0) . (16)
Again, we have introduced the dummy variable 4 to al-
low us to precise the role played by some components
of the parameter vector. Assumption (A4) tells us that
the parametrized dynamic state feedback (14) makes
the function V have a time derivative along the solu-
tions of the parametrized system (13) less than —W.
Assumption (A3) is a sufficient condition for the exten-
ded matching condition as generalized in [3, p. 371] to
hold. Assumptions (A2.1) and (A2.2) allow us to intro-
duce the following function — not depending on 8 -,

Z(ze,X,0) = 2(z.,X,0,6) A(z.) (17)

8 [oV ~

= | = X,0,0 , X)) .
5 (Ge G x.8.04()
With these assumptions we can solve our second prob-
lem by using a Lyapunov design [5). More precisely we
follow here a variant (compare with [3, p. 377]) of the
Lyapunov design proposed by Slotine and Li.

Lemma 2 (Removing parameter dependence)

With assumptions (A2.1), (A2.2), (A3) and (A4), consider
the following two real functions V of class C™*! and W
of class C° :

V(z.,X,0,0) = V(z.,X,8,0) + LII5 - 0|

w ) (18)
W(ze,X,0) = W(z.,X,0,6)
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By applying, to the system (13), the following C™ dy-
namic state feedback :

X = (z.,X)
{0 Z(z., X, 0) (19)
T = u(z,, X, 9 — h(z.,X, 9 Z(z., X, 9)
where Z is defined in (17), we obtain, for all (z.,X,8,6),
Vl(m)-(w) (.’L’,,X, 6) < —W(z,,x, 6) . (20)
Remark 2 :

1 - Without assumptions (A2.1) and (A2.2), Z in (17)
would depend on 4 and consequently the controller (19}
would still depend on the system parameters. Note also
that V defined in (18) statisfies these assumptions.

2 - The dynamic controller {(19) and V and W defined
in (18) satisfy assumption (Al) of Lemma 1 with X, =
(XT, 87)7. This implies that we can add one integrator
to the system (13).

8 Adding integrators with unknown parameters
As a step towards iterative designs of adaptive con-
trollers for linearly parametrized nonlinear systems, let
us address a third problem :

Knowing that a system is stabilizable, is it still stab-

ilizable if we add several integrators with unknown

parameters ?
Precisely, our starting point is the same single input

nonlinear system as in section 2.1 but with f linear in
p, le.

z = ao(z,u) + Ao(z,u)p, 21
where g, and A, are C™12 functions. We assume as-
sumption (A1) holds, namely, there exist functions 1,
of class C™+1, yq, of class C™12, V,, positive of class
C™+2, and W,, positive of class C°, such that :

(A1) for all (z, X,, p), we have :

% !(2!)—(4) (z)Xe)p) S - Wo(xyxeap) . (22)
We will need also the following extra assumption :

(Al.1) u, does not depend on the parameter vector p
and is rewritten ug(z, X,).

As mentioned in Remark 2, these two assumptions
would be satisfied if Vp, W, 9o and u, were given by
Lemma 2.

3.1 Adding one integrator with unknown parame-
ters

Let us now add one integrator to the system (21) :

z = ao(z,y) + Ao(z,
{ —u,(+a3(z y)(d’,)(i,y)ex 23)
where y is a new scalar state component, U, is a new
scalar input, 8, € R"* is a new parameter vector, and q;
and A, are C™*! functions.

Applying Lemma 1, without r thanks to (Al.1) (see
point 2.1 of Remark 1), we get two real functions
Vi(z,y, X, p) of class C™+2 and W (z, y, X,, p) of class
C? and a new C™*! control law u,(z,y,X.,p,6:) :

v1(2, ¥, Xe, p,01) = §2(z, X.) (a0(2, ¥) + 4o(z, ¥)p)
—ai(z,y) — Ai(z,y) 6 — (¥ — vo(2,X.))

1
_a%q(z,xe,P)/ P(z,y,Xe,p,5)ds
0

+ 58 (2,X) ho(z. Xe) , (24)
with :

7= ﬁa—";y—&ﬂ (=, uo(z, Xe) + [y — uo(2, Xe)ls) , (25)

such that, for all (z,y,X.,p,6,) :

Vi l@s)-9) (2,9, Xe,p) < — Wiz, 9,Xe,p) - (26)

Note that V; does not depend on the new parameter vec-
tor 6,. Also, thanks to assumption (Al.1), if —“ does

not depend on p, the same holds for %2 and %‘ Th-

erefore, if the system (2 1) satisfies assumptions (Al),
(Al.1) and

(A1.2.1) M(:v X, p) is independent of p,

{Al1.2.2) %S(z, X,,p) is linear in p,
then, by identifying :
. =(",y)7,x= xeyo—(PTaT)Ta—(Pn )T
W=W,,u=1uy, ¥ =1, (27)
V(ze,X,8,6) = Vi((2,9), X, ),

assumptions (A2.1), (A2.2), (A3) and (A4) are satisfied
for the system (23). In particular A = 0 in assumption
(A3) and Z defined in (17) has two parts :

Zﬂ)(zv!hxc) = (y—uo(-’tnxe))Al(%y)~
Zex) = o (FRExpiex) @)

+[52(z,X.,p) — (¥ — uo(z, X)) 52(2, Xc)] Ao(z,v)
A straightforward consequence of Lemma 2 is :

Proposition 1 (Adding one integrator with unknown
parameters)

With assumptions (A1), (A1.1), (A1.2.1) and (A1.2.2), con-
sider the following two real functions V' of class C™+?
and W of class C° :

Vl(xry)xcyﬁl)al)p) 91) = ‘/0(1") chP)"'% (y_uo(xrxe))2
“ 2
riB-pf+ B -0 29

Wl(m:yrxeyﬁl) = Wo(z,xe:ﬁl) + (y - 'uO(zJXG))2 (30)

By applying, to the system (23), the following C™*! dy-
namic state feedback :

5‘, = 'l’o(z,xe)

i’fx = Zp(z,y,Xc)T

gl = Z,I(x,y,XC)T

T, = uy(z, 9, Xe, 1, 6)

with u, given in (24) and Z, and Z,, given in (28), we
Obtal'n.forau (z)yaxeaﬁlxgl)p)e)'

(1)

v\ l(zs)—(m) (z) y:xc>ﬁlv§l>P)0) S _Wl(zryyxeyﬁl)(32)
Remark 3 :

1 - If, in the system (23), we know 4, = p, then, in (31),
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there is no need to add two estimators p, and §,. We let
simply :

=0, = Zp(z,y,Xe)T + Zo,(2,4,X)T (33)
2 - With assumption (A1.2.1), T, in (31), ﬂland%do

not depend on (p, 6;). With assumption (A1.2.2), 22 8X ,

% and a—Yel are linear in (p,6,). It follows that as-

sumptions (Al) (Al.1), (A1.2.1) and (A1.2.2) are satis-
fied by the system (23), with this time :
= (x7,87,60)7 . (39)
Therefore, by using Proposition 1 recurrently, other
integrators with unknown parameters could again be
added. This fundamental observation is due to Kanel-
lakopoulos, Kokotovic and Morse [2]. Each time, Propo-
sition 1 is applied, we extend the dynamics of the con-
troller by a new estimate p, of all the old parameter vec-
tor p, and one estimate 6, the new parameter vector 6.
Hence for k integrators, with one new parameter vector
for each, we will get ﬂ-’;"—ll parameter vector estimates.
3.2 Adding two integrators with unknown parame-
ters
Let us now consider the case where two integrators are
added to the system (21) :

{a: = ao(ib' yg + Ao(:E yg
y=z+a(z,y) + Ai(z,y) 6, (35)
Z2 =T + ax(z,y, 2) + Ax(z,y, z) 0,

where y and z are two new scalar state components, i,
is a new scalar input, §, € R and 6, € R are new
parameter vectors, and a; and 4;, i = 1,2 are C™!
functions.

From our Remark 3, under assumptions {Al), (Al.1),
(Al1.2.1) and (Al.2.2), an adaptive controller for this sy-
stem (35) can be obtained by applying Proposition 1
twice. However, proceeding this way, by applying this
Proposition once, the state vector of the dynamic con-
troller obtained will be (X.,7;,6,). And therefore, the
dynamic controller we will obtain for the system (35)
after apglying }hisAProposition twice will have the state :
(Xe,P1,01, D2, 012,0;). Namely, this state contains the
original state Xe. two estimates p, and p. P2 C of p, two es-
timates 01 and 012 of 6, and one estimate 02 of 6,. This
explosion of the number of estimates is the main draw-
back of this iterative procedure proposed in [2]. Our
intent, now, is to show the existence of a dynamic con-
troller with a state (X,,p, 8,,6;) of smaller dimension.

Applying Lemma 1 twice (see point 1 of Remark 1),
with r = (p, 6,) the second time, we get two real func-
tions V, of class C™*! and W, of class C° and a new
C™ control law u, :

Va(z,9,2,Xe, D, 51,1’) = Vo(z,Xe, p) + 5 (¥ — uo(z, X))?
+ 11— wz,u,X,5,6)7? (36

Wa(=,, 2, Xe,B,01,) = Wolz, X, p) + (y — (2, Xe))?
+(z = w2, v, X, 5,0))*  (37)

u3(2,9,2,Xe, p,01,62) = —(y—uo(z,X,)) (38)

—ay(x,y,2) — As(z,y,2) 02 ~ (2= ui(z,y,Xe, p,6,))
+ 52,9, Xe, p,01) (2 + as(2,9) + As(z,1)0,)
+ 52 (2,3, Xe, p,01) (ao(z, y) + Ao(z, 4)p)
+ 5 (2,y,Xe, 2, 01) Yo(2, Xe)
with u, given in (24). These functions are such that, for

all (z,y,z,X.,p,0,,0,) and by evaluating at (p, 51) =
(plgl) :

‘./2 |(35)—(38) (x,y,z,Xe,p,Bl) < “Wz(xyyyz,xe,l’: th)

Now, to apply Lemma 2, we identify :
=(eT,y,2)" , X=X, 0=(p",0],65)7,
a:(ﬁT ’\r é\r) ,u:‘l,tz,‘(/):’(,bo, (40)

VZ((zyyv z))xey (ﬁy a1)7p) )

W(Ie,x,é\,g) = Wz((z,y,z),Xe,(ﬁ,al),p) .

Then, we observe from the definitions (36) and (37) of V,
and W, that assumptions (A2.1), (A2.2), (A3) and (A4)
are satisfied for the system (35) if, again assumptions
(A1.2.1) and (A1.2.2) hold for the system (21). In par-
ticular the function h satisfying (A3) is :

V(ze,X,0,0) =

h(x7y7zxxeyi)\r§l) - (41)
(8u (1‘ yyxe)ﬁ’al)) 301 (1,' y) e,P, 1), )

and Z defined in (17) has three parts :

2 (Za(e, Xe,p) d(2,Xe))

- [(Z— ul(x)y)xeyﬁvé\l))'a—!ﬂ(x Y, elpyal)
+ (¥ —uo(2,Xe)) §2(z,X,) — F2(2,Xe,p)] Aolz,y)

Zp(z:y)zxxui)\)al) =

Zs,(2,9,2,Xe,5,0)) = (42)
[(y = uo(x, X))

—(z = w(@, X, B, 00)) § (2,9, Xe, 5,01)] Ai(2,0)

Zﬂz(x Y, z, Xe:py ) (Z—Ul(l' Xc:pa 1)) Ag(I Y, Z)

A straightforward consequence of Lemma 2 is :

Proposition 2 (Adding two integrators with un-
known parameters)
With assumptions (Al), (Al.1), (A1.2.1) and (A1.2.2), con-
sider the following two real functions V ; of class C' m+1
and W, of class C° :
V2(I,y,z,xg,}’7\, §1a§27p,01102) = Vo(xyxhp) (43)
+ Ll’(y - UQ(l‘,Xe))z + %(Z - ul(xx y;xeyﬁy 01))2
~ 2 -~ 2
6, —6,|| + %Haz'—ez
Walz, 4,2, Xe,5.61) = Wol,Xe, ) (44)
+ (y = uo(2,Xe))* + (2 = ui(,9,Xe, 5, 61))* .
By applying, to the system (35), the following C™ dy-

+3lp-pl° + 3
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namic state feedback :

X, = vo(z, X.)
;’:)‘ = Z,,(z,y,z,X,,i)‘,al)T
by = Zo,(2, 9,2, X, 5,0,)7
< @; = Zo,(2,9, 2,Xe, 5,6,)7 (45)
T2 = uz(2,¥,2,Xe, B, 51, az)

AR A CEE M ANEACKERS AN

{ + B2, 9, X, 5,01) 2o, (2, 4, 2, X, 5, 61)

with u, glven in (24), u in (38) and (Zp, Zy,,24,) in(42)
we Obtain'for all (-t Y,z Xe)pyoly 021?1 91,02)

V2 l(35)~(45) (z,y,z,Xe,ﬁ, 61’02) S —Wz(l‘,y» Z,Xe,ﬁ,al)

Remark 4 :

1 - If, in the system (35), we know 6, = 6, = p, then, in
{45), there is no need to add three estimators.

2 — As for Proposition 1, the Lyapunov design for two
integrators of this Proposition 2 implies that assump-
tions (Al), (Al.1), (Al.2.1) and (A1.2.2) are satisfied by
the system (35) if they were satisfied by the system (21).
It follows that Proposition 2 can be used recurrently.
Each time, this Proposition is applied, we extend the
dynamics of the controller by a new estimate of all the
old parameter vectors, and one estimate for each of the
new two parameter vectors. Hence for 2k integrators,
with one parameter vector, we will get k(k + 1) param-
eter vector estimates. This is to be compared with the
k(2k + 1) parameter vector estimates given by apply-
ing Proposition 1, {.e. the scheme proposed by Kanel-
lakopoulos Kokotovic and Morse in [2].

4 Applications
4.1 Systems in strict feedback form

The idea of iterative design has been proposed by Kanel-
lakopoulos, Kokotovic and Morse (2] originally to solve
the problem of globally stabilizing the following single

input strict feedback system :
£, =z, + fx%zx)P
Z2 = z3 + fo(z1,22)p
: 47)
ZTp—1 = Tn +fn-1(31, 3 ZTpo1)P
Tn = u + n(xl) ‘ ,zn)p

where z = (z,,z3,--- ,zn)T is the state, p € R’ is
the vector of constant unknown parameters and f;,i =
1,2,---,n are known smooth functions. For such sy-
stems, Kanellakopoulos, Kokotovic and Morse [2] have
proposed to apply recurrently Proposition 1.

Following Remark 4, Proposition 2 applies also recur-
rently. Indeed, starting with uo = 0, Vo = 0, W, = 0,
we can add integrators two by two. Getting at the end a
controller with n/2 estimates of the parameter vector p,
instead of the n estimates involved in the Kanellakopou-
los et al.’s scheme. Let us illustrate this point with the
following famous example.

Example 1 (A third order strict-feedback system) :
Consider the following strict feedback system :

&) =z + px}
2:'2=23 ! (48)
Z‘s:‘u

where £ = (z,,23,23)7 € R is the state, u is a scalar
input and p is an unknown constant parameter.
Step 0 : We start with V=0, Wo=0and yo=0. In
this way, assumptions (A1), (Al.1), (A1.2.1) and (A1.2.2)
are trivially satisfied.

Step 1 : We add two integrators, i.e. we consider the
following system :

{zﬁx =2z, + pai 49)

Lz = Uz
For this system, with Step 0, Proposition 2 applies. We
get two functions V, and W3, :

Vz(zl,zz,l’hp) ‘331 + l(xz +z,+ P12y )
+3lp -2 (50)
Wa(z1,22,51) = 2} + (22 + 21 + D1 23)* .
It corresponds :
Zy = [21 4+ (22 + 21 + D121 ?) (1 + 22,7y)] 23
hy = 2%
It follows that, by applying, to the system (49), the fol-
lowing dynamic state feedback :
1”11= [1'1 + (22 + 2, +Prad)(1 + 23151)] z3 (52)
= —(1 4 22:91)(22 + 12}) — (22 + 21 + P121?)
-z, -z} [3‘1 +(z2+ 2, +pr23)(1 +2-'B1171)] z3
gﬂz(-’"uwz,ﬁl)
we obtain :
V. I(qs)—(sz) (21,22,01) = —Wa(z1,22,P1) - (53)

Therefore V3, W, and T, satisfy assumptions (Al),
(Al.1), (Al1.2.1) and (A1.2.2) for the system (49).

Step 2 : We add another integrator to (49) to obtain our
actual system (48). For this system, with Step 1, Propo-
sition 1 applics. We get two functions Vs and W :

Va(z1, 22, 23,1, P2,p) = 123+ Lz + 2y + P12y ?)%(54)
+ % (-’L‘a —Ez(l'h-’ﬂz,ﬁl))z + % |§1 - P|2 + % |52 —Plz
Wiz, 22,23, 51) = 22 + (22 + 2, + P12,2)? (85)

+ (zs — Ty(21, 22, P1))% .

(51)

It corresponds :

Z3 =~ (-‘L's —72(1?1,472,51)) %%,z(zhzz)ﬁl)zg (56)
3 =0
Therefore, since Vg is of class C!' and proper in

(21, 22, 23,P1,P,) and W is of class C° and positive,
the following dynamic state feedback :

hr=[n+(@+n+ ﬁ,z’)(l +22,p,)] =% (57)
Pr=— (zs ~ (21,23, 51)) 52 LT (xl’zz’p‘)xl
u = §B(21,25,01)(22 + Po?) + o2 (@1, 22,P1)3s

+ ‘3—;%(21,1:2,51)51

— (z2+ 2 +P131?) = (25 = Tp(21, 22, P1))
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guarantees that any (Tl(t)y 32(’): za(t);ﬁl(t)»iz(t))- so-
lution of (49)-(57), is well defined, bounded on [0, +00)
and satisfies :

Jm (|2:(0)] + |za(t)] + |2s(t))) = 0. (58)

As announced, the dynamic state feedback (57), has
dimension two instead of three as in [2]. This dimension
is the same as the one of the controller proposed by
Pomet and Praly [6] who have followed a different route.
|
4.2 Extension of strict-feedback systems

Our starting point for applying Proposition 1 or 2 is
a system in the form (3) and satisfying assumptions
(Al), (Al.1), (A1.2.1) and (Al1.2.2) with some functions
(Vo, Wo, o, ¥0). For the strict feedback systems con-
sidered in (2] and section 4.1, this system is reduced to
nothing with Vo = W, = uo = 9o = 0. Introducing a
less trivial system allows us to enlarge easily the family
of systems which can be adaptively stabilized. Let us
illustrate this point with the following example :
Example 2 (System satisfying a matching condition
augmented by a strict feedback system) : Let us con-
sider the following forth order system :

é‘) = T2 +p(zl + Iz)(zll + 2z, + .’L‘3)
Ty =2
ba =z, (59)

E4=7 + qz2
where (p, ¢) are two constant unknown parameters. Th-
ough this system cannot be written in a strict feedback

form, Proposition 1 applies. Indeed, we start with the
first three equations and :

Vo(zy,22,23,P1,p) = ’—:21 + @";x’)z + (”1+2;2+sz

+%(ﬁ1 -p)* (60)
Wo(z1, &2, z3) = 23 + (21 + 22)? + (22, + 225 + 23)%(61)
and the following dynamic state feedback :

;fl = (2z) + 225 + z3)(2) + 22)(621 + 5z + 223)
u = -3z, — bz, — 3z,
— Di(z1 + 22)(62; + Bzg + 223)
& uo(21, 22, z3,p1) (62)

Therefore, assumptions (Al), (Al.1), (Al.2.1) and
(A1.2.2) are satisfied. It follows that Proposition 1 can
be used to get a dynamical state feedback for the actual
four equations system. |

Another possible extension we have mentioned con-
cerns the non smooth case, i.c. the case where the dif-
feomorphim allowing us to write the system in a strict
feedback form has singularities. A systematic way to
handle this case is for example to replace V; in (7) by :

V,(z,y, X,,r,p) = Vo(x'xe,l’) + ®(y, uo(z,Xe,7))(63)
where ®(y, uo) is a positive function, proper in y with :

0%
W =0 = y=uw. (64)

This possibility is illustrated in [1, Example3].

5 Conclusion

In this paper, we have deepened the idea of iterative de-
sign of adaptive controller introduced by Kanellakopou-
los, Kokotovic and Morse [2]. First, by giving an inter-
pretation of the scheme in [2] in terms of the control
Lyapunov function technique, we have shown that it
can be applied to a slightly broader family of systems
than the strict feedback systems. Second, by notic-
ing that this design involves implicitely at each step a
matching condition which is known to hold not only for
one integrator but also for two integrators, we have been
able to propose a new adaptive controller with in gen-
eral half as many parameters to update. An noticeable
aspect of these designs is that together with an adap-
tive controller, we get a corresponding control Lypunov
function. This is interesting when in a next stage, we
will study robustness of stability to extraneous distur-
bances, unmodeled dynamics or time variations.
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