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sign. This remark will allow us to propose an adaptive 
We propose a slight extension of a result recently esta- 
blished by Kanellakopoulos, Kokotovic and Morse in [2] 
about the global adaptive stabilization of systems in a 
strict feedback form. A reinterpretation of their design 
algorithm in terms of the control Lyapunov function ap- 
proach allows us to : 
1. extend the design to a slightly broader class of sys- 

2. propose a new algorithm which involves half as many 
tems. 

parameters to update as the original Kanellakopou- 
10s et al.'s scheme. 

1 Introduction 
Adaptive control of nonlinear systems has already re- 
ceived a great d d  of attention. Full state feedback 
and output feedback adaptive schemes are available for 
local or global stabilization or tracking (see [31 and ref- 
erences therein). Unfortunately. these schemes apply 
only to linearly parametrized nonlinear systems which 
arc constrained either by the location of their unknown 
parameters or by the type of nonlinearities. 

Kanelhkopoulos, Kokotovic and Morse [2] have rece- 
ntly introduced a new design which, at least for systems 
in a pure feedback form, allows us to obtain stabillzing 
adaptive controllers without requiring one of these two 
above mentioned constraints. 'Ihis new design is based 
on the iterative interlacing of two techniques : the Lya- 
punov design of adaptive controllers [5] and the stabi- 
lization of a chain of integrators (see (4, Example 3.21 
for wcample). Here. we shall pursue this idea of iterative 

The two basic ingredients will be studied in section 
2. The stabilization of a chain of integratom will be pre- 
sented via the control Lyapunov function technique [8. 
Theorem 3.~1 instead of the change of coordinates of 
[4. Example 3.21 used by Kanellakopoulos et al. [21. 
The interest of this technique is its ability to deal with 
non smooth cases - the case where the diffeomorphism 
would have singularitks (sec [7D. This will be discu- 
ssed briefly in section 4. The second ingredient used 
by Kanellakopoulos et al. is the Lyapunov design of 
adaptive controller. Such a design will be recalled here. 
In section 3. we show how to use these ingradients to 
design iteratively adaptive controllers. Kanelhkopoulos 
et al. proposed to interlace change of coordinates and 
Lypunov design. Here. among other things, we shall re- 
mark that the change of coodfnates or more precisely 
the control Lyapunov function technique can be applied 
twice before applying an adaptive control Lyapunov de- 

interlacing. 

controller with half as many parameters to update as in 
Kanellakopoulos et al.'s scheme. Section 4 is devoted to 
the application of our proposed designs. We note that 
they apply to a slightly broader class of systems than 
the set of strict feedback systems. 
Notatioru and Delhition : 
1. For an ordinary differential equation numbered (1). 

with p a constant real vector, 

and a function V(z, q),  we denote V 
function of (2, p, q )  given by : 

j.! = f ( t , P )  > (1) 
( z , p ,  q)  the 

(2) 
aV i. ((1) (ww) = &(VI) f ( . , P )  

2. m 2 1 denotes an integer number. 
Due to space limitations, our proofs being more or 

less straighffomard are omitted (set 111 for a more com- 
plete version). 

2 DesignIngredients 
2.1 Adding one integrator 
The first problem we address is : 

Knowing that a system is stabilizable, is it still stab- 
ilizable if we add one integrator ? 

This problem has received a great deal of attention (see 
I41 and [71). Let us reproduce these well known results 
but in a statement more appropriate to our problem. 

We consider a single input nonlinear system : 

x = f(z, U , P )  (31 

where z E R" is the state. U E R is the input, p E 
R' is a parameter vector, and f is a Cm+l function on 
R" x IW x R'. we assume the existence of : 
1 - a dynamic state feedback : 

{ 5 = = $ o [ x , x e )  uo Z , X e , P )  (4) 

where the dynamical extension X ,  is in Wk, $o is of 

2 - a real positive Cm+l function Vo(z, X e , p )  and a real 

such that : 

class C" and uo IS of class C"" . 
positive CO h c t i o n  WO( z, X , ,  p )  

(AI) forall ( 2 , X e , p )  in R" x IW' x R', we ~ V C :  

Namely, the dynamic state feedback (4) makes the hnc- 
tion VO have a time derivative along the solutions of (3) 
less than -WO. 
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Let us now add one integrator to the system (3) : 

Remark 1 : 
1 - From (12). we see that the hnctions ul. VI and W1 
satisfy assumption (Al) for the augmented system (6). 
It follows that Lemma 1 applies again to this system (6) 
augmented with another integrator. Therefore. we can 
recursively add integrators. Note however that one de- 
gree of smoothness is lost at each addition. Namely, 
starting with C" functions. only m integrators can be 
added this way. Nevertheless, using the so called desin- 
gularizing function technique introduced in [71. it may 
be possible to add more integrators. This possibility will 
be discussed in section 4. 
2 - For the meaning of Lemma 1, the presence of the 
parameter vectors p and q is not important. However, 
in view of the iterative design proposed in the next sec- 
tion, it is important to know how these parameter vec- 
tors appear in VI, Wl or U 1 .  It is to allow us to describe 
more precisely this appearance that we have introduced 
the dummy variable r .  In particular, we can make the 
following key observations : 
2.1 - Vl does not depend on r if uo does not. 
2.2 - u1 always depends not only on the new parameter 

vector q but also on the old one p. 
2.2 Removing the parameter dependence in the 

control law 
In Remark 1 above. we observed that when we add one 
integrator, the new control law depends on the param- 
eter vector. We are now facing a second problem : 

Knowing a parametrized stabilizing control law for a 
linearly parametrized system, is it possible to design 
a stab-g controller not depending on the system 
parameters 7 

Precisely, consider a single input nonlinear system 
as one element of the following family of systems, 
parametrized in 8. 

X e  = a(ze) + A(re)B + b ( z e ) E  (13) 
where 2,  E R" is the state, E E R is the input, 8 E RI is 
a vector of unknown constant parameters, and a. A and 
b are C" hnctions on R". For this family, we assume 
the existence of: 
1 - a dynamic state feedback 

where the dynamical extension X is in R', 11, is of 
class C" and U is of class C", 

2 - a real positive C"+' function V(z , ,X ,g ,O)  and a 
red positive CO function ~ ( z , ,  X ,  g, e) satisfying : 

(A2.1) g(ze, X ,  ê , 0 )  is independent of 8. 

(~2 .2)  %(ze, X ,  e, e) is linear in e. A 

(A3) there exists a known C" function h: R" x 
R~ x R' + RI satisfying : 

such that : 
(A4) for all ( 2 ,  , X ,  0 )  and by evaluating at 0 = 8. 

V ((13)-(14) ( z e , x , e )  F - W ( z e , X , e , o )  . (16) 

Again. we have introduced the dummy variable e  ̂to al- 
low us to precise the role played by some components 
of the parameter vector. Assumption (A4  tells US that 
the parametrized dynamic state feedback (14) makes 
the function V have a time derivative along the solu- 
tions of the parametrized system (13) less than -W. 
Assumption (A3) is a sufficient condition for the exten- 
ded matching condition as generalized in (3. p. 3711 to 
hold. Assumptions (A2.1) and (A2.2) allow us to intro- 
duce the following function - not depending on 0 -. 

h 

h 

z ( z e , x ,  g) = g ( z e , X , e , e ) A ( z e )  (17) 

With these assumptions we can solve our second prob- 
lem by using a Lyapunov design 15). More precisely we 
follow here a variant (compare with [3. p. 3771) of the 
Lyapunov design proposed by Slotine and Li. 

Lemma 2 (Removing parameter dependence) 
With assumptions IA2.1). W.21. IA31 and 6441, consider 
thefollowing tworealfunctionsVofclassP+' andw 
of class CO : 
- 
V ( t e ,  - x ,  g, f) = v(ze, X ,  %el + tllg- ell2 (18) 

W ( z e  9 X ,  8 )  = W(ze,  X ,  eye) 
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- h - 
V l(is)-(ie) ( z e , x , e )  I - w ( z e , x , e 3  (201 

1 - Without a ~ ~ ~ m p t i o n ~  (A2.1) and (A2.21, Z in (17) 
Remark 2 : 

would depend on B and consequently the controller (19) 
woulcstill depend on the system parameters. Note also 
that V defined in (18) statisfies these_assumptJons. 
2 - The dynamic controller (19) and V and W defined 
in (18) satis9 assumption (Al) of Lemma 1 with X, = 
( X ' ,  p)T. Thisimpllesthatwecanaddoneintegrator 
to the system (13). 

3 Ad- integrators with unknown parameters 
A s  a step towards iterative designs of adaptive con- 
trollers for linearly parametrized nonlinear systems, let 
us address a third problem : 

such that, for all (2, y , X , , p ,  01) : 

i: 1(m)-(z4) (z, Y , X e , p )  I - w l ( z ,  Y , X e , p >  . (26) 

Note that V, does not depend on the new parameter vec- 
tor 8,. Also, thanks to assumption (Al.l), if 2 does 
not depend on p ,  the same holds for % and x. BY Th- 
emfore, if the system (21) satisfies assumptions (Al), 
(Al. 1) and 
(A1.2.1) %(z, X , , p )  is independent ofp, 

(A1.2.2) g p , X e , p )  is linearinp, 
then, by identifying : 

2, = (z', y ) ~ ,  x = x , ,  e = (pT,e:)T, e^= (jj:,g)' 
w = w, , U = 21, , 1c, = 40, (27) 

+ [ % ( z , X e , p )  - (Y - u o ( z , X e ) )  % ( ~ c , x e ) ]  M ~ , Y )  sumption (Al) holds, namely, there exist functions 1Cl0, 
of class Cm+l, U,,, of class Cm+Z, v0. positive of class 
C"+*. and WO, positive of class Co. such that : A straightforward consequence of Lemma 2 is : 

We will need also the following extra assumption : 
(Al.1) uo does not depend on the parameter vector p 

and is rewritten u ~ ( z ,  Xe).  

As mentioned in Remark 2, these two assumptions 
would be satisfied if V& WO, q0 and u0 were given by 
Lemma 2. 
3.1 Adding one integrator with unknown parame- 

ters 
Let us now add one integrator to the system (21) : 

2484 

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on December 2, 2009 at 05:29 from IEEE Xplore.  Restrictions apply. 



there is no need to add two estimators F1 and gl. We let 
simply : 

A 

$1 = 01 = zp(zc,y,Xe)T + Zel(z,y,Xe)T (33) 

2-Withassumption(A1.2.1),Z1 in(31). s a n d % d o  

not depend on (p, e l ) .  With assumption (A1.2.2). g ,  
sumptions (All, (Al.l), (A1.2.1) and (A1.2.2) are satis- 
fied by the system (23), with this time : 

- a 6pl and % are linear in (p,Bl). It follows that as- 

x = (X: ,p^ ,q) '  . (34) 
Therefore. by using Proposition 1 recurrently, other 
integrators with unknown parameters could again be 
added. This fundamental observation is due to Kanel- 
lakopoulos. Kokotovic and Morse [21. Each time, Propo- 
sition 1 is applied, we extend the dynamics of the con- 
troller by a new estimate F1 of d the old parameter vec- 
tor p ,  and one estimate 81 the new parameter vector B. 
Hence for k integrators, with one new parameter vector 
for each, we will get parameter vector estimates. 
3.2 Adding two integrators with unknown parame- 

ters 
Let us now consider the case where two integrators are 
added to the system (21) : 

2 = ao(t ,y  + Ao(z,y P 
$ = % + a l  ~ , Y ) + A ~  z,Y)el (35) { = zz + az(z, ( ( '  Y, z )  + A2(2, y, 2 )  82 

where y and z are two new scalar state components, Ti2  
is a new scalar input, O1 E R'l and O2 E IWl2 are new 
parameter vectors, and a, and Ai, i = 1,2 are Cmtl 
hnctions. 

From our Remark 3, under assumptions (All, (Al. 1). 
(A1.2.1) and (A1.2.2), an adaptive controller for this sy- 
stem (35) can be obtained by applying Proposition 1 
twice. However, proceeding this way, by applying this 
Proposition once. the state vector of the dynamic con- 
troller obtained will be (Xe,?i,;i). And therefore, the 
dynamic controller we will obtain for the system (35) 
after applying this Proposition twice will have the state : 
(Xe,  Fl,81, p^z, $12, &). Namely, this state contains the 
original state X e .  two estimates Fl and F2 of p ,  two es- 
timates 81 and e?, of O 1  and one estimate e2 of B 2 .  This 
explosion of the number of estimates is the main draw- 
back of this iterative procedure proposed in [21. Our 
intent. now, is to show the e3stence of a dynamic con- 
troller with a state (Xe , ?, cl, e,) of smaller dimension. 

Applying Lemma 1 twice (see point 1 of Remark l) ,  
with r = (&el)  the second time, we get two real func- 
tions VZ of class Cmt' and W2 of class CO and a new 
C" control law u2 : 

A 

A 

A h 

A 

V ~ ( Z , Y , % , X ~ , F , ~ ~ , P )  = vo(z,xe,p)+ i ( ~ - u o ( z c , x e ) ) ~  

+ i ( z -  ul(z ,Y,xe,F,gl)>2 (36) 

wZ(z, Y, 2, x e , ~ ,  ê , ,P) = ~ o ( 2 ,  xe, P )  + (Y - uo(z ,  Xe))' 

+(z-  ul(z,y,Xe,F,g1))2 (37) 

~ z ( z , Y , z , X e , P , 4 , Q  = - ( Y  - U O ( X ,  Xe) )  (38) 

A straightforward consequence of Lemma 2 is : 
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namic state feedback : 

(45) 

Remark 4 : 
1 - If. in the system (35). we know OZ = O1 = p. then, in 
(45). them is no need to add three estimators. 
2 - As for Proposition 1, the Lyapunov design for two 
integmtors of this Proposition 2 implies that assump- 
tions (Al). (Al. 1). (A1.2.1) and (Al.2.2) are satisfied by 
the system (35) ifthey were satisfied by the system (21). 
It  follows that Proposition 2 can be used recurrently. 
Each time. this Proposition is applied, we extend the 
dynamics of the controller by a new estimate of all the 
old parameter vectors, and one estimate for each of the 
new two parameter vectors. Hence for 2k integrators, 
with one parameter vector, we will get k(k + 1) param- 
eter vector estimates. This is to be compared with the 
k(2k + 1) parameter vector estimates given by apply- 
ing Proposition 1. i.e. the scheme proposed by h e 1 -  
lakopoulos Kokotovk and Morse in [2]. 

4 Applications 
4.1 sJntenu in strict feedback form 
The idea of iterative design has been proposed by -el- 
lakopoulos. Kokotovic and Morse [2] originally to solve 
.the problem of globally stabilizing the following single 
input smct f d b a c k  system : 

(47) 
t f l  = 2 2  + f l  2l)P 

2 2  = 2 3  + f z  Z1,Zz)P 

$? - I=  z n  + fn- l ( t1 ,  * * *  rzn-l)P I !  GI = U +fn(21,".,2n)P 

where z = ( 2 1 , ~ 2 , . . - , 2 ~ ) ~  is the state, p E R' is 
the vector of constant unknown parameters and fi , i = 
1,2, , n are known smooth functions. For such sy- 
stems. Kanellakopoulos. Kokotovic and Morse [2] have 
proposed to apply recurrently Proposition 1. 

Following Remark 4. Proposition 2 applies also recur- 
rently. Indeed. starting with uo I 0, Vo = 0, WO E 0, 
we can add integrators two by two. Getting at  the end a 
controller with n/2 estimates of the parameter vector p. 
instead of the n estimates involved in the Kanellakopou- 
10s et al.'s scheme. Let us illustrate this point with the 
following famous ucample. 

EEunple 1 (A third order Strict-feedback p t e m )  : 
Consider the following strict feedback system : 

+ I =  22 + pz: 
x 2  = 23 { 23  = U 

where x = ( 2  1, 2 2 ,  z ~ ) ~  E R3 is the state, U is a scalar 
input and p is an unknown constant parameter. 
Step 0 : We start with Vo = 0, WO = 0 and uo E 0. In 
thisway. assumptions (Al). (Al. 1). (Al.2.1) and (Al.2.2) 
are trivially satisfied. 
Step 1 : We add two integrators, i.e. we consider the 
following system : 

For this system, v&tt Step?, Proposition 2 applies. We 
get two functions V2 and W z  : - 
VZ(tl,22,FI,P) = +;+ 4(22+21 +Flz12)2 

W2(21,22,51) = 2: + ( 2 2  + 21 + FIZ:)" . 

2 2  = [21 + (22 + 21 + p^IZl"( 1 + 2+151)] 2: 

+ :IF1 - PI2 (50) 
- 

It corresponds : 

(51) 

It follows that, by applying, to the system (49). the fol- 
lowing dynamic state feedback : si= [21 + (22 21 +?iz:)( 1 2tiFi)] 2: (52) 

h2 = 2: 

- 
U2= -( 1 + 221Fl)(ZZ + p̂ 12:> - (22 + z1 + F12l2) 

- 21 - .? [21 + ( 2 2  + 21 + Flz:)( 1 + 22151)l 2: 
*f - - U2(21,22,Fl) 

(53) 
Therefore vz, W2 and ?iz satisfy assumptions (AI), 
(Al. 1). (A1.2.1) and (A1.2.2) for the system (49). 
Step 2 : We add another integrator to (49) to obtain our 
-system (48). For this system, wie Step l.prOp0- 
sition 1 applies. We get two functions V 3  and W3 : 

1 
we obtain : 
- 
v 2  1(49)-(52) (21,221 h) = -Wz(Z1, X 2 , F l )  * 

- 
V 9 ( 2 1 , 2 2 , 2 3 , ~ I ~ ~ Z ~ p )  = f2:+ ~ ( 2 2 + 2 1 + ~ 1 z 1 2 ) 2 ( 5 4 )  

+ : (23 - q21, 22,Fl))2 + ; 151 - PI2 + f IF2 - PI2 

+(z3--2(2.1,22,51))2 * 

- 
W3(21, 22, 23,p^1) = 2: + ( 2 2  + 21 + &z12)z (55) 

It corresponds : 
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warmtees that (21(t) ,  z2(t), 23(t),p^l(t),?2(t))* 50- 
lution of (491457). is well defined, bounded on [0, +CO) 

and satisfies : 

As announnd. the dynamic state feedback (57). has 
dimension two instead of three as in [2]. This dimension 
is the same as the one of the controller proposed by 
Pomet and Praly [61 who have followed a different route. 
I 
4.2 Extension of strict-feedback systems 
Our starting point for applying Proposition 1 or 2 is 
a system in the form (3) and satisrj.ing assumptions 
(Al). (Al.l), (A1.2.1) and (A1.2.2) with some functions 
(VO, WO, ~ 0 ,  $0). For the strict feedback systems con- 
sidered in [2] and section 4.1, this system is reduced to 
nothing with Vo = WO = UO = $o = 0. Introducing a 
less trivial system allows us to enlarge easily the family 
of systems which can be adaptively stabilized. Let us 
illustrate this point with the following example : 
Example 2 (System satis- a matching condition 
augmented by a strict feedback system) : Let us con- 
sider the following forth order system : 

( + 1  = 2 2  + P ( Z l +  z2)(221+ 222 + 2 3 )  

(59) 

where (p, q )  are two constant unknown parameters. Th- 
ough this system cannot be written in a strict feedback 
form, Proposition 1 applies. Indeed, we start with the 
first three equations and : 

vo(c1,22,z3,j?~,p) = $ + + @l+27+z3)2 

+i(j?l - PI2 (60) 

Wo(Z1, 2 2 ,  23)  = 2: + ( 2 1  + ZZ)'+ (221 + 222 + 23)'(61) 
and the following dynamic state feedback : 

$1 = (221 + 2x2 + 23) (2 i  + 22)(621 + 5x2 + 223) 

U = -321 - 522 - 323 

- $i(zi + 22)(621 + 5% + 223) 

(62) del - U O ( z l ,  Z2r 23rj?1) 

(A1.2.2) are satisfied. It follows that Proposition 1 can 
be used to get a dynamical state feedback for the actual 

Another possible extension we have mentioned con- 

Therefore, assumptions (Al), (Al.l), (A1.2.1) and 

cems the non smooth case, i.e. the case where the dif- 
feomorphim allowing us to write the system in a strict 
feedback form has singularities. A systematic way to 
handle this case is for example to replace Vl in (7) by : 

four equations system. I 

1. 
V~(z,y,Xe,r,P) = v0(2,xe,P) + @(Y, U0(+,xe,r))(63) 
where o(y, uo) is a positive function, proper in y with : 

5 Conclusion 
In this paper, we have deepened the idea of iterative de- 
sign of adaptive controller introduced by Kanellakopou- 
los, Kokotovic and Morse [2]. First, by giving an inter- 
pretation of the scheme in [2] in terms of the control 
Lyapunov function technique, we have shown that it 
can be applied to a slightly broader family of systems 
than the strict feedback systems. Second. by notic- 
ing that this design involves implicitely at  each step a 
matching condition which is known to hold not only for 
one integrator but also for two integrators, we have been 
able to propose a new adaptive controller with in gen- 
eral half as many parameters to update. An noticeable 
aspect of these designs is that together with an adap- 
tive controller, we get a corresponding control Lypunov 
function. This is interesting when in a next stage, we 
will study robustness of stability to extraneous distur- 
bances, unmodeled dynamics or time variations. 
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