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Nonlinear dynamics of adaptive linear systems:

An elementary example

L.Praly, C.A.L Automatique, Ecole des Mines, 35 Rue Saint Honoré, 77305 Fontaincbleau, France

‘We analyze the phase portrait and describe some non local non linear behavior of a closed loop system
mnde of an adaptive proportional controller and a disturbed first order linear system. Our results
are obtained applying perturbation methods — Poincaré method, structural stability of novmnally

hyperbolic invarinat scts. The conclusion is twofold:
s systen in the ideal cnso i very eritenl. T prescnce of perturbation, it cun

dynuanics.

. Look\n! at adsptive linear systems only from a linear point of view is very insufficient and in some

cases wmisleading.
1 Introduction

Typically, adaptive linear controllers ave designed from &
lincar point of view:
o First, o lincor but porameterized linear controller s
designed, applying lincar system theory.
+ Secondy» puramter adaptution L i dosgaed,
plying lincar estimation theory.
+ Fiaally, e dupivelinca contolle s obtaed from
the parameterized lincar controllor with those param-
eters given on line by the adaptation law.

Not only design but analysis is made from  linear point
of view. Boundedness of the solutions is established apply-
ing the robust linear stability theory. Their properties ne
studied similazly with, some times, the help of averaging
theory.

However, an adaptive linear controller is a dynamic
nonlinear controller. For example, in this paper we will
be concerned with the following proportional controller in
its robust adaptive version:

s(t+1) = pa(t) + u(t) + (e}
- YD +1) — u(t) - 6uY)
) = 00+ T, s+ DT+ 0" (1)
. R
o(t+1) = 9"*“""{"——|a,,(e)—on\}(“(')_m

u(t) = —6(Ou(e) + r(t)

4, y and £ are the system input, system output and set
point signal respectively. (s,0) is the controller state, 8
having being given the interpretation of nn adapted pa-
rumeter. R, 6y, t and 7, are design parameters, interpreted
P
o the adapted parameter is looked for in the interval
(60— R, 60+ 7).
o the larger the positive 7, is, the slower the adapta-
tion, i.e. the 8-dynamics, is.

® the system to be controlled has no unmodelled al-
‘most cancellable pole-zero pair slower than 4, chosen
strictly positive and smaller than 1,
This controller is known to give bounded solutions when
placed in feedback with  system such that a sequence a
exists to satisfy for each t, 6~ R < a(t) < b0+ R and:
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In particular, this result applics to the simplest of these
systems, object of the forthcoming study:
W) = aylt=1) + u(l—l)+6 )
wlth a belonging to (g~ +R]. Morcover, if & is
s constant, (l(tJ y(l)) converges globally to
(@) in on hyscnse cxponentially if r is not zero
(Goodwin and Sin, 1984). However, for r zcro, any arbi-
trasily small disturbance § leads to an intermittent phe-
omenum (Pomesu and Manville, 1980), whose charac.
teristics on the y-component suggested the name burst-
ing (Anderson, 1985; Juidane-Saidane and Macchi, 1988).
From a linear point of view, a constant exogenous signal
leading to such a very high frequency output is very disap-
pointing. In practice, several fixes are added —
(Egardt, 1979), internal model principle (Elliott and Good-
win, 1084), filtering (Anderson et al, 1986), ... However,
if those fixes are not appropriately chosen, a qualitatively
similar behavior may be observed for these more intricate
cases (Praly, 1088). This motivates our interest in the
closed loop system (1), (5) and the objective of this pa-
per is to analyze its phase portrait and to explain some
non local nonlinear behavior of its solutions. This will im-
plicitely demonstrate that non inear system theory is full
of very appropriate results and the lincar point of view can
be advantageously compensated for.




To appply these results, it is more appropriate to write
the system in the so called standard form. This is done as

when restrcted to the st
we{wanfrs1 00+ 2= <n )

with r constant and letting:
&

= @
mn ™
the closed loop system is dectibed by the map £ from R
into RY, given by:

T=yfs; v=0-

z(1-92) ) ©

() = (* +
—pz +

‘The &'ullnll«ou for the s-component is omited since it has
no influence on the tenulnms part of the system. The
Viandard form (8) puts in relief the role played, in the
qualitative behavior of the solutions, by the set point-to-
disturbance ratio a and by the positive disturbance-to-
adaptation speed ratio d. In particular this shows that
din tho effcctive aduptation spoed control. As most of the
adaptive linear systems, this m belongs to the family
of systems which can bo described, with A, B, C' smooth
functions, by the map £, from R into R", given by:
o o (¥ + 40z d8)
st = (S dS%as ) ©
For d small, this map appears locally as a pn!urbﬂlwn
of a map made of a family of linoar maps. This remark
motivates for applying perturbation methods — Poincaré
‘method, structural stability of normally hyperbolic invari-
wit sote, wwornging. Dy dolig s, aud foc Hio gasorsl systoun
(9), can be obtain
« existence of limit sets (Bodson ct al., 1986; Praly and
Pomet, 1087),
* existence of invariant sets (Praly, 1985, 1989; Riedle
and Kokotovic, 1956). Their attractivity and / or
ulsivity gives then information on the solution be-

» description of the motion along these invariant sets
(Ljung, Soderstrim, 1984; Anderson et al., 1986; Rie-
dle, 1986; Benveniste ot al., 1987; Praly, 1989).

Here considering our disturbance-to-adaptation speed ra-
tio d as & small parameter for the perturbation analysis,
we apply these methods o our elementary example. From
their generality, we expect that several of our conclusions
extend to more general situations. Also, our analysis can
be completed to obtain more precise local results by a bifur-
cation analysis (sce (Golden and Ydstie, 1988) or (Mareels
and Bitmead, 1986, 1988) for example).

To obtain the basis of our perturbation analysis, we
start by studying the system obtained by taking d equal
to zero and called the frozen system. Then, fixed points
and periodic solutions of the map T are considered. In
Section 4, we establish existence and properties of locally
invariant sets. Critical clements and locally invariant sets
are combined in Section 5 to obtain theoretical results on
the system global dynamics. These results are interpreted
in Section 6.

‘This paper is o short version of & report written by
Mastin Espaiia and the suthor (Espaiia and Praly, 1088).
Due to space limitations, no simulation results will be pre-
sented in this paper. They can be easily reproduced by the
reader (take for example d = 0.01).

2 The frozen system

Our analysis will be done by considering £ as a small
pestusbation of the so called frozen system:

(a) = (-w D ..)

As mentioned in Introduction, it is a family of linear sys-
tems parameterized by y. The linear system theory allows
us to completely describe its phase portrait:

(10)

Property 1 (Frozen system):
A frozen system solution satisfies onc and only one of the
Jollowing property:
o i [9] is stritely smaller than 1, it converges czponen-
Hially to (, ), point of the graph:
&= (1)
. aM ia airitely larger than 1, it diveryes eaponentially
to infinity from the point (,2) of the same graph.
o if ¥ is cqual fo 1, itis & period-£ solution.
o if $ is equal to =1, its z-component grows lincarly
towands +co.
As will become clear later, the Important facts in this result
o

o the set:

5= {wa)

z=

.‘1'#—1} (12)

1 + v
which is a graph and is invariant under £,

 the frozen system stability boundary || = 1 which
separates this invariant set into mmuy hyperbolic

ly invariant components,
-5 0 {(%,2)] 9] > 1} i uupm:en y repellent,
=57 0 {(#,2)| 1¥] < 1} is exponentially attractive,
 the period-2 solutions which are critical.

3 Equilibrium point and period-2
solutions

Going back to the actual system, let us see how the limit
sets of the frozen system ace disturbed. An clementary
continuity argument shows (Praly and Pomet, 1087):
Lemma 1 (Existence of periodic solutions):

A necessary condition for a solution to be a period-T solu-
tion of £ which remains bounded as d goes o 0, is that
the accumulation point of ts initial condition be one of the
Jfollowing 3 points:

Yo =o',z =a
Y = 1 g = l+adVi-a? (13)
. s omp = T



Consequently, from the the frozen system equilibrium set
S/, only one point is of interest. Similarly from the set of
critical period-2 solutions, only one persists by a continu-
ous perturbation, To precise this necessnry condition, wo

apply Poincaré method (Lefschetz, 1977) and get:

Property 2 (Critical elements):
i) The map T has o unique fized point for all a dif-
ferent from 0 or ~1. It is czponentially stable for o™
in (=1,—P;) and ezponentially unstable for a™ outside
[=1,=Py] , with Py the unique solution of:

2AP+1) =

a
Prd a9
i) For any a strictly smaller than 1 in absolute valuc, one
can find a strictly ¢ constant d, , such that for all
d, smaller than d,, there ezit two locally unique period-2
solutions which can be approzimated by:
$m1nm J%I-ra;‘/—'a
ltat

2

+ 0(d) 9

z= + 0(d)

Theae solutions are foci, czponentially stable for a strictly
positive, ezponcntially unstable for a strictly negative with
@ poeudo period:

T- (16)

From this result, it follows that the control objective:
output = set point cannot be met asymptotically if the set
point-to-disturbance ratio is too emall (Narendra and An-
naswamy, 1086). Even more, with this small ratio, there
exists & period-2 solution lying close to the frosen sys-
tom stability boundary. This solution being & focus, it
explains locally and at least trensiently the intermittent
behavior mentioned in Introduction. Also, being propor-
tional to \/d(1—a?) , the frequency of the wﬂupondm‘

tio goes to zero or the set point-to-disturbance rnzlo goes
to 1. Though not established here, it is also noticeable
that, for a equal to zero, the period-2 solution s:

v=1, z=0ol a7

1 lics exactly on the frozen system stability boundary and
is a critical attractor.

4 Locally invariant sets

In Section 2, we have noticed that the graph S is invasiant
for the frozen system. For the actual system, we get (when

this makes sensc):
Tia
(se+n)-1 s ,)) —" (zu) = w(e))‘“’
(1 +a)z(t)(=(1)e(t) — 1)
ATTIONF U + d=O0 +20)
‘With d in the second term on the right hand, we see that S,
is close to be a locally invariant set of £. In fact, Sy Nn\g
loeally normally hypesbolic for the frozen system, for the
actual system with d small enough, we can expect the ex-
istence of locally invariant sets, close to S, being repellent
in the set {|¥]> 1) and attractive in the sot {|y| < 1}
(Shub, 1978; Hirsch, Pugh and Shub, 1976). To prove this
existence we apply the graph transform technique (Shub,
1978).

Property 3 (Repellent locally invariant set):
For any non-sero d, let ¢ be the smallest positive root of:

A = (,_l_\f!) -3 )+a4ﬂ(:+¢+/n) as

There evists a bounded Lipschits continuous function H
defined on {|¢| 2 1+ ¢} and such that, with the function
i defined by:

(1-vH(Y)
u¥) = ¥ + dﬂ(ww (20)
i) ¥

W12 1+, [8u(¥) 21+ ¢, sgn(du(¥)) = sgn(¥) (21)
then
H(¢u(¥)) = 1+a - pH(Y) (22)

i) There ezists p positive such that: (¢,1) = £(¥,2) and
($,2) in {|$] 2 1+ e} x R with ¥¢ positive impli

v = HG)l 2 (1+p) |z - HW)| (23)

}

Hence, in fact for any d, there exists an cxponentially re-
pellent locally invariant set. It can be approximated by the
frozen parameter invariaat set Sy, for d sufficiently small,

" 1 l+a

i) Approzimation of H: _sup {-lH(w -
’ T+

is bounded. (e v

Property 4 (Attactve locally invariant set):
Por any d such that

L1 1+ 3ital
Ocded z|x+ap(\lx 2l tal ‘) @0
Let  be the smallest positive root of:

2
am) = (v - e :"; ) 2 | (L 2nodned ;‘:’;“)““" (25)

where no and ny are defined by:

_ li+al _ [a+dndn,

=S e \Trage (20)
There ezists a bounded continuous Lipschits function G
such that, with Yo(¢) o function implicitly defined by:
= Yal®) +dGla(9))

# = 15 I6Wa@) en

013

1615 1= ond Wa(@)l < 1= 9

then:

G(¢) = l+a - yG(¥)

PR O ) @
=v+ 144G

(i) Let € satisfy:

e < € < my 4 Letmlliing (30)

™
there ezists 0, depending on § and strictly smaller than 1
such that: (4,y) = S(v,2) and ($,2) in

{191 <1 =) x {Je] €} mplics:



-G(@) < alz=GW) 31
1+a
T+9| }

Consequently, for d suficiently small, there exists an ex-
ponentially attractive locally invariant set which can be
approxismited by the frozen purnmeter invasinut sot ;.

(i) Approzimation of G:

HOE
is bounded.

With theso two propertics, wo sco that for d small
cuough the linear nunlysis made for the frozen system gives
a good approximation of the behavior of the uctual system

long ns we axe far cnough from the frozen system sta-
bility boundary || = 1 snd its invazinnt set .

5 Behavior of the solutions: tech-
nical results

Knowing the existence of critical elements and locally in-
variant sets, we are now in position for studying the be-

liavior of the solutions. With € given by (10), 1 given by
(25), d given by (24) and:

1
x> @)

we decompose the plane (¥,%) into nine subscts:

A={(®2)p<-(1+a)

B={(x)] ~(1+¢<¥<=(1-n)endx <x}
C={(¥2)| ~(1+€) <9 <—(1-n)and x| <x}
D={(¢2)] =(1+€)<¥ < —(1-n)andx S ~x}
E={(#2) ~(1-n)<¢¥<1-n}
F={(#2)1-n<$<1+eand x <x)
Gm{(¥8)| 1=n<¥<1+ennd x| <x}
He={($2)|1-1<yp<1+eandx S -x}
T={($,2)| 1+ €< 9}

or graphically:
B F
* l F I '
D H

Tn the following we state several properties which are pro-
ved in (Espaiia and Praly, 1088). They are given without
any comment, their interpretation being the topic of the
next Section.

Property 5 (Solution boundedness, sets : A toI):
(3) If  lies in (=1,0], T has unbounded solutions.

(5) If o is not in [~1,0], all the solutions of T are
bounded.

Property 6 (Solutions in the repellent locally in-
variant set, sets: A , 1): For any non zero d:

(i) The fized point of E, belongs to the rtpzlleni locally in-
variant sct if and only if |1/al S1+e¢ .

(33) Let ($(t), (1)) be a solution such that:
WO 21+e , =(0) = H(0) 33)
and let T be the largest integer such that:

$()(t-1)>0 ead [P(t) 21+¢€, VOSt<T (34)

Case a < -1: 17" alltin (0,T), (-m) Yt =1))(t 1)
ative. this implics that [(t)| goes mono-
1+e L‘omqumly T is finite.
~1: H($) = 0 and any point in the repellent
locally invariant set is a fized point of £. T is infinite.
Case =1 < a < 0: If ¥(0) is positive, Y(t) is strictly
increasing and thercfore converges to +c0 while a(t) goes
0 zero. Consequently, T is infinte.
If $(0) < min{1/a, =(1+e)}, $(t) is strictly decreasing to
b wlile 2(£) goes 1o 1eve. Conseqently, T is ofiite.
I 1/a < $(0) < =(1+¢€), $(t) is strictly increasing and
croases =(1+¢). Conaequently, T is finite.

tonically to nnl cros:

Case 0 < @ $(t) is monotonically going towards 1/a.
Consequently, T is finite if and only if $(0) is negative
andfor1fa<1+e.

Property 7 (Solutions in the "strict instability” set
outside the repellent locally invariant set, sets: A ,
1):

For any non zero d:
(3) I for some time to, @ solution satisfies:

[Wto)l 2 1+e,  alto) # H(¥(to)) (35)
then there ezists a (finite) time t, such that:
()l < 1+e (36)

Hence, there is no solution satisfying for ever = # H(%)
and [$l21+e.

(i) Moreover, while the solution remains in {2 1+ ¢}

(resp. {9 S —(1+€)} ), it caponentially diverges from
the graph {(¥, H(¥))} ond crosses the repellent locall

invariant set af oach fime ¢ (resp. it romaina on the

Property 8 (Solutions in the attractive locally in-
vau

Foranyd, 0<d<d :

(i) The unique equilibrium point of = is in the locally in-
variant set if and only f |a] i strictly larger than 1/(11).
And any solution starting on it, monotonically approaches
the equilibrium point.

(3i) if la| is strictly smaller than 1, all the solutions in
the locally invariant sct have their -component strictly in-
creasing while it remains in {|$] < 1=} . Consequently,
with (i), the solutions in the attractive locally invariant st
leave the "strict stability” set in finite time, through the
boundary $ =1~7.

Property 9 (Solutions in the "strict ltnhnllty” set
outside nu. tractive locally invariant set, set: E):
For any d, :

(i) Any A ¥l S 1-n) xR ezponentially
approsches the graph {(3,G(¥))). Morcover o solution
starting in {|$| S1—n)} xR remains in this sct as long
a8 it remains in the st {|z|> 755 .

(i) if lal < 1 and for some time to, & solution satisfies:

[¥(to)l < 1-7n 37
then there ezists a (finite) time & such that:
(&)l > 1=n (38



Hence, for [a] < 1, there is no solution satisfying for ever

Wls1-n.

(i) Moreover, while  solution rema
<y S 1-n) x (M<€)

(resp. n the set e

(~(1-n) S ¥ S -L4gan) x (j21<6) ),

it crossea the attractive locally invariant sct at cach time t

(resp. it remains on the same side).

in the set

Property 10 (Solutions in the "critical stability”
sets B,D,F,H):

As long as a solution remains in the set

{($3)| 1=n<|¥|<1+e and [x|2x}, its  com-
ponent is ezponentially decaying. Hence there is no solu-
tion satisfying for ever 1~y < |¥|<1+e and || 2 X .

Property 11 (Solutions in the critical stability”
set G ):

If 1/af is larger than 1+ ¢ and, for d small enough, peri-
od-2 solutions czist and are in the sct:

= (D)l 1-n<p<ltecamd K<x} (%)

6 Behavior of the solutions: inter-
pretation

The
with the following remarks

According to Propary 7, & solution in the set A or
1, but not in the ¢ locally invasiuut sat, divergos

growth of the z-component which becomes and remains
large. Moreover, for a solution in the set I, at each time t,
the z-component changes side with respect to this graph.
This explains o burst with a very high frequency content
of this component. Conversely, for a solution in the sct
the z-component remains on the same side of the m,,h
It corresponds a burst without oscillations. This behavior
appears for any value of the disturbance and the set point.

According to Property 10, a solution in the set A or I
with a large z-component or in the set B, D, F or H has its
$-component exponentially decaying. This behavior e
for any value of the disturbance and the set point.
to Property 9, as soon ss o solution enters
the sot E, it is exponentially attracted towards  set which
is once ngain the graph of & uniformly bounded function
of . This explains the exponential decrease of the -
component and the fast decay of its high frequency content
if it were present. This behavior happens for any value of
the set.point-to-disturbance ratio and at least for small
values of the disturbance-to-adaptation speed ratio.

While a solution, in the st E, goes to the attractive
locally invariant set, its evolution is more and more similar
to this of the solutions in this set. According to Properties
4 and 7, this explains a speed of the y-component of the
order of d. Moreover, according to Properties 2 and 8, if
the set point-to-disturbance ratio [a] is strictly larger than
1, the solutions converge to the fixed point which corre-

sponds to the desired working conditions. But, if this ratio
is strictly smaller then 1, according o Properties 8 and 9,
the solutions leave the set E and, very likely, enter the set
G. Among the conditions for existence of this behavior are
smallness of the disturbance-to-adaptation speed ratio.

After entering the set G, & solution may either leave
it, going to the set I, F or H or remains in G. According
to Properties 2 and 11, for & set point-to-disturbance ratio
strietly smaller than 1 and for s disturbance-to-adaptation
speed ratio sufficiently small, there exiat two period-2 solu-
tions in G . They are attractive if set point and disturbance
have same signs and repellent in the opposite case. The
former case explains why the solutions may remain in the
set G and why we can expect the bursting phenomenum
to disappear asymptotically. Moreover, also from Property
2, s tho set point-to-disturbance ratio s closer und closer
to (though smaller than) 1, the rotation of the solutions
around these period-2 solutions is slower and slower and,
thercfore, the bursts nze less and less frequent.

scems that the attractive locally

point of view, we know that if the fixed point lies in the set
1, the repellent locally invariant set is the stable manifold
of this critical element. Its intersection with the boundary

§=1+e being , we expect that it extends in
the set E, giving a candidate for an attractive locally in-
vasiant set. Using this conjecture as & working hypothesis,
the more o solution approaches the invariant set while it is
in the set E, the more ite evolution will be similas to the
solutions in this invasiant set even in the set 1. But, ac-
cording to Property 0, for a set point-to-disturbance ratio
strictly smaller than 1 in absolute value and negative (resp.
positive), the solutions n the sat I snd in tho repellont lo-
cally invariant set are unbounded (resp. bounded). On the
other hand, the bigger ita y-componcat is, tho more the z-
component of a solution in the set I but not in the repellent
locally invariant set, is pushed awny lc'xpolu:nhbll_y) from
this invariant set. This reasoning explains the possibility
of u very high sensitivity to initial conditions of solutions
tactng in e set , cloe o the atractiv localy invrt
ant sot or to remain simple and according to Property 4,
close to the graph of the function:
1ta
* =T (40)
According to Property 5, for ain (=1,0], £ has un-
bounded solutions lying on the repellent locally invariant
set.. Hence, even though the set point is sufficiently exciting
to estimate a single parameter, if its level does not exceed
the disturbance, unbounded solutions ase possible (Naren-
dra and Annnswamy, 1086) and this for sny value of the
disturbance-to-adaptation speed ratio. Also, Properties 5
and 6 establish that all the solutions are bounded if these
in the repellent locally invariant set are also bounded.

According to Property 2. & set point-to-disturbance ra-
tio strictly larger than 1 corresponds to a exponentially
stable fixed point. A:wxdmg to Prvpcrly 5 each solution
remains in a compact set. According to Lemma 1 and for
& sufficiently small disturbance-to-adaptation speed o,
there is 5o periodic solution other than the fixed poi

This suggests that the fixed point is a global porkaney
In this case, the bursting phenomenum should not take
place. Qualitatively speaking, this case most rescubles to



the ideal case.

Summarizing for the case of a small disturbance-to-ad-
aptation speed ratio, according to the value of a, the set
point-to-disturbnce ratio, three essentially different be-
linviors of the solutions of £ can be predicted:

o fa| > 1 (high level excitation): bounded solutions,
no bursting, no peridic solution, & globally attrac-
tive fixed point is conjectured, behavior similar to
the ideal case.

00 < a1 (low level excitution): bounded solu-
tions, periodic solutions exist and are conjoctured
to be global attractors, the fixed point is n saddle,
bursting is presout but is conjoetured to disnppens
asymplotically.

o -1 € a <0 (low level excitation): unbounded
soltion e, pariod sltions ety burting i
present, the fixed point is an unstable n

Since the set point-to-disturbance ratio a, is a relative
quantity, drastic qualitativo changes of the systoms be-
havior may be expocted when both r and § are close to
3 which is the natural working condition for an adaptive
linear controller.
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