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Abstract: We are interested in designing a state feed- 
back law for an affine nonlinear system to make a compact 
set containing the equilibrium of interest, globally attrac- 
tive. Following Artstein's theorem, the problem can be 
solved by designing a so called Control Lyapunov func- 
tion. Such a design is proposed for a nonlinear system 
which has alreaday been maximally linearized by feedback 
and diffeomorphism. 

1 Introduction 

We consider the following system: 

2 = f (z)  + g ( z ) u  (1) 

where z lives in R", n 3 2, U is a scalar input, f and g are 
at least C' vector-fields. The state being measured, our 
objective is to  design a state feedback to, in some sense, 
stabilize one equilibrium. 

Stability is a topological property. Unfortunately, nec- 
essary and sufficient conditions to guarentee it are only 
known for linear systems. As a consequence, most of the 
current nonlinear control law designs meet the stability 
objective only indirectly, by transformation into a linear 
system (see for example [SI). Moreover, in some cases, it 
may be very constraining or even impossible to stabilize an 
equilibrium point. For example the origin of the following 
system on R: 

2 = 2 + z2 (2 - 1) U (2) 
cannot be asymptotically stabilized but only practically 
stabilized (see a definition in [14] for example). Even more, 
with a bounded U, we can only guarentee that all the so- 
lutions enter the set [-l - E ,  l + E ] ,  E > 0 within finite 
time. Fortunately, for practical engineering applications, 
it is sometimes sufficient to have the solutions only con- 
verging to such a neighborhood of the equilibrium. In ad- 
dition, this relaxed stabilization objective avoids some of 
the hardest mathematical problems. From these remarks, 
we state the following problem: 
Given a compact set  C C R" containing the equilibrium 
point of interest  as an in ter ior  point,  design a continuous 
control law such that for any initial condition, the corre- 
sponding solution of (1)  enters  C within finite t ime and 
thereafler remains in  C .  
Note that by requiring the control law to be only contin- 
uous, we allow non unique solutions. 

To solve this problem, inspired by Lyapunov's second 
method, we design the control law for the time derivative 
of a scalar function h ( z )  to be strictly negative outside 
the desired compact set C. For this design to meet our 
objective, h must be appropriately chosen and have some 
particular properties. Namely: 
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Definition 1 (P-function) A function h from R" to  R+ 
(with n 2 2 )  is  said t o  be a P-funcf ion if the following 
properties are satisfied: 

1 .  h is  C'. 
2. h(z)  -+ 00 if l l l  z 11- +00. 

From this definition, a P-function is a proper function, i.e. 
the preimage of a compact set is also compact. 

Notations : 
Let Q t ( z )  be a solution of (1) starting from z at time t = 0, 
we denote: 

In the forthcoming, we will use the 

(3) 

In general, K c R" is a compact set containing the origin 
as an interior point. a K  is the boundary of I-, c, is 
its complement set and I( its interior. With h be a P- 
function, for any compact set I - ,  we denote Kh the com- 
pact set: 

0 

L j h  is the Lie derivative of h along f. Finally z h  is the 
set: 

The paper is organized as follows: 
In section 2 we show that, thanks to Artstein 's Theorem, 
the solution to our problem can be reduced to designing a 
so called Control Lyapunov function ( c l f )  and we observe 
that the complexity of this design depends mostly on the 
control vector field g .  
In section 3 ,  we propose such a design for a system which 
has already been maximally linearized by feedback and 
diffeomorphism and give illustrative examples. 
Finally section 4 is our conclusion. 

Although to simplify this paper, we deal only with glob- 
ally attractive compact set, our results can also be inter- 
preted locally. Indeed, if their assumptions are satisfied 
only in the open set {z I h ( z )  < M # 0}, their conclusions 
apply to solutions whose initial conditions are in this set. 

2 

Let h be a P-function, its time derivative along the solu- 
tions of (1) is: 

The Control Lyapunov function approach 

h ( l )  = L j h ( 2 )  + uL,h(z)  (6) 
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Our stabilization problem is solved if we can assign some 
strictly negative value to h ( z ) .  Clearly this is possible 
a t  all points I where L , h ( z )  is not zero. And the whole 
difficulty is to deal with the points where L,h(z )  is zero, 
i.e. the points in Z h  (see (5)). This justifies the following 

Definition 2 (df) Let I< c R" be a compact set. We 
call Control Lyapunov function associated with I< for  sys- 
tem (1) and denote cl f a P-function h which satisfies: 

Zh C { X  E R " / L j h ( x )  < 0)U I? (7)  

It  follows from this definition that a clf associated with 
K can be arbitrarily modified in I( without loosing its cl f 
property. 

We have the following extension of Artstein's Theorem 

0 

Theorem 1 Suppose I< is a compact set with a non empty 
interior and the vector fields f and g are q 2 0.  If 
h is  a clf associated with I< and t J h  is Cq+' on c;, the 

complement of r?, a compact set contained in i, 
then there exists u ( z ) ,  a CQ control law such that, for  each 
finite initial condition, the corresponding solution of (1) 
enters the compact set K within finite time and thereafter 
remains in  the compact set I<),. 

Explicit expressions outside I( for the control law men- 
tioned in this statement are known. Denoting: 

X = L , h ( z ) ,  Y = L j h ( z )  (8) 

Sontag has proposed [ll]: 

if Y < O  and X = O  
(9) 

X 
We propose (closely related to the control law proposed by 
Tsinias [14]): 

X ( k a + Y )  
a + X 2  

Y ( k a + Y )  

where a(.) is a scalar function bounded from below 
by a strictly positive constant, k is a real number strictly 
larger than 1 and P is an at  least CO bump function on 
R x R+ - {(O,O)}: 

1. it is a clf associated with any compact set containing 
the origin as an interior point i.e. 

z h  C {z E R " / L j h ( z )  < 0) U {o}, (12) 

2. f o r  all strictly positive E ,  we can find a strictly positive 
6 such that, f o r  all I ,  11 z 11 < 6 ,  I # 0, there ezists 
U ,  lul < E ,  satisfying: 

L j h ( z )  + uL,h(z) < 0 .  (13) 

In this case the origin is globally continuously asymptoti- 
cally stabilized. 

Thanks to  Artstein's theorem, the solution of the com- 
pact set stabilization problem is reduced to designing a 
clf h associated with a set I< such that the corresponding 
compact set Kh (4) is contained in the desired set c. 

A first question to be addressed for this design is the 
possibility of finding a P-function h for which the associ- 
ated set Z h  is contained in c. Noting that L,h is nothing 
but the time derivative of h along the solutions of 

x = g ( x )  (14) 

the compactness property of z h  only depends on g.  w e  
then have the following result: 

Proposition 1 (Appendix A. l )  I- If for  each compact 
set in  R" there ezists a solution of (14) whose closure does 
not intersect this set, then there is no P-function h such 
that the corresponding z h  is compact. 
2- Suppose the desired compact set C is a manifold with 
boundary and g is transversal to the boundary a C .  If ,  may 
be afler changing g in -9, all the solutions of (14) enter 
C within finite time and thereafter remain in  C ,  then there 
ezists a P-function h such that L,h(x )  is strictly negative 
for  all x not i n  C .  Consequently h is a clf associated with 
C and c h  = C .  

Example 1 : Let: 

g(z )  = Az.  (15) 

If A + A' is positive (resp. negative) definite, the origin is 
a global exponential repellor (resp. attractor) for (14) and 
therefore point 2 of Proposition 1 applies. 

The simplest example about point 1 is the case where 
g is a constant vector-field. Proposition 1 tells us that, in 
such a case, for each P-function h ,  the corresponding set 
z h  is not compact. In particular this is the case of a single 
input linear system on R" : 

Z = F z + G u  (16) 
. .  

However, if this system is stabilizable, there exists a ma- 
trix C such that the eigenvalues of F - GC are all in the 
open left half complex plane. Consequently, for any sym- 
metric positive definite matrix Q ,  there exists a symmetric 
positive definite matrix P such that for all non zero z: 

if z1 5 z$ 
if zl > kz,2 ( > z,2) (11) 

are at  l e s t  continuous at  the 

E (0 ,  1) if not 

Moreover these functions 

(17) 

(18) 

origin if the c i f  h satisfies the so called "small control 
property", namely (see [l,ll]): 

Definition 3 (acp  ) A P-function h is said to  satisfy the 

z t P F z  - I ~ P G C 2  = 

Hence, by choosing the P-function h as: 

< 

small control property (scp) ij h ( 2 )  = I'PZ 
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we get: 

Z h  = {Z  E R"/x'PG = 0 ) ,  Ljh(2)  = I ' P F I .  (19) 

If I belongs to z h  and is not the origin we have: 

Ljh(2) = z'PFx = - ~ Q z  < 0 (20) 

It follows that the stabilizability assumption is sufficient 
for linear systems to  find a c l f  satisfying scp .  

For a nonlinear system, if its tangent linearization a t  the 
origin is stabilizable, we may choose (18) for h. In such a 
case, h is a cl f satisfying s c p ,  a t  least on the neighborhood 
of the origin. More generally, if there exists a state feed- 
back making the origin asymptotically stable, by applying 
converse Lyapunov theorems (see [5, Theorem 4.2.]), we 
know the existence of a P-function h for which h can be 
made locally strictly negative for all non zero I. One idea 
is to try this P-function to  solve the global compact set 
stabilization problem. 

3 Design of a clf 

In system ( l ) ,  if g(0) is not zero, there exists an integer 
m, m 2 1 ,  such that this system is locally equivalent by 
static state feedback and diffeomorphism to a system of 
the form: 

z E R"-m and y E R". In the following we assume that 
(21) makes sense globally on R". In this form, g is a con- 
stant vector field. From point 1 in Proposition 1,  we know 
that for any P-function h,  the associated set z h  is not 
compact. To design a c l f  in this more complex situation, 
we assume the knowledge of a P-function ho and a control 
law uo such that: 

For this latter assumption to  be less restrictive we choose 
m as large as possible. An algorithm maximizing this m 
has been proposed by Marino (see [9]). 

For the case m = 1, (21) is simply: 

Thanks to  our assumption (22), to find a c l f  for this sys- 
tem, it is sufficient to  find a P-function h such that the 
following two implications are satisfied: 

If uo is smooth enough, this function h is an 
appropriate c l f  associated with the compact set 

For example, 
it can be used to reestablish the Property [8, Corollary 
3.21: 
If i- = k(v ,  z )  is  smoothly stabilizable, the cascaded system 
(21)  is smoothly stabilizable as  well. 

However, in general, the given control law uo is not 
smooth enough for h in (26) to  be a P-function. A first 
solution to  this problem would be to  replace uo by a 
smoother global stabilizer. This is always possible from 
Artstein 's Theorem [12, Corollary sect 71. Unfortunately, 
for engineering applications, this regularization is usu- 
ally unpractical. Another solution is to replace, in (26), 
y -  U&) by a so called "desingularizing" function cp(y1,z). 
We have : 

( ( Y 1 , Z )  I z E KO, IY1 - u o ( 4 l  I E # 0 )  . 

Lemma 1 (Appendix A.2)  
Suppose K O  c R"-' is a compact set containing the origin 
as an interior  point o f  R"-'. 
If there ezist a P-function ho and a CO scalar function 
UO(I) such that: 

Maybe after a C' change of the z-coordinates 
in R"-', for  all i in ( 1 , .  . . ,n - 1)  and all 
(zl, . . . , ~ i - ~ ,  ~ i + ~ ,  . . . , ~ " - 1 )  in R"-', the real num- 

a U 0  bers z ,  where -(z1,. . . , z , ,  . . . , ~ " - 1 )  is  not defined 
8.i 

are isolated in R, 

There ezis ts  a scalar CO funct ion cp(y1, z )  such that: 

c p ( Y 1 , Z )  = 0 Y l  = U O ( Z )  (27) 

@(y1, z )  is  C1 in R" and, for  all z in R"-l, 

@(yl ,  z )  -+ +oo if lylI --+ +m, where @ denotes the 
primit ive:  

For all t not in the interior  of IC0 we have: 

~ k ( " o ( z ) , z ) h o ( ~ )  < 0 I (29) 

then, with a a real number larger o r  equal t o  1, 

h l ( Y 1 , Z )  = @(Yl,Z) - @(.o(t),z) + ho(z)" 

I(l(E1) = { ( Y l , . )  I .  € I(0 , lYl - .o(.)l 5 E1 1 

(30) 

is a c l f  f o r  sy s t em (23)  associated with the compact set: 

(31) 

with c1 any strictly positive constant. 

This Lemma provides a c l f  associated with K l ( ~ 1 ) .  Hence 
we have answered the problem only if there exists €1 > 0 
such that I(1(cl)h is contained in the desired compact set 
C. This is an extra constraint on ho, uo and K O .  If this 
constraint is satisfied, we have reduced the design of hl to 
looking for a desingularizing function 'p. If there exists a 
C' scalar function s and a strictly positive integer p such 
that ( u o ( z )  - s(z))~'-' is C', we may choose: 

d Y l , . )  = ( Y l  - s(.))2p-1 - (uo(z) - w Z p - l  (32) 
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Taking hl  in place of h in (9) or ( lo ) ,  we obtain appropri- 
ate control laws for stabilizing the compact set K1 ( E I ) ~ .  
However, when it has a continuous extension at  the zeros 
of e, the more adapted state feedback: 

leads usually to simpler expressions. 

Example 2 : Consider the following planar system [7]: 

z = z -  Y3 { i = u  (34) 

The tangent linearization at  the origin is not stabilizable 
and therefore there is no C1 control law asymptotically 
stabilizing this point. However, Kawski has proposed a 
general method for small-time locally controllable systems 
in the plane. In this case, it gives a locally Holder control 
law guarenteeing asymptotic stabilization. 
To apply our method, we check that assumptions of 
Lemma 1 are satisfied when we choose in (32): 

ho( t )  = P , U O ( Z )  = [(1+ C )  z ] ~  , S ( Z )  = 0 
P 2 2 , a ? l , P > O  

with c a strictly positive real number. A c l f  is: 

Y2P 

2P 2P 
h(y, 2 )  = - - y [( 1 + c )  21- + [( 1 + c )  2]?f 

We note that to satisfy s c p  we must have: 

2p - 1 
2a > - 

3 (37) 

Moreover, choosing a = p/3 and p >_ 3, by homogeneity, 
scp is satisfied and the larger p is, the smoother on R2 - 
((0,O)) a stabilizing control law can be designed. With 
this choice the origin is made continuously asymptotically 
stable. 

For the case m larger than 1, we proceed by induction. 
Starting from i = 1, we obtain recursively a compact set 
K i  and a P-function h i  which is a cif associated with K i  
for the system: 

Artstein's Theorem 1 gives us a control law 
U i ( Z , y 1 , .  . . , y i - 1 ,  yi) to continue the recursion. At each 

step i ,  the difficulty is to find a desingularizing function to 
go around the roughness of U;- 1. 

The above arguments show that,  to solve the problem of 
controlling system (21), it is sufficient to  find appropriate 
clf ho and function uo satisfying (29) for all z outside a 
compact set KO c R"-m. Such a result has been pointed 
out many times in the litterature (see [9, Theorem 51 or 
[8, Corollary 3.21 for example). For system (23) in RZ, 
existence of ho and uo satisfying (29) (point 3 in Lemma 
1) is necessary: 

Lemma 2 [ [ l j ,  Lemma 9.11, Appendit A.91 
A necessary condition fo r  the existence of a continuous 
control law U making all the solutions of: 

(39) 

enter a connected compact set Ir' c R2, containing (O,O), 
within finite time is: 
f o r  every P-function ho with no stationary point outside 
the set {I I3y : ( z ,  y) E K }  , and for every z outside 

this set, there etists y such that o ( z ) k ( y , z )  is strictly 
negative. 

What may not be necessary in Lemma 1 are the smooth- 
ness assumptions in points 1 and 2. In particular, 
Dayawansa and Martin [4] have established that, if k is 
a real analytic function, then point 3 (more precisely, an 
even weaker condition than point 3) is necessary and suf- 
ficient for the existence of a locally asymptotically stabi- 
lizing CO control law. 

dh 
dr 

4 Conclusion 

For an afine nonlinear system, we have studied the prob- 
lem of making a given compact set globally attractive. Our 
solution consists in assigning the dynamical behavior of a 
Lyapunov function. The resulting control law has singular- 
ities. If all the integral curves of the control field intersect 
the given compact set, the control law can be chosen such 
that its singularities are in this set. In the case of non 
compact singularities, Artstein's Theorem tells us  that it 
is necessary and suficient to find a Lyapunov function such 
that the open loop dynamic makes this function decrease 
at  the singular points. In particular, this allows us to de- 
sign a control law likely to enlarge the attractivity domain 
of a C' stabilizable equlibrium point. 

For systems which are already maximally linearized by 
feedback and diffeomorphism, we design a state feedback 
assuming the knowledge of a control law stabilizing the 
equilibrium of the remaining nonlinear subsystem. In par- 
ticular, for planar systems, this gives sufficient conditions 
and necessary conditions for a compact set containing the 
equilibrium as an interior point to be stabilized. 

A Appendix 

A.l Proof of Proposition 1 

Point 1: Let h be a P-function and g a C' vector-field 
on R". Let us first prove that the closure of each solution 
of (14) intersects Z h .  We denote (Dr(zo) a solution of (14) 
starting from 10 at time t = 0. Let I be its maximal 
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interval of definition. To obtain a contradiction we suppose 
that L,h has no zero in the closure of (ot(z0) It E I } ,  say 
L,h is positive. Since: 

h ( z )  = L,h(z) (40) 

0 5 h(Qt(z0)) 5 h(z0 )  , v t  E I ,  1 I O  (41) 

h(at(zo)) is increasing in t ,  i.e.: 

Because h is proper, ot(zo) belongs to a compact set. We 
can find a positive constant c such that: 

A(ot(z0)) 2 € , v t  E I ,  1 s  0 (42) 

0 I h(@*(zo)) I d + h(z0) , v t  E I ,  2 5 0 (43) 

It follows: 

which implies 

(44) 

Consequently, I has a lower bound T .  Since I is maximal 
and h is a P-function, we get: 

lim h(ot (z0) )  = +CO (45) t+T+ 

which contradicts (41). 
Knowing now that, for any P-function h, the closures of 
all the solutions of (14) intersect the corresponding set zh, 
the assumption implies that Z h  cannot be compact. 

Point 2: We may apply a converse Lyapunov Theorem to 
get a P-function h. For example, we can choose h ( z )  as 
the time when o t ( z )  enters C, with ot(z) the solutions of 

This system is well defined outside C since all the solutions 
of (14) enter C within a finite time imply that g is not zero 
outside C. In [lo], we have established that the proposed 
function h is a P-function and we have: 

d h  - 
L,h(z) = Ils(z)ll ~ ( @ ' ( Z ) ) l t = O  = -11!7(~)11 < 0. 0 (47) 

A.2 Proof of Lemma 1 

First step: h, is a P-function 

1.1: h, is C': To show that h l  in (30) is C' it is sufficient 
to prove that @ ( u o ( z ) , z )  is C'. Let us denote: 

* ( z )  = Qp(uo(z), 2) (48) 

au0 For all z = (21, .  . . , Zn-1) where - ( z )  exists, we have: azi 

Since the definition of Qp implies: 

ao 
- (uo (z ) ,  a y  2) = cp(uo(z), 2) = 0 (50) 

au0  
a for all z = ( ~ 1 , .  . . ,zn- l )  where - ( z )  exists, we obtain: 

a s  ao 
- ( z )  = -(uo(z),z) azi azi 
Now, for (21,. . . , z i - l , z i+ l , .  . . , zn - l )  fixed at  any arbi- 
trary value in R"-' and for any i, Q ( z )  and ~ ( U O ( Z ) , Z )  

are CO functions of zi and (51) is satisfied maybe except at 
isolated points of R. It follows from [3, Proposition 1.2.61 
that z ( z )  is defined and continuous on whole R"-'. Since 
this holds for all i ,  \Tr is C' (see [2, Statement 11.1.31). 

1.2: h, is positive and proper: It is sufficient to show 
that for every yl and z we have: 

q Y l ,  2) - @(uo(z ) ,  2) 2 0 (5'4 

lndeed if this is the case, when hl(y1, z )  is bounded, ho(z)  
is bounded. Moreover ho being proper, the same holds for 
z and consequently for @(uo(z),  z ) ,  o(y1, z )  and y. 

To prove (52) Ict us study: 

Ql(Yl,.) - @("O(Z), z )  (53) 

as a function of y1 with z fixed. Its derivative can be 
written: 

(54) 

which is zero iff y1 is equal to u o ( z ) .  Since (53) is con- 
tinuous, positive at  infinity and zero if y~ = uo(z ) ,  (52) is 
satisfied. 

Second step: h, is a clf associated with K ,  

By construction, we have: 

L,hl(yl, 2) = ~ ( Y I , . )  = 0 iff  y1 = UO(Z) (55) 

Hence, if z belongs to KO but Iyl - uo(z) I  is larger than 
€1 # 0, Lgh l (y l , z )  is not zero. And, when L,hl(yl,z) is 
zero, we obtain with (51): 

L/hl(Yl,  2) = a h ~ - ' ( Z ) l t ( u o ( z ) , . ~ h o ( z )  (56) 
which is strictly negative for all z not in the interior of KO. 

A.3 Proof of Lemma 2 

Since U is continuous, the solutions ( ~ ( t ) ,  y(t)) of (39) ex- 
ist and are C1 for any  initial conditions. Hence, by as- 
sumption, for any initial condition, there exists a C' time 
function y such that the corresponding solution of: 

= k(Y(t),Z) (57) 
enters the compact set { z  13 y : (z,y) E I<} , within fi- 
nite time. Following a trivial extension of [13, Lemma 3.11, 
this implies: 
for every z outside the set { z  I 3 y  : (z ,y )  E I < }  , 
there exists y such that z k(y, z )  is strictly negative. 
To conclude, we note that, ho being a P-function 
with no stationary point outside the connected set 

{ z  13y : ( z ,y )  E I<}  , which contains 0, z and - ( z )  dh0 
dz 

have same sign outside this set. 0 
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