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Abstract

This paper presents an adaptive controller for nonlinear
linearly parametrized systems. The new features intro-
duced in the design are:

- The estimation of the parameter performed on the scalar
Lyapunov equation instead of the n-dimensionnal equation
of the system itself. It allows us to tolerate non-Lipschitz
uncertainties, especially when the stabilizing laws are not
feedback linearisation+linear control.

- The double estimation: one estimate is used for the sta-
bilizing control, the other for cancelling the perturbation
terms introduced by the adaptation, if possible. We pro-
pose this as a solution to the implicit definition of the con-
troller which arises when trying to do this cancellation.

1 Problem Statement

We consider the following family of systems, indexed by p:
, - .
¢ = a%2) + =)u + 3 pi(di(z) + bi(z)u)  (S,)
i=1

where z lives in an n-dimensional C* manifold M, u is
in R™, the a*’s (vesp. b'’s) are known C? vector (resp.
matrix) fields and the parameter vector

p=0...0) (1)

belongs to R'. Since the S, systems may not make sense
fo)r some p, we restrict p to lie in a known open set Il of
R'.

Our problem is to design a controller to stabilize the zero
solution of the particular S, system obtained for p = p*,
p* being unknown in II.

Several answers have already been proposed in the lit-
terature. In {10], {4] and [11] the problem is particularized
to specific systems: robot arms and a continuous stirred
tank reactor. More general purpose but feedback lineariz-
able systems are considered in {13], [8], [3] and [2). Finally
Sastry and Isidori [9] study the case of exponentially mini-
mum phase systems with globally Lipschitz nonlinearities.
Here the S, systems are specified by the following assump-
tion:

Uniform Stabilizability (US) assumption: There ez-
ist known u,, later called the “nominal control field”, and
V, a C! and a C? function respectively, from Il x M to
R™ and 10 R respectively, such that:

1. For allp an II, V(p,z) is positive for all z in M and
zero if and only if x is zero.

2. For any real number K and any compact subset 11 of
I1, the set:

CH2642-7/89/0000-1008$1.00© 1989 IEEE

{le(p,:c) < K,pe€ ﬁ}

is a compact subset strictly conlained in M.

3. For all (p,z) in Il x M, we have:

LipnyV(piz) < —cV(p,z) (2
where ¢ is a strictly posilive constant and s denoles
the “nominal closed loop field”:

1
s =a 4 b%uy + > pi(a’ + b up) 3)

i=1

Besides (9] where the function V is (implicitely) assumed
to be only partially known, assumption US is required in
all the references quoted above, V being a quadratic func-
tion of the linearising coordinates.

Clearly assumption US implies the stabilization problem
would be solved for each S, system if its parameter vector
p were known. Therefore the actual problem concerns the
possibility of making the nor.iinal control u, adaptive. Our
solution is to design a dynamic controller:

p = dynamic function of (p, z)
u=u,(p,z) + v 4

such that, for any initial condition ($(0),z(0)) in II x M,
the corresponding solution remains in a compact subset of
I x M and its z-component tends to zero as time ¢ tends
to infinity.

To illustrate our topic in this paper, we will work out
the following example on R x R3:

iy =z + pz?
T2 = I3
IZ3=u

(%)

Following the Lyapunov design proposed in [7], assump-
tion US is met with:

Un(p,z) = — a3€s — (a1 + az + 2p&1) (€3 — agby — £271)
— [2p (&2 + 2p€7) + (2k = 1)EP* 2] (&2 — a161)

AN
~& (? * 57) (®)
2 2 26\ J
v =v© = § + 3 (§+5) @

where k£ and j are strictly positive integers and £ =

(€1,€2,€3) is given by the following p-dependant diffeo-
morphism ¢:
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I
zy+ayz; +pz} )
z3 + as (1'2 + a1z + p:c%)

+ (ay + 2pz1)(z2 + pzd) + xfk_l

§= gp(p,z) =

Notice that if k = j = 1, u, is a linearizing feedback.
We make the following additional assumption on the
parameter set II.

Imbedded Convex Sets (ICS) assumption: There ez-
ists a known C! function P from Il to R such that:

1. the sets:

{pIP(P) <A}, 0<Aa <1

are conver and contained in II,

2. the row vector %%’(p) is non zero for all p such that
P(p) isin [0, 1],

3. the parameter vector p* of the particular system to be
actually controlled satisfies:

P() <0 9

For our example (5), since II = R, this function P may be
chosen indentically zero.

2 An Adaptive Controller

Let  be a C! time function to be precised later. Given a
control law u and a solution z of the closed loop system u-
Sp+, with assumption US, we may define the time function:

V() = V() z(t)) (10)
Along the solutions of Sp«, we have:
V= Lipa)V(:2) + Lopeou-uaepV(Biz)  (11)

. . - ov.,. ..
+ Z, (p,z) (p* - ) + gp;(p,r)p

where s is the nominal closed loop field (3) and the Z, row
vector is defined by:

Zy = (Largsru,V,. .., Laypny, V) (12)

When compared to the nominal case as defined by assump-
tion US, we see that p not being constant equal to p*, cre-

ates two disturbances: the %—Vﬁ term and what is usually

called the equation error: Z,(p* — p). The second term in
the first line of (11) is not zero if, as originally proposed
by Middleton and Goodwin [4], we augment the nominal
control uy,:

u=u, +v

(13)
to try to counteract these disturbances. As it will be ex-
plained later, it is then appropriate to introduce a second
C! time function § in II and to rewrite (11) in:
V = LigoV(pz) + Ap,4,pz,v)

+ 2, (5,2)) (P* = B) + Z4 (B z,v)(P" - q)

where we have defined the row vector Z, by:

(14)

Z, = (LpoVy. ooy Ly V) (15)

and the scalar function A on I x I x R' x M x R™ by:

ov
A(P,Q,OS,I,U) = Lg(q,z')uv(prz) + -6?(]),1)6 . (16)

(14‘} may also be seen as an observation equation for the
T p*T)T vector:

X
(1) = (Z(0) Zy() (B) (17)

Measuring z and computing p, §, v and v, Z, and Z, are
available on-line. However, . defined by:

o,
appl

z = V - Lao+,,o.,V - (18)

cannot be available, V being unmeasurable. This difficulty
can be rounded by integration. This leads to the following
dynamic controller (see Pomet’s dissertation [6] for more
details), where 7 is the additional dynamic variable intro-
duced for this integration:

p=Proj [p, ZT (b.z) (V(p,z) — n)} (19)
§="Proj (4, 2T (p,z,v) (V(p,z) — 1)) (20)
n=r (V(5,z) = 1) + Lys.0)V (5, 2) + AB, 4,5, 2,v) (21)

u=uu(p,z) + v (22)
r=|V(pz)-nl™ (1+ 2,27 + 2,2])™ (23)
where the initial conditions are:

P(p(0)) < 0, §(0) = p(0), n(0) =0 (29)

my and my are two positive real numbers, Proj is the fol-
lowing locally Lipschitz continuous function:

y if P(p) <0
y if P(p) >0 and EE(p)y < 0
P() (W op

v Il 55 (PN ap (p) if not

and v is computed to make A(p, ¢, p, z, v), defined in (16),
non positive if possible (see (14)). Notice that the V func-
tion given by assumption US is explicitely used in the con-
troller. A different choice of V' would give a different con-
troller. )

If we had not introduced ¢, the p equation would have
been:

Proj(p,y) = (25)

P = Proj |, (Zp+2,)" (V(pz) — ) (26)
If one of the &’s, i = 1,...,{ is not zero, Z, depends on
v. Since, in general, v depends on I3 equation (26) defines
ﬁonly implicitly and an extra assumption may be needed
for the controller to be well defined (assumption I in 3],
assumption A4 in (2], no assumption thanks to filtering
in [4]). In our case p, ¢ and 7 are defined explicitely.
Note that § could be reduced to incorporate only those
parameters corresponding to the non zero b;’s.
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For our example (5), with no b; term, the adaptive con-
troller is:

p=2,(V(p,z)—n)
n=IVE ) —a™ (V(B2)~n) (1+2))™

2 f% fk =t 2 2k
—a3é3 — '2‘"'% (a262 + a, )+ A

27
(28)

U 14}
Zp = ¢ ©) 55—163 (29)
A =& (30)
€2 2k\ i1
+{ (72 + '211?) 26}

+ &5 (a2 €] + 261 (€2 — @1&) + (a1 + 2061) €3) }
x Z, (V(p,z) — 1)

and, with ¢ given in (8), we compute:

(61,6, 86) = olpe) (31)

The possibility of making A non positive is related to
the sign of %’-ﬁ when Ly, V is zero. In general, we cannot
expect any relation between these two quantities. However
the following theorem established in (6] gives conditions
implying a relation:

Let the usual f (and similarly g) be defined by:

i
flp,z) = a%z) + Zp;ai(z)

i=1

(32)

we have:

Theorem 1 (Pomet[6]) Assume g(p,z) has rank m on
IIx M and for each fized p, Range{g(p,z)} is an involutive
distribution on M. Under this condition, the following two
proposilions are equivalent:

I- Range{g(p, z)} does not depend on p and, for all i in
{1,...,1}, we have on T x M :

gpf; € Span{g, [f,q]) (33)

2. For all (po,xo) in Il x M, there ezist a neighborhood
N(po,zo) and C! functions a, B and p, respectively, from
N(po,zo) to R™, GL(R™) and M, respectively, such that:
e for each p, ¢ is a diffeomorphism,

f(PO’ ?(px z)) = Lj(p,r)+g(p,z)a(p,x)‘r”(p1 z)

9(po, (P, 7)) = Ly(p,2)8(p,2) (P, T) (34)
® For each iin {1,...,1}, we have on N(pg, zo):
dp
;%) € Range{Lgp1500,5)0(p, 2)} (35)

What is meant by (34) is that, by p-dependant diffeo-
morphism () and regular feedback transformation (a, 3),
each S, system can be transformed into one particular of
them, Sp, here. A straightforward consequence of this
strong property is that u, can be modified so that the V
function of assumption US can be chosen to satisfy:

e

V(p,z) = Up(p,x))  VY(p,z) € Npo,z0)  (36)
where U is nothing but:

U = V(po,£) (37
and the modified u}}® is:

up(p,2) = a(p,z) + B(p,z) un(po, p(p, z)) (38)
In this circumstance, A in (16) can be written:
Alp,g,6,2,v) = AU (p(p,2)) (39)

Oy
x (Lg(q,:w(p,z) + 5;(;),1') 6)

But, the distribution Range{g(p, )} having constant rank
and being independant of p (as assumed in Theorem 1),
with (35), there exists a C! function v such that, for all
(p, z) in N(po,zo), all g in 1T and & in R', (see(6])

(7]
Ly(q,z’)v(p,q,&,z‘)‘P(p: I) + FE(P, 't) 6§ =0 (40)

To summarize, we have:

Property 1 (Pomet[6]) If assumption US holds and
there ezists a a neighborhood of (p*,0) in I x M such
that, on this neighborhood:
1- g(p,z) has rank m and Range{g(p,x)} is an involutive
distribulion on M for each p and does not depend on p.
2 2L ¢ spants, [f,0) (1)
Di
Then there ezist a neighborhood of (p*,p*,0,0) and a C!
function v(p,q,6,z), defined on this neighborkood, such
that, may be by modifying u, and V, A(p,q,6,z,v), de-
fined in (16), is zero.

vi e {1,...,1}

For our example, assumption 1 of this Property is sat-
isfied but assumption 2 is not. Also it turns out that A
in (30) cannot be guarenteed not positive since there is no
reason for the expession

e 2k 71
(-5-+£7> &2 x 2, (V(5,2) - )

to be negative when {3 is zero. Nevertheless, assumption
2 is not necessary in general. In [1], we have shown that,
for some planar systems, A can be made zero though this
assumption fails.

In the case where the S, systems are feedback lineariz-
able, the assumptions in Property 1 {more precisely in
proposition 1 of Theorem 1) have been introduced by
Kanellakopoulos et al. [3] and called extended matching
condition. These authors have established these assump-
tions are sufficient for solving in v the equation (see also
assumption A4 in [2]):

By
Lg(p,z)v‘p(pvz) + a_p'(pvx)'s =0 (42)
where ¢ is a p-dependant diffeomorphism associated with
the feedback linearization. We know with [6] these as-
sumptions are also necessary for the existence of a p-
dependant diffeomorphism such that, locally, (42) can be
solved and (34) holds.
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3 The Stabilization Property

Applying our adaptive controller to the Sp+ system leads
to an autonomous non linear locally Lipschitz continuous
system living in M x II x I x R whose solutions (z,$,4,9)
are locally well defined and unique. We have:

Theorem 2 Assume assuplions US and ICS are satisfied.

1- If there ezists a globally defined locally C* function
v(p,q,6,z) such that A defined in (16) is not positive (see
Property 1), then, choosing my = 0 in the controller, all
the solutions are defined on [0, 00), remain in a compact
set and their x-component lends to zero as t tends to in-

finity.

2- If we cannot choose v as specified in point I above, we
take it identically zero (hence no §). If there exist a C°
function d on Il and positive constants o and T such that:

e forall (p,z) in 1 x M, with Z, defined in (12):

1Z5(p, 2)I| < d(p) Sup{1,V(p,z)"} (43)
2%
|5 09| < ) w1, vip.2)) (44)
eoc <1, o+7r<2 (45)
Then, choosing m, and moy 1o salisfy:
m >0, 1> 202
mi+2 > 2m >0 1> +(1—&"4-) } (46)
1 2 22V,1 20 mi2) T

all the solutions are defined on [0, co), remain in a com-
pact set and their z-component tends to zero ast tends to
infinity.

3- If the assumptions of points 1 and 2 above are not satis-
fied, but v is chosen 1o be zero or to be any locally Lipschitz
continuous function of (p,4,n, z) such that, with (19),

AGapz) < Tp2p (a7)
P

then there cxists an open neighborhood of (0,p*) such that,

for any initial condition (z(0),5(0)) in this neigborhood,

the corresponding (z,p, 4, n) solution ezists on [0, o0), re-

mains in & compact set and ils z-component tends to zero

as t tends to infinity.

For our example, we have already mentioned that point
1 of this Theorem does not apply. But we may look for k
and j to meet point 2 assumptions. With Z, given in (29)
and V given in (7), we obtain:

k = j = 1 (feedback linearization) =1
k=3,j=2

Hence point 2 of Theorem 2 applies if the nominal control
law is appropriately chosen. It turns out that feedback
linearization does not give a robust enough global stabi-
lization for this purpose.

Proof of Theorem 2

Let (z,5, §,n) be a solution whose maximal interval of def-
inition upperbound is 7. First we notice that, thanks to
the Proj function and the choice of p(0) and §(0) in (24),
we have:

P@H(E) <1, P@E@R) <1

Hence p and § remain in II and even in a closed subset of

II.

vt € [0,T). (48)

Step 1: p, § and V — 1 are bounded:
Let the scalar e be defined by:

V(p,z) — n (49)

e is a C! time function defined on [0, T'). From (14) and
(21), it satisfies:

e =

é+re=(22)(%1%) (50)
Notice also that (19) and (20) can be written:

;:?:Proj (p, Z;re) } 1)
¢ = Proj (q, Z;re)

Now, we consider the comparison function:

We.pd) = 5 (¢ +lp — A7+l —al?) (52

Along the solutions of (50)-(51) for any t in [0, T'), we
have:

W = —re? (53)
- -0 (G i e )

From definition (25) of Proj and assumption ICS, we have:

(7" - ) Proj(p,y) > (»* — )Ty (54)

Hence:

W< —re2 Viel[0,T) (55)

With the choice of n(0) and §(0) in (24), we have estab-
lished:

I = BOI + lIp* = GOIF + ¢ < F(50),2(0)?  (56)
/ Temat < F(0),20)) (67)
with:

¢ = (|e|'"1+2(1+z,,zz+Zqu)'"’)”—‘l” (58)

and F, to play a key role in the following, is defined by:
F(p(0),2(0))* = 2|lp* = O + V(5(0),2(0))* (59
In particular, this proves that p and § remain in a compact
subset of II. And, V being positive, 7 is also lower bounded
on [0, T):

n(t) 2 —F(p(0),2(0) (60)

1011




Step 2: To conclude the proof, we only have to show that
V is bounded and z tends to zero. We will use the follow-
ing straightforward consequence of Holder and Bellman -
Gronwall inequalities:

Lemma 1 Let U be a C! time function defined on [0, T)
and satisfying:

U< —cU + Q+U@)D_£(t), UWO) =0 (61)

where ¢ is a strictly positive constant and (f;) 1s a finite
family of positive time functions such that:

T
/ fi)kidt = S; < 400, ki > 1 (62)

Under this assumption, U(t) satisfies with G a conlinuous
function and G(0,k) = 0:

U(t) < G(Si, k:) vVt € [0,7) (63)
Moreover, if T is infinite then:

limsup U(t) < 0 (64)
t—o00

Now with (21), (58) and assumption US, we have:

N < —cn+Ap,§,pz,v)+ (c+r)e (65)

with r given by (23)

Point 1: A is non positive and mj is zero. It follows that:
(66)

Lemma 1 applies and therefore 7 is upperbounded on
(0, T). With the bounds obtained in Step 1, we have es-
tablished for ¢ in [0, T'):

V(p(t),z(1)) < F(p(0),(0)) +G (F(5(0), 2(0)), m1))(67)

But p(t) remaining in a compact subset of II, the V prop-
crties given in assumption US imply that z(t) belongs to
a compact set strictly contained in M for ¢t in [0, T). To
summarize, we know now that the solution under consid-
eration remains in a compact subset of M x II x II x R.
This implies:

n < —entcetem™mt!

T = 400 (68)
Therefore we know also from Lemma 1:
limsupn(t) < 0 (69)

t— 400

Moreover, from Step 1, e is bounded and belongs to
L™+2(0, +00)). From (50) and boundedness of Z, and
Z4, € 15 bounded. This implies that e goes to zero as time
goes to infinity. Consequently V' also goes to zero. The
properties of V imply finally that z goes to zero.

Point 2: v is zero, there is no §. (65) becomes:

But, by definition of Proj, we have with (58):
IProi(p, Z;'e)|| < l|Zpll el

l—' Im
SNzl "™ e

(71)
(72)

Also p* being bounded from Step 1 and the d function
in assumptions (43), (44) being continuous, there exists a
constant K depending only on F($(0), z(0)) such that:

m am
n< —cn+ KSup{l,V”}K‘_':lﬁ’Sup{l, V'(l— "‘li’)}e
2am
+ce+ I{x’"‘n*’Sup{l,V’“‘xi’}s""+1 (73)

With our choice of m;, my in (46), Lemma 1 applies and
the proof is completed as in Point 1 above.

Point 3: A is upperbounded by %ﬁ. (65) becomes:

(74

A%
Op

i < et (|50 ] N+ )

+(1+ Z,ZT + 2,27 )74 gmit!

Then let u be a strictly positive real number and C be the
compact neighborhood of (0,p*,p*,0)in M xII xII x R
defined by:

Vip,2) <o, llor =l <y e —dll <y Il < ¢

All the function in the closed loop system being continu-
ous, let K(u) be a constant such that for all (z,p,§,n) in
C, we have:

(75)

K> ”%‘g l 1Zp]] + ¢ (76)
K>( 42,2 ~§ +2—qz-¢T)™H (77)
We get:

7 < —en + K (e+e™*) (78)

With (57), Holder and Bellman-Gronwall inequalities yield
for all ¢ in {0, T'), with F given in (59):

1 m+1
(t) < K[ PR (79)

c™ c™

F“#n]

Hence, with (49) and (56), the solution under considera-
tion remains in C and T is infinite if its initial condition
satisfies:

1 gmitl 1
F+K(u PPF 4 —FmiF| < 80

cm ¥3

which is always possible since F is zero at (0,p*,p*,0).
The proof is continued as in Point 1 above. (]
Comments

1- In this proof, we see that, in any case, V(p*,z) can be
bounded by a function of 2'|p* — B(0)|I> + V((0),z(0))2.

. ov . H if tion US isfied only locally i
< - oV T ence if assumption were satisfied only locally in z,
7S —ent 8p "Pro_](p, % e)” (70) say on the compact subset of M:
toe+ (1+ Z, 2T )i gmitt Pp) <0, V(pz) < Vo £0 (81)
1012
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Theorem 2 would still hold provided 2{lp* — $(0)||° +
V($(0),z(0))? is small enough. Another possibility to
deal with a local asumption US is to replace, in the con-
troller, V(p,z) by a function of V(p,z) which is infinite
for V = Vg, say:

V(p,z)

h(V(p,z)) = Ve o Vip.2) (82)

Our controller guarentees the boundedness of the function
it actually incorporates provided this function meets the
properties inovoked in assumption US. Therefore, any so-
lution with:

V($(0),2(0)) < Vo (83)
remains in the above compact set. Similarly, would u, be
smooth only on Il x M — {0} (see [12]), we would replace

V by, say, Sup{V — ¢, 0}? with ¢ some strictly positive
constant (see [1]).

2- Assumptions (43) and (44) describes the behavior of the
norm of the regressor vector Z, and the p-sensitivity %‘;— as
V goes to infinity. A key point of our controller stands in
incorporating this information: m,; and m, given by (46)
are used in 15 For our example, we have seen that, to get
global stabilization, u, has to be chosen with k = 3 and
j = 2. But accordingly p has to be computed with m; and
my satisfying:

ma _ 6
mi2 o 13 (84)

4 Discussion

To conclude this paper, we compare our algorithm to those
previously proposed in the litterature. OQur criterion is:
global stabilization. The objective being to evaluate if
globalness, holding in the known parameter case, is pre-
served or lost when adaptation is introduced.

The first point to be mentioned is that our algorithm
is of an equation error type. Nam and Arapostathis [8]
and Bastin and Campion [2] have proposed algorithms of
the same type. But, their equation error is directly ob-
tained from the S, equation or its form tranformed by
a p-dependant diffeomorphism associated with feedback
linearization. Our equation error is obtained from the
Lyapunov equation. Though algorithms in [8] and [2] are
presented only for feedback linearization, they can be ex-
tended to the assumption US case (see [6]). But applying
this controller to our example, there is actually no proof
of global stabilization whatever k and j are chosen if A in
(30) cannot be guarenteed not positive. This follows from
the fact that robustifying the controller by increasing k, j
leads to non globally Lipschitz nominal closed loop system
(see [6]):

Opposed to the equation error design is the Lyapunov
design as introduced by Parks [5]. It has been used by
Talor et al. [13] and extended by Kanellakopoulos et al.
[3] in the case of feedback linearizable systems. Again, ex-
tension to the assumption US case can be done (neglect-
ing the %—‘;— term). The difference is that we can always
guarentee boundedness of the parameter vector p in our

algorithm whereas we do not know how to do so in the
Lyapunov design if A cannot be made non positive.

A last design which can be compared to ours is proposed
by Sastry and Isidori [9] in the case of no zero dynamics.
The algorithm is based on an equation error from the Sp+
equation transformed by the diffeomorphism ¢(p*,z) as-
sociated with the output linearization. There is no A term
in this case but global stabilization is established only for
a globally Lipschitz regressor vector. This assumption is
not met in our example.
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