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ON PERFORMANCE IMPROVEMENT OF ADAPTIVE TUNERS

+
Yu Tang+, Romeo 0rtega+, Laurent Praly+

Abstract: Here we depart from the standard
stabilization objective of adaptive control and
assume that for the plant to be controlled a
parametrization of the regulator insuring
closed-loop stability is known. The structure,
dynamic order and number of adjustable parameters
of the eompemnsator are at the designer’s disposal
and no assumptions, except linearity are imposed
on the plant. We propose an on-line tuning
procedure for the controller parameters intended

to improve performance and such that global
stability 1is preserved. Performance of the
adaptive system 1is evaluated in two ways:

deriving uniform bounds on the sup value of the
tracking error; giving conditions under which RMS
performance index decreases when adaptation is
turned on.

Note: This is a shortened version of the original
paper which is available upon request to the
second author. All proofs are omited.

I. INTRODUCTION

Adaptive control was originally motivated by
the problem of on-line adjustment of some
controller - parameters to -insure acceptable
performance for linear plants with unknown or
time varying coefficients. A landmark in the
development of the field was the proof, circa
1880, that several adaptive control algorithms
asymptotically attain the optimal performance for
a relatively large family of plants. Performance
was expressed in terms of output error tracking,
usually referred to as model reference matching.
The aforementioned family of plants (Gk(s)} is

continuously parameterized by a vector keR". It
was assumed the following hold: stable
invertibility, known sign of the high frequency
gain, relative degree and upperbound on the order
of the system. Interestingly enough no assumption
regarding the parameter vector is required, but
instead it is allowed to range on all R". Leaving
aside the problem that model reference adaptive
controllers are only concerned with tracking

error, neglecting the disturbance rejection
objectives, these controllers suffer from two
main drawbacks: first, the usual procedures

assume only that the plant is a black box of
known order, therefore the requirement of model
matching dictates the controller structure. Thus
no advantage is taken of much information which
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is usually available about the plant, but in the
estimator initialization; second, the number of
adjustable parameters is determined by the
assumed order of the plant and not by the number
of adjustable parameters which the controller
needs to achieve acceptable performance.

The proof that "mild" deviations of the plant
from the class described above could cause the
adaptive control algorithms to go unstable,
triggered the interest on the 1880’s on
robustness issues. Most researchers focused their
attention on modifying the parameter estimator
and preserving the model reference controller
structure in such a way to insure boundedness of
the signals for plants that do not belong to the
aforementioned class. That is, the main thrust of
the research was focused on stabilizing a larger
class of plants. This problem is of
unquestionable theoretical interest and we refer
the reader to [4,5] for an account of some of the
existing results.

In several practical applications, designing a
fixed parameter controller that stabilizes the
plant can be accomplished in spite of the reduced
prior information, see e.g. [6]. Tuning some of
the controller parameters in a neighborhood of
the stabilizing set is then required to improve
the performance. It is clear that the tuning
procedure should at least guarantee that overall
global stability is preserved. To make the
procedure of practical interest the conditions
for stability should not rely on assumptions on
the plant like known order or stable
invertibility. Also it 1is desirable to avoid
restrictions on the choice of the controller
structure.

In this paper we assume knowledge of a
regulator parametrization that stabilizes a
family of plants and propose an on-line tuning
procedure for the controller parameters intended
to improve performance. It is only required the
plant to be linear time invariant (LTI) and the
controller to be 1linear in the adjustable
parameters. Performance is evaluated in terms of
output tracking error capabilities. In spite of
the fact that the controller parameters are
continuously updated, we use the term tuning to
refer to the proposed control design. This to
highlight the fact that we are applying an
adaptive controller to a plant for which we know
a controller parametrization that insures
closed-loop stability. The task of the estimator
is then to search on the neighborhood of the
stabilizing set for a controller which yields
"smaller” tracking errors. That is, our objective

is, instead of stabilizing a possibly unstable
plant, to improve performance via on-line
parameter tuning.

Instrumental for our analysis is the

introduction of a new estimator which includes a
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signal normalizacion (1] and time varying
o-modification similar to those reported in
[2,3]. The main contributions of the paper are as
follows: 1) A new parameter estimator that yields
an error model, suitable for the stability
analysis of adaptive tuning problems is derived.
This error model 1is described by a set of
differential equations such that for all possible
solutions they can be treated as linear time
varying with all parameters uniformly bounded. 2)
Conditions for stability of the overall system
are given in terms of the stability margin of the
plant in closed loop with the fixed stabilizing
controller and the adaptation speed. 3)
Performance of the adaptive system is evaluated
in two different ways: deriving a uniform bound
on the sup value of the tracking error, which
depends on the sup value of the error obtained

with the fixed stabilizing controller; giving
conditions under which the performance index
decreases when adaptation is turned on.

Conditions that insure the unperturbed error
equations to be exponentially stable are also
derived.

The remainder of the paper is organized as
follows: we present In Section 2 the problem
formulation and the proposed estimator. The new
error model, obtained via a state variable
transformation, is derived in Section 3. In
Section 4 we carry out the stability analysis of
the error model. Conditions for l.“° and

exponential stablility are derived and a global
stability/instability boundary [10] is
established. In Section 5 we present the analysis
for performance improvement. Finally, we end up
the paper with some concluding remarks.

11. PROBLEM STATEMENT AND PROPOSED SCHEME

The plant to be adaptively tuned 1is
represented by
y(t)}=G(plu(t) (2.1)
where p:=d/dt, G{p)eR(p) 1is an n-th order

strictly proper transfer function and u(t) and
y(t) are the process Iinput and output,
respectively. Bounded external disturbances may
also be considered in the model without affecting
the results. They are omitted here for brevity.
Along the paper we will pursue as the design
objective to impose a desired behavior to be
plant output. We express this objective in terms
of an output tracking error e(t) and use the
following criteréa;Tto evaluate performance

(-]
avg[ea(t)]:=lil%’ j e2(t)dt (2.2a)
Toe
t
o
Je(t) |w: =sup|e(t)| (2.2b)
tZ0
The control signal is taken as
u(t)=a(t) e(t) (2.3a)

where ¢(t)eR" ts an auxiliary vector obtained by
filtering the plants input, output and external
reference

u(t)
¢(t)=F¢(p) y(t)
r(t)

(2.3b)
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where F¢(p)eR"‘"(p) is required to be strcitly

proper and stable, B(t)eR™ is the
parameter vector to be adjusted on line.

control

Remark 2.1. For ease of representation we have
chosen a controller structure where all the
parameters are adjusted on line. In the case
where only a few parameters are to be adjusted we
can split u(t) in two terms and lump the part of
the controller with fixed parameters with the
plant. As will become clear later, this does not
affect any of the results below.

We require the knowledge of a vector 9° such
that for 6(t)=e° the closed-loop system (2.1),

(2.3) is stable. It is clear that some prior
knowledge, as described for instance in (6], is
thus required. To improve the performance (e.g.
when the plant changes) we then design an
estimator that will search in a nelighborhood of
eo in the parameter space for a better regulator

parametrization.

We propose the following update law

. ¢lt)e(t)
6(t]=-c(t)6(t)-1———:——;—wa(t)e°. ﬁ(o)=e°, 0
p(t)

plt)=-pplt)+f, p(0)>0, O

(2.4)

where £ is a function that depends on the choice
of the controller structure(therefore on ¢(t)),
and chosen such that

1) p(t)>&:1 for some el>0 (2.5a)

11) p(t)z-pup(t) (2.5b)
1 1

i11) ;m[ﬁt)l:m-?x[ﬂ(t)(slﬂtzo. (2.5¢)

A general function f for the estimator (2.4) is
given in Lemma A.1 in the Appendix.

Three are the key features of the proposed
estimator:
1. It includes a normalization factor p(t), which
has been proven essential for all recent
robustness studies [5§]. The important point to
note here is that p(t) is needed to bound |¢(t)]
and not the effect of the unmodeled dynamics as
in the robust stabilization problem, see [14].
Therefore it does not require prior information
on the plant for its implementation.
2. The estimator is driven by a term e° which

represents the best a priori estimate for the
controller. Notice that if the estimate is good,
that is, e(t) is small, then 8(t) will remain
close to eo. Otherwise it will depart from it at

a speed essentially determined by 7.

3. A new o-modification, heretofore referred to
as p-modification, has been added. The motivation
for this choice of o(t) may be explained as
follows. Since f dependes on ¢(t), roughly
speaking we can say that p(t)/p(t) will be large

when ¢{(t) has high frequency content. Viewing
o(t) as a forgetting factor, we see that in that
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case the estimates, which may be inadequate
because of the excitation of the high frequency
parasitics, are rapidiy forgotten.

Remark 2.2. The proposed p-modification is
closely related to the el-modification used in

[2]. Notice that in the particular case of
regulation (r(t=0) with a single output feedback
controller {(¢(t)=y(t)) the p-modification and the
el—modification with normalization essentially

coincide.

Remark 2.3. To be able to state our stability
theorems in terms of designer chosen parameters
we need to know the upperbound of H#¢{(t)/p(t)H,
e.g., one. To attain this bound, the regressor
vector should contain only filtered signals. This

explains the need for G¢(p) to be strictly

proper. It is important to remark that no
condition is imposed on the bandwidth of F(p),
thus the effect of F(p) is negligible for all
practical purposes. Further explanation are given
in the appendix.

II. THE NEV ERROR MODEL

In this section we derive the new error model.
In contrast with the standard procedure, for our
adaptive tuning problem the error model gives the
tracking error in terms of the deviation of the
actual controller parameters 8(t) with respect to
the known stabilizing parameters GD. To this end

define
§(t):=ﬁ(t)—e°. (3.1a)

writting the control law (2.3) in terms of &(t),
replacing in (2.1) and arranging terms we obtain
the standard error equation (see e.g.[9]).

e(t)=H (p)3(t) gt )ve_(t) (3.1b)
where Ho(p)eR(p) is the transfer function u(t) -
y(t) that results when B(t) is frozen at eo, that
is when

u (t):=e7¢(t) (3.1c)
and eo(t) is the corresponding tracking error.

We need the following key assumption:

A1 e° stabilizes the plant. That is there exists
positive constants L Ao such that

~At
|h (t)[sme °, v20. (3.2)
(] (]
To get the new error model we introduce the

following variable
z(t):=8(t)p(t). (3.3)

This change of variable is a key step in all
subsequent analysis. It is easy to see from (2.4)
that

z(t)=- Hl(p);(t)e(t) (3.4a)

(1) :=¢(t)/p(t) (3.4b)
A

B, (p)2 s (3.4c)
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We can write the error equation (3.1b) in terms
of z(t) as

e(t)=H°(p)z(t)'a(t)+e°(t) (3.5)

The new error model is given then by (3.4},
(3.5). Its key feature is that it is described by
a differential equation which for all possible
solutions can be treated as linear time-varying
with uniforaly bounded coefficients, namely

. - - -
. A z(t) -o I —A¢(t)c° 7e( t)
w(t)=], = _ " w(t)- e
x(t)| |b ¢(t) A 0
(-] L]

(3.8)
where x(t)eR™™ is a state of H (p) with
realization

N PR
Ho(p)-co (pl Ao) bo (3.7)
and
e(t)=c_"x(t)+e (t). (3.8)
The error model defines a
feedback system. Notice that, in view of (2.5c),
(3.4b), the vector signal entering the

multipliers is uniformly bounded.

Remark 3.1. It is interesting to note that the
p-modified estimator is a pseudogradient descent
for the criterion

1 2 2y2 2
Jpi=ple(t) e p(t) | CIS)
where |- lz denots the Euclidean norm.

IV. STABILITY ANALYSIS

The error model (3.4), (3.5) (or its
equivalent state-space representation (3.6)) have
been exhaustively studied in the adaptive control
literature. Both cases, when ¢(t) is possibly
unbounded and when it is bounded, have been
considered. The early results concerning this
equation relied on a strictly positive realness
(SPR) assumption of Ho(p). A major contribution

is due to [10] where, for the case of periodic,
bounded ¢(t), and o'°=0. the SPR assumption is

replaced by a so-called “average SPR" condition.
For a summary of the results pertaining (3.4),
(3.5) when Ho(p) is not SPR, and ¢(t) is possibly

unbounded, see [4,5].

For the adaptive tuning problem conditions for
stabllity are given in [8] for an estimator with
fixed o-modification (i.e., ceR  in (2.42)) and

normalization. The analysis relies on the Lw

small gain theorem. It is shown that there always
exists sufficiently small /0 such that
Lm-stability is insured independently of Ho(p) or

¢#(t). The upperbound on %/0c is dependent on
|e°(t)|un which 1is clearly a signal dependent

quantity.

The use of the p-modified estimator proposed
in' this paper allows us to establish the
following general stability results. First, we
derive an explicit upperbound on the adaptation
gain, that solely depends on the stability margin
of Ho(p), such that the system is L -stable.
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Second, the signal dependent average SPR
condition of [10] is .given in a global context.
Third, conditions to insure exponential stability
are given.

A. Ln-stability analysis

Direct application of the small-gain theorem
to the system (34),(3.5) ylelds the following
result.

Theorem 4.1. Consider the plant (2.1) in closed
loop with the controller (2.3) where the
parameters are updated with (2.4). Choose f in
order for (2.5) to hold. Assume that for the
chosen 8° Assumption A.1 holds. Under these

conditions if 7,0 are chosen such that

770 <A /m

o™ (4.1)

whith Ao. m as in (3.2), then for all bounded
references and initial conditions

e(t), pltleL , #(t),B(t)eL. (4.2)
Furthermore, Am
fe(t)] =k e, ()] K 21 (1 : ). (4.3)
o o
oo

Remark 4.1. Theorem 4.1 states that Lw-stability
of the adaptive tuner is preserved if 7/o'°<7t°/n°.

The result should be Iinterpreted as follows,
Ao/no quantifies the relative stability of the

system in closed-loop with the 4 priori known
stabilizing controller, 1i.e., eoﬁt). On the

other hand, 7 defines the adaptation speed, and
o, By be viewed as the constant part of the

forgetting factor ¢(t). Since no restriction is
imposed on L it may be taken arbitrarily large

to insure stability. However, it is expected that
large values of o, will reduce the effect of

adaptation,restricting the adjustable parameters
to a small neighborhood of 6°.

Remark 4.2. From the proof of Theorem 4.1 it 1s
easy to see that the assumption of stationmarity
on the plant can be easily removed [13]. This
leads to a linear time varying operator Ho(p,t)

and Assumption A.1 should be replaced by
A

t °
sup| |h (t,T)|des— (4.8)
ttO’[o’ ° "

where ho(t.t) is the impulse response of Ho(p.t).-

Remark 4.3. The generality of the result can
hardly be  overestimated. The only restriction
imposed on the plant is linearity, and on. the
controller, that be stable and linear in the
ad justable parameters. No ‘assumptions .on the
plant order, stable invertibility or sign of the
high frequency galn are imposed. Also, we do not
prescribe any particular synthesis methodology
for the controller and the number of adjustable
parameters is at the designer’s disposal.
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Remark 4.4. (4.3) gives a bound for the sup value
of the adaptive system tracking error in terms of
the error for the known fixed controller.
However, it does not provide us with information
about performance improvement since K1>1.

B. Stability-instability boundary

Following the arguments of [11] we have the
slow adaptation result below for the adaptive
tuner with the p-modified estimator.

Theorem 4.2. ([11]), see also .[9,10]). Consider
the adaptive system analyzed in Theorem 4.1 with
ho(t) as in (3.2). Assume that ¢(t) is almost

periodic with generalized Fourler series

1) T alw)e’™, vier
wefl *

where OcR are the distinct Fourier exponents and

(4'. 9’)

{«(w), wel}) are the Fourier coefficients. Define
the matrix
B(w):= £ a(wla (w)'H (-Ju). (4.10)

wef}
If ReA‘(B(u)}ﬁo, then 3y,>0 such that Vae(0,7,),

system (3.6) is
1) exponentially stable if

ReAl(B(u)D-co/w (4.11)

ii1) unstable 1if

-?Jdiexl{B(u)R-co/r (4.12)
(snol

Remark 4.5. An open issue that remains to be
solved is how do we 1insure ‘the existence of
solutions to the adaptive system that will yield
almost  periodic. ¢(t), see (4.9). Similar
stability/instability results for the more
general case when ¢(t) does not have a uniform
average can be derived using the 1dea of sample
average as in [11}].

Remark 4.6. Applylng the arguments of 3.5.3 in
[9] to the new error model it is stralghtforward

to see that the new signal dependent “average
SPR" condition becomes
I Re(H (Jo)}IRe{a(w)a’ (0)}>-0 /7. (4.13)

weR

Thus, the condition imposed on the Nyquist locus
of Ho(p) is less restrictive and depends on the

design parameters c.7. See (5.23) in (9). Notice

that, similarly to Theorem 4.1, robust stability
is enhanced with small A/o-°.

C. Exponential stability

In thls paragraph we give conditions under
which the trivial equilibrium of the homogeneous
part of the error equation (3:.6) is exponentially
stable.

Theorem 4.3. Consider the error equations
(3.6)-(3.8). Assume Ho(p) ‘o be stable with no
repeated poles and denote

'nj:=Re{kJ(Ao)}. J=1,2,..

., RN, (4.14)

Let
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- 1
n:

“min{n }° (4..15)
J
J
Assume
n- 7
1z5nfb] IE“, vnin 1X{ .n}(1+e) (4.18)

holds for some €>0. Under these conditions,
IP=P >0 such that the Lyapunov function

v=u(t)Pu(t)

(4.17)
evaluated along the trajectories of (3.8),
satisfies
\'IS-:V+cle°2(t) (4.18a)
A’ 2 -
c,Somax{—=, 9 (4. 18b)

0

Therefore, the unperturbed part of the system

(3.8) is exponentially stable. Furthermore, the
state vector of the closed loop plant x(t)eR™™
belongs to the residual set

S:={x(t):avg( |x(t)|I=k, Vt = 0,T>0}  (4.18c)
201
2
k:=—max{n }e_ (t)]_. (4.184d)

i

Remark 4.7. As discussed in [8], the exponential
stability of the unperturbed system equations
brings out, via a total stability argument,
important robustnes properties to be adaptive
scheme. In particular, the bursting phenorena
detected in [15) are avoided.

Remark 4.8. Condition (4.16) of the theorem
requires the fixed controller to place the
closed-loop poles sufficiently far to the left in
the complex plane. This condition is certainly
stronger than the one required for Lw-stability.

Also slow adaptation and large values of o are

required. The assumption of distinct poles for
Ho(p) is made, without loss of generality, to

simplify the interpretation of the results.
Exponential stability of the map eo(t)-)x(t) can

also be established [7] imposing additionally an
upperbound on a'o.

V. PERFORMANCE IMPROVEMENT

In this section we are concerned with the
problem of insuring that the use of the adaptive
tuner improves the performance with respect to
the performance attained with the fixed
controller. To this end we consider the tracking
error average performance index (2.2a)

J(7):=avgle?(t)] (5.1)

where for convenience the dependence of J on the
adaptation gain is explicitly shown. When =0,
i.e., no adaptation, the plant is in closed-loop
with the LTI controller (2.3b), (3.1c). The
corresponding error and regressor signals are
eo(t), ¢°(t), respectively. Thus the performance

of the fixed controller is
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J’(0)=avg(e°=(t)]. (5.2)

One way to determine if performance will be
improved by the adaptive controller 1is to
evaluate the performance-index sensitivity with
respect to varliations of the adaptation gain

[16]. If we can show that, around 7=0, the
sensitivity is negative, i.e.,

J éii <0 (5.3)

¥ 9r'y=0

then it would imply that performance index
decreases when the adaptation is turned on. The

performance index sensitivity is evaluated in the
theorem below.

Theorem S5.1. Consider the error equation (3.6).
Then the sensitivity of the performance index
(5.1) with respect to variations of the
adaptation gain ¥ at y=0 is given by

J =4 avg{eono(p)liznl(p)lioeo(t)l1). (5.4)

= = 2]
Remark 5.1. The condition for performance
improvement (5.3) requires the operator

eo(t)-aﬂo(p)[;orﬂl(p)lzoeo(t)]]

to be ‘"sign-preserving in average", i.e., a
passivity condition. Satisfaction of _this
condition for all possible signals eo(t), ¢°(t)

requires Ho(p)Hl(p) to be strictly positive real.

Therefore, is unattainable in practice. Notice,
however, that failure to establish the passivity
of the operator does not imply that performance
is degraded with the adaptive tuner.

(5.5)

To get some 1insight into the nature of
condition (5.3) let us consider the simplest case
of one adjustable parameter and assume that

¢o(t)=a¢cos(w¢t) (5.62)
e (t)=x cos(uw t), w=+w,. (5.6b)
0 ) c e ¢

Some simple but lengthy calculations show that in
this case
2 2

J % % % (@ cos(®, 2 )+a_cos(®_ 0 )1 (5.7)
where

%
ae =H(Jw°) (5.8)

a et [0 o)l o e™=H 1050 -0 )]

Notice that ¢‘, ¢_in (5.7) are due to the phase
shift contribution of Hl(p) when acting on the
signal ¢°(t)eo(t). o

sufficiently large, in the sense that the phase
shift contribution of Hl(p) is negligible in the

If we assume that ¢ is

frequency range of interest,
(5.4) by

. < 2
-J.® davgle (t)H (p)[]e, (t)[e (t)]}.
The requirement of large L

we can approximate

(5.9)

is consistent with

the conditions for preservation of stability of
the previous section. With this approximation a
simple condition for performance improvement can
be easily derived from (5.9) as follows:
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Assume $(t), e (t) almost periodic with
generelized Fourier series (4.9) and
e (t)~ I alw)e (5.10)
weld
L
respectively. Assume further that
Qem. (5.11)
Then, J7 as given in (5.9), is negative if
(5.12)

T Ja(e) |3R_(H (Ju)}>0.
weR °

Thus, performance will be improved with the
adapt ive tuner if the amount of
"Re{Ho(jw))—weighted energy” of ea(t) in the

range of frequencies where RQ(HO(JU)DO is larger
than in the range where RQ(HO(JU)RO. It

important to remark that this condition |is
imposed on the tracking error of the plant in
closed loop with the fixed controller. Therefore,
it may be verified before plugging in the
adaptation, provided some information on Ho(Jw)

and eo(Ju) is available a priori.

is

VI. CONCLUDING REMARKS

The problek of on line tuning of the
controller parameters to improve performance for
coarsely known plants has been addressed in this

paper. The controller structure and number of
adjustable parameters is determined by the
designer. We require the knowledge of a

stabilizing pérametrization for the controller
but otherwise impose no additional restrictions
on the plant except linearity.

A fundamental modification introduced in the
paper is the utilization of a new (p-modified)
parameter ‘estimator. For this p-modified update
law we have studied conditions under which the
inclusion of the on line tuning procedure does
not destabilize the otherwise stable closed loop
system. Specifically we derived conditions to
preserve- L’-stabillty. slow adaptation stability

/instability and exponential stability. Both the
l.“ and exponential stability result are global on

the initial conditions and external references
and ‘they don't rely on persistency of excitation
arguments.

Besides: the exponential stability property
mentioned - above, performance of the adaptive
system is evaluated in two different ways: First,
showing that- the sup value of the tracking error
is bounded from above by a constant times the sup
value of the error obtained with the fixed
controller. Second, giving conditlions under which

the -RMS performance index decreases when
adaptation is turned on.
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APPENDIX

Lemma A.1. (See also [1], [12]), Consider the
three input m output system (2.3) with state
realization

u(t)

ir(t)=AFxr(t)+BF v, x.[(0) (A.1a)
r(t)

¢(t)=CFxF(t) (A.1b)

where Ap is Hurwitz with different eigenvalues
and (A_,B_,C_) is minimal. Let

FFF R

p(t)=-pp(t)+f (A.22)
£=8[ ju(t) [+|y(t) [+]r(t){+1 (A.2b)
where we choose
6=|CF| |Bf| (A.3a)
pl0)z|C | [x (0] (A.3b)
usl1n|Re(R‘)| (A.3c)

1
with Al the eigenvalues of A}_. Then
|¢(t)|
——=1,VteR (A.4)
p(t) -
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