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ON PERFORMAICE IWROVEMENT OF ADAPTIVE TUNERS

Yu Tang , Romo Ortega Laurent Praly+

Abstract: Here we depart from the standard
stabilization objective of adaptive control and
assume that for the plant to be controlled a
parametrization of the regulator insuring
closed-loop stability is known. The structure,
dynamic order and number of adjustable parameters
of the eempensator are at the designer's disposal
and no assumptions, except linearity are imposed
on the plant. We propose an on-line tuning
procedure for the controller parameters intended
to improve performance and such that global
stability is preserved. Performance of the
adaptive system is evaluated in two ways:
deriving uniform bounds on the sup value of the
tracking error; giving conditions under which RMS
performance index decreases when adaptation is
turned on.

Note: This is a shortened version of the original
paper which is available upon request to the
second author. All proofs are omited.

I. INTRDUCTION

Adaptive control was originally motivated by
the problem of on-line adjustment of some
controller parameters to insure acceptable
performance for linear plants with unknown or
time varying coefficients. A landmark in the
development of the field was the proof, circa
1980, that several adaptive control algorithms
asymptotically attain the optimal performance for
a relatively large family of plants. Performance
was expressed in terms of output error tracking,
usually referred to as model reference matching.
The aforementioned family of plants (G (s} is

continuously parameterized by a vector kcRm. It
was assumed the following hold: stable
invertibility, known sign of the high frequency
gain, relative degree and upperbound on the order
of the system. Interestingly enough no assumption
regarding the parameter vector is required, but
instead it is allowed to range on all R¶ Leaving
aside the problem that model reference adaptive
controllers are only concerned with tracking
error, neglecting the disturbance rejection
objectives, these controllers suffer from two
main drawbacks: first, the usual procedures
assume only that the plant is a black box of
known order, therefore the requirement of model
matching dictates the controller structure. Thus
no advantage is taken of much information which
S
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is usually available about the plant, but in the
estimator initialization; second, the nober of
adjustable parameters is determined by the
assumed order of the plant and not by the number
of adjustable parameters which the controller
needs to achieve acceptable performance.

The proof that "mild" deviations of the plant
from the class described above could cause the
adaptive control algorithms to go unstable,
triggered the interest on the 1980's on
robustness issues. Most researchers focused their
attention on modifying the parameter estimator
and preserving the model reference controller
structure in such a way to insure boundedness of
the signals for plants that do not belong to the
aforementioned class. That is, the main thrust of
the research was focused on stabilizing a larger
class of plants. This problem is of
unquestionable theoretical interest and we refer
the reader to [4,51 for an account of some of the
existing results.

In several practical applications, designing a
fixed parameter controller that stabilizes the
plant can be accomplished in spite of the reduced
prior information, see e.g. [61. Tuning some of
the controller parameters in a neighborhood of
the stabilizing set is then required to improve
the performance. It is clear that the tuning
procedure should at least guarantee that overall
global stability is preserved. To make the
procedure of practical interest the conditions
for stability should not rely on assumptions on
the plant like known order or stable
invertibility. Also it is desirable to avoid
restrictions on the choice of the controller
structure.

In this paper we assm knowledge of a
regulator parametrization that stabilizes a
family of plants and propose an on-line tuning
procedure for the controller parameters intended
to improve performance. It is only required the
plant to be linear time invariant (LTI) and the
controller to be linear in the adjustable
parameters. Performance is evaluated In terms of
output tracking error capabilities. In spite of
the fact that the controller parameters are
continuously updated, we use the term tuning to
refer to the proposed control design. This to
highlight the fact that we are applying an
adaptive controller to a plant for which we know
a controller parametrization that insures
closed-loop stability. The task of the estimator
is then to search on the neighborhood of the
stabilizing set for a controller which yields
"smaller" tracking errors. That is, our objective
is, instead of stabilizing a possibly unstable
plant, to iwprove performance via on-line
parameter tuning.

Instrumental for our analysis is the
introduction of a new estimator which includes a
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signal normalizacion [1] and time varying
a-modification similar to those reported in
[2,31. The main contributiors of the paper are as
follows: 1) A new parameter estimator that yields
an error model, suitable for the stability
analysis of adaptive tuning problems is derived.
This error model is described by a set of
differential equations such that for all possible
solutions they can be treated as linear time
varying with all parameters uniformly bounded. 2)
Conditions for stability of the overall system
are given in tern of the stability margin of the
plant in closed loop with the fixed stabilizing
controller and the adaptation speed. 3)
Performance of the adaptive system is evaluated
in two different ways: deriving a uniform bound
on the sup value of the tracking error, which
depends on the sup value of the error obtained
with the fixed stabilizing controller; giving
conditions under which the performance index
decreases when adaptation is turned on.
Conditions that insure the unperturbed error
equations to be exponentially stable are a,lso
derived.

The remainder of the paper is organized as
follows: we present in Section 2 the problem
formulation and the proposed estimator. The new
error model, obtained via a state variable
transformation, is derived in Section 3. In
Section 4 we carry out the stability analysis of
the error model. Conditions for L and

exponential stability are derived and a global
stability/instability boundary (101 is
established. In Section 5 we present the analysis
for performance improvement. Finally, we end up
the paper with some concluding remarks.

II. PW3MS STATENT AN PWOSED SUEM

The plant to be adaptively tuned is
represented by

(2.1)
where p: =d/dt, G(p)sR(p) Is an n-th order
strictly proper tranfer function and u(t) and
y(t) are the process Input and output,
respectively. Bounded external disturbances may
also be considered in the model without affectina
the results. They are omitted here for brevity.

Along the paper we will pursue as the design
objective to impose a desired behavior to be
plant output. We express this objective in ter
of an output tracking error e(t) and use the
following criteria to evaluate perfornce

t ,T
a

avg[e2(t)]:limj Je2ec)dr
t
0

Ie(t)jj:=suple(t)
tto

The control signal is taken as

u(t)=e(t)T,(t)

(2.2a)

(2.2b)

(2.3a)
where *(t)eR is an auxiliary vector obtained by
filtering the plants input, output and external
reference

[u(t)

Lr(t)J
(2 3b)

where F4(p)eR(Np) is required to be strcitly

proper and stable, 6(t)eRa is the control
parameter vector to be adjusted on line.

Remark 2.1. For ease of representation we have
chosen a controller structure where all the
parameters are adjusted on line. In the case
where only a few parameters are to be adjusted we
can split u(t.) in two ters and lump the part of
the controller with fixed parameters with the
plant. As will become clear later, this does not
affect any of the results below.

We require the knowledge of a vector e such

that for 0t)=e the closed-loop system (2.1),
(273) is stable. It is clear that some prior
knowledge, as described for instance In [6I, is
thus required. To improve the performance (e.g.
when the plarnt changes) we then design an
estimator that will search in a neighborhood of
a in the parameter space for a better regulator

parametrization.

We propose the following update law

*(t)e(t)iM=_C-srMt}6Mt}-y -- aWe, *(o)=G, r>o
p t)2 °

p(t3-APpMtf, p(O)>Oo po

p(t)
cr(t)=cr W (2r.4)

where f is a function that depends on the choice
of the controller structure(therefore on *(t)),
and chosen such that

i) p(t)>cI for some e >0

ii) p(t)t-Sp(t)
(2.5a)
(2.Sb)

I I
i) p1#jyI(tJ:-P(t)-i lo(t)IsI,VttO. (2.Sc)

i

A general function f for the estimator (2.4) is
given In Lea A. I in the Appendix.

Three are the key features of the proposed
estimator:
1. It includes a normalization factor p(t), which
has been proven essential for all recent
robustness studies [5]. The important point to
note here is that p(t) is needed to bound I,(t)I
and not the effect of the uodeled dynamics as
in the robust stabilization problem, see [141..
Therefore it does not require prtor iibformation
on the plant for its implementation.
2. The estimator is driven by a term B which

represents the best a priori estimate for the
controller. Notice that if the estimate is good,
that is, e(t) is small, then 8(t) will remain
close to e . Otherwise it will depart from it at

a speed essentially determined by 7.
3. A new c-modification, heretofore referred to
as p-modification, has been added. The motivation
for this choice of cr(t) may be explained as
follows. Since f dependes on *(t), roughly
speaking we can say that p(t)/p(t) will be large
when *(t) has high frequency content. Viewing
c(t) as a forgetting factor, we see that in that
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case the estimates, which may be inadequate
because of the excitation of the high frequency
parasitics, are rapidly forgotten.

Remark 2. 2. The proposed p-modificat ion is
closely related to the e -modification used in

[2]. Notice that in the particular case of
regulation (r(t=O) with a single output feedback
controller (O(t)=y(t)) the p-modification and the
eI-modification with normalization essentially

coincide.

Remark 2.3. To be able to state our stability
theorems in terms of designer chosen parameters
we need to know the upperbound of KM(t)/p(t)K,
e.g., one. To attain this bound, the regressor
vector should contain only filtered signls. This
explains the need for G,(p) to be strictly

proper. It is important to remark that no
condition is imposed on the bandwidth of F(p),
thus the effect of F(p) is negligible for all
practical purposes. Further explanation are given
in the appendix.

II. THE NEW ERROR MODEL

In this section we derive the new error model.
In contrast with the standard procedure, for our
adapt ive tuning problem the error model gives the
tracking error in terms of the deviation of the
actual controller parameters O(t) with respect to
the known stabilizing parameters 6 . To this end

0

define

&(t):r0(t)-6l
0

(3. la)
Writting the control law (2.3) in terms of @(t),
replacing in (2.1) and arranging term we obtain
the standard error equation (see e.g.9]).

e(t)=H (p)5(t)T4(t)+e (t) (3.1b)
where H (p)eR(p) Is the transfer function u(t) 4

y(t) that results when 6(t) is frozen at 6 , that
0

is when

u (t): +(tOM (3. lc
o a

and ea(t) is the corresponding tracking error.

We need the following key assumption:

A.1 6 stabilizes the plant. That is there exists

positive constants a , A such that
a a

- t

Ih (t) fsm e ,V.
0 o

(3.2)

To get the new error model we introduce the
following variable

z(t):=5(t)p(t). (3.3)
This change of variable is a key step in all
subsequent analysis. It is easy to see from (2.4)
that

z(t)=- H (p)j(t)e(t1
i(t): =(t)/p(t)
H Ap7o

(3.4a)
(3.4b)

(3. 4c)

We can write the error equation (3.ib) in terms
of z(t) as

e(t)=H (p)z(t)Tq(t).e (t) (3.5)
The new error model is given then by (3.4),

(3.5). Its key feature is that it is described by
a differential equation which for all possible
solutions can be treated as linear time-varying
with uniformly bounded coefficients, namely

A z(t) -o;I -A °t)c 2T t
W(t)1= 0 9c(t)- e

x(t)' b,(t) A0 Q

(3.6)
where x(t)eR0 ' is a state of H (p) with

a

realization

H (p)=c (p1-A )- b
0 * 0 0

and

e(t)=c Tx(t)+e (t).
0 0

(3.7)

(3.8)

The error model ie iwes a
feedback system. Notice that, in view of (2.5c),
(3.4b), the vector signal entering the
multipliers is uniformly bounded.

Remark 3.1. It is interesting to note that the
p-modified estimator is a pseudogradient descent
for the criterion

J :=r[e(t)2+ p(t)2I(t)12]p 2 a tE

where j1 denots the Euclidean norm.

IV. STABILITY ANALYSIS

The error model (3.4), (3.5) (or its
equivalent state-space representation (3.6)) have
been exhaustively studied In the adaptive control
literature. Both cases, when *(t) is possibly
unbounded and when it is bounded, have been
considered. The early results concerning this
equation relied on a strictly positive realness
(SPR) assumption of H (p). A major contribution

0

is due to [10] where, for the case of periodic,
bounded *(t), and ar 0, the SPR assumption is

replaced by a so-called "average SPR condition.
For a summary of the results pertaining (3.4),
(3.5) when H (p) is not SPR, and (t) is possibly
unbounded, see [4,5].

For the adaptive tuning problem conditions for
stability are given in [81 for an estimator with
fixed a-modification (i.e., ocR in (2.4a)) and

normalization. The analysis relies on the L
m

small gain theorem. It is shown that there always
exists sufficiently small v/cr such that
Lao-stability is insured independently of H (p) or

*( t). The upperbound on r/a- is dependent on
Ie0(t)1 which is clearly a signal dependent

quantity.
The use of the p-modified estimator proposed

in this paper allows us to establish the
following general stability results. First, we
derive an explicit upperbound on the adaptation
gain, that solely depends on the stability margin
of H(p), such that the system is LO-stable.
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Second, the sIgnal dependent average SPR
condition of [ 101 is given in a global context.
Third, conditions to insure exponential stability
are given.

A. L
co
-stability analysis

Direct application of the small-gain theorem
to the system (t4),(b.E yields the following
result.

Theorem 4. 1. Consider the plant (2.1) in closed
loop with the controller (2.3) where the
parameters are updated with (2. 4). Choose f in
order for (2.5) to hold. Assume that for the
chosen e Assumption A.1 holds. Under these

conditions if 7,o- are chosen such that

T/u <A0/m (4. 1)

whith A a as in (3,2), then for all bounded

references and initial conditions

e(t), p(t)eL , *(t),.(t)EL:.

Furthermore, Am

@0|eWt)|XsK,.e Vt|-1(- ; (4.3)
0 0

Remark 4.1. Theorem 4.1 states that L-stability

of the adaptive tuer is preserved if 7/0 <A In.

The result should be lnterpreted as follows,
A/m quantifies the relative stability of the

system in closed-loop with the ^ priori known
stabilizing controller, i.e., e4O(t). On the

0

other hand, y defines the adaptation speed, and
may be viewed as the constant part of the

forgetting factor u(t). Since no restriction Is
imposed on r, it may be taken arbitrarily large
to insure stability. However, it is expected that
large values of u will reduce the effect of

adaptation,restricting the adjustable parameters
to a small neighborhood of e .

Rekrk 4.2. From the -proof of Theorem 4.1 it is
easy to see that the assumption of stationarity
on the plant can be easily removed [131. This
leads to a linear time varying operator H (p,t)
and Assumption A. 1 should be replaced by

A

(4.8)tw oasupfl|h(tcr)| 0

where h (t,r) is the impulse response of H (p,t).
0

Re krk 4.3. The generality of the result can
hardly be overestimated. The only restriction
imposed on the plant is linearity, and on the
controller, that be stable and linear in the
adjustable parameters. No assumptions -on the
plant order, stable invertibility or sign of the
high frequency gain are imosed. Also, we do not
prescribe any particular synthesis met-hodology
for the controller and the number of adjustable
parameters Is at the designer's disposal.

(4.2)

Reark 4.4. (4.3) gives a bound for the sup value
of the adative system7tracking error in term of
the error for the known fixed controller.
However, it does not provide us with information
about performance improvement since K >1.

B. Stability-instability boundary
Following the arguments of [ii1 we have the

slow adaptation result below for the adaptive
tuner with the p-modifled estimator.

Theorem 4.2. ([1i1i see also [9,10i). Consider
the adtive- system analyzed in Theorem 4.i with
h (t) as in (3.2). Assume that *(t) is almost
0

periodic with generalized Fourier series

Ut.) S a(W)eJtVteR (4.9)
WeD

where "cR are the distinct Fourier exponents and
{{(w), WED) are the Fourier coefficients. Define
the matrix

B(w):= S a(w)a (w) H (-Jw).
WED

(4.10)

If ReA {B(w))00, then 3y*>0 such that VAc(0,y*),
system (3.6) is
1) exponentially stable if

ReA{IB(w))}>-olrY/
ii) unstable if

maxReA {BU(w)I<-u/

(4.11)

(4. 12)

Remark 4.5. An open issue that remains to be
solved is how -do we insure 'the exi-sterce of
solutions to the adaytive system that will-yield
-.lmost periodic *(t). see (4.9). Similar
stability/instability results for the more
general case when *(t) does not have a uniform
average can be derived using the idea of sample
average as in 111[.

emark 4.6. Applying the arguments of 3.5.3 in
[91 to the new error model it Is straightfornrd
to see that the new signal dependent average
SPR' condition becomes

I Re{H (Jco)}Re{a(w)cwf(wJ}>- /7.
WER * 0

(4. 13)

Thus, the condition imposed on the Nyquist locus
of H (p) is less restrictive and depends on -the

0

design parameters a,. See (5.23) in [9]. Notice

that, similarly to Theorem 4.1, robust stability
is enhanced with small A/v.

a

C. Exponential stability
In this paragraph we give conditions under

which the trivial equilibrium of the homogeneous
part of the error tion (3.6) is exponentially
stable.

Theorem 4. 3. Consider the error equations
(3.6)-(3.8). Assume H(p) to be stable with no

repeated poles and denote

71i:o=Re{x(A ), J=12,. .,+n.

Let

(4. 14)
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I
lo: --in- >

Assume

l ;lb.+ +2 {z I- (1+)oi EofX r

a

(4.15)

(4.16)

holds for some c>Q. Under these conditions,
3P=P'>O such that the Lyapunov function

V=o(t)TPw(t) (4.17)
evaluated along the trajectories of (3.6),
sati1sf ies
VS-cV+c e 2(t)

I
2

%.
i-2 {1 2 f

(4. 18a)

(4. 18b)

Therefore, the unperturbed part of the system
(3.6) is exponentially stable. Furthermore, the
state vector of the closed loop plant x(t)cRn

belongs to the residual set

S:-{x(t):avg{ jx(t2}Sk, Vt t O,T>O}

2cI
k:=---a -£I{ye2(t)l.

(4. 18c)

(4. 18d)

Remark 4.7. As discussed in [91, the exponential
stability of the unperturbed system equations
brings out, via a total stability argument,
important robustnes properties to be adaptive
scheme. In particular, the bursting phenomena
detected in [15] are avoided.

Reuark 4.8. Condition (4.16) of the theorem
requires the fixed controller to place the
closed-loop poles sufficiently far to the left in
the complex plane. This condition is certainly
stronger than the one required for L -stability.
Also slow adaptation and large values of a are

required. The assumption of distinct poles for
Ho(p) is made, without loss of generality, to

simplify the interpretation of the results.
Expornential stability of the map e (t)-*x(t) can

0
also be established f7] imposing additionally an
upperbound on a.

0

V. PERFO I VEMENT

In this section we are concerned with the
problem of insuring that the use of the adaptive
tuner improves the performance with respect to
the performance attained with the fixed
controller. To this end we consider the tracking
error average performance index (2.2a)

J(v):avg[e2(t)] (5.1)

where for convenience the dependence of J on the
adaptation gain is explicitly shown. When =0,
i.e., no adaptation, the plant is in closed-loop
with the LTI controller (2.3b), (3.1c). The
corresponding error and regressor signals are

e(t), *(t), respectively. Thus the performance
of the fixed controller is

J (O)=avgte 2(t) I. (5.2)7 0
One way to determine if performance will be

Improved by the adaptive controller is to
evaluate the performance-index sensitivity with
respect to variations of the adaptation gain
[161. If we can show that, around r 0, the
sensitivity is negative, i.e.,

(5.3)7 Byp
then it would imply that performe index
decreases when the adaptation is turned on. The
performance index sensitivity is evaluated in the
theorem below.

Theorem 5.1. Consider the error equation (3.6).
Then the sensitivity of the performance index
(5.1) with respect to variations of the
adaptation gain 7 at 7=0 is given by

(-T
J =-4 avg{e H (p)[OH l(p)[joeM(t)]}. (5.4)

Elm
Remark 5.1. The condition for performance
improvement (5.3) requires the operator

- T_

e0(t)_0(p3 0 H1(p) [O0eo0t) I 1 (5.5)
to be "sign-preserving in average", i.e., a
passivity condition. Satisfaction of this
condition for all possible signals e (t), * (t)
requlres H (p)H (p) to be strictly positive real.

Therefore, is unattainable in practice. Notice,
however, that failure to establish the passivity
of the operator does not imply that performance
is degraded with the adaptive tuner.

To get some insight into the nature of
condition (5.3) let us consider the simplest cae
of one adjustable parameter and assume that

(5. 6a)00(t)=a cos(w ot)
e (t)=a cos(w t), w *co.
0 e c e

Some simple but lengthy calculations show that in

this case

J =-ct
2 [a cos(0 44)+a cos(0 4+)J (5.7)

7wher + 0 0

where

a e =H(Jc )

e *+=H [ (j(c 4+ ) ;
c

(5.8)

&-e3#-H 1 ( .(w-WO) I

Notice that O*. in (5.7) are due to the phase

shift contribution of H (p) when act ing on the

signal (t)eo(t). If we assume that 0 is

sufficiently large, in the sense that the phase
shift contribution of H (p) is negligible in the

frequency range of interest, we can approximate
(5.4) by

-J7 4avgf e (t)HI(p) [ lo(t)12eo(t) l} (E 9)

The requirement of large ac s consistent with

the conditions for preservation of stability of
the previous section. With this approximation a

simple condition for performance improvement can

be easily derived from (5.9) as follows:

2313
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Assume *(t), e40(t) almot periodic with
generalized Fourier series (4.9) and

e ( t )- I a(w)eju

respectively. Assume further that

0 =r.

(5. 10)

(5. 11)

Then, J7 as given in (5.9), is negative if

S jr(w) 12R { H0(Ju))>0.
0

(5.12)

Thus, performane will be iqroved with the
adaptive tuner if the amount of
"R{Ha(Jo]}-weighted energyn of e (t) in the

range of frequencies where R {HI($)}>0 is larger
than in the range where R {H (Jw)}<O. It is

ae0
important to remark that this condition is
imposed on the tracking error of the plant in
closed loop with the fixed controller. Therefore,
it may be verified before plugging in the
adaptation, provided some information on H1(Ju)

0.~~~~~~~~~~~~~and e (Jo) is avrailable a priori.

VI. ND1 R

The probl- of on line tuning of the
contra ler parameters to improve perforance for
coarsely known plants has been addressed in this
paper. The controller structure and number of
adjustable parameters is determined by the
designer.- require the knowledge of a
stabilizing petametrlzation for the controller
but otherwise' impose no additional restrictions
on the plant except linearity.

A fundamental modification introduced in the
paper is the utilization of a new (p-modified)
parameter estimator. For this p-modified update
law we have studied conditions under which- the
inclusion of the on line tuning procedure does
not destabilize the otherwise stable closed loop
system. Specifically we derived conditions to
preserve La-stability, slow adaptation stability
/instability and exponential stability. Both the
L and exponential stability result are global on
the initial conditions and external references
and they don't rely on persistency of excitation
arguments.

Besides the exponential stability property
mentioned -above, performance of the adaptive
systes is evaluated in two different nys: First,
showing that the sup value of the -tracking error
is bounded from above by a constant times the sup
value of the error obtained with the fixed
controller.- Second, giving conditions under which
the -RMS performance index decreases when
adaptation is turned on.
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APMPIX

Leo A.i. (See also [1i, [12]). Consider the
three input a output system (2.3) with state
real izat ion

u(t)
t Ax (t)X +B yY(t ) (0) (A-la)

r(t)

0( t)=C X ( t) (K$FTF
Where A is Hurwitz with different elgenvaluesp
and (AF,BF,CF) is minimal. Let

H t)=-p(t)+f (A.2a)
f=[ ju(t) I+ty(t) j+Jr(t) 1+1 (A.2b)
where we choose

~ICF1 IBfI
p (0)t ICFl IXF(0 )I
gsminlRe(A1 )I
with A the eigenvalues of A,. Then
IF

jt(t)J
p(t)- V.CR

(A.3a)
(A.3b)

(A. 3c)

(A. 4)
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