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PERIODIC SOLUTIONS IN ADAPTIVE SYSTEMS: THE REGULAR CASE
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Absteact. We study adaptive systems in presence of small periodic foreing terms (reference signals

noise) and without any assumption on the plant order. Poincaré method is applied. A necessary condition

for existence of periodic solutions is written in terms of existence of zeros for a bifureation equation. This

condition is sufficient if these zeros are non degenerate.

In this latter case, called the regular case, o

suffcient condition for (unjstabilty i also given. An example illutrates these results.
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1. INTRODUCTION
Background: It is now well established that boundedness of all the

solutions of adaptive linear schemes is qualitatively as a robust pro-

perty as exponential stability is for linear feedback systems (Praly,
1952, 1983, 1986). But "bounded” does not imply “satisfactory”. A

more qualitative study of solutions of interest is nevded. This

justifies the current attention paid to the study of the local proper-
s of adaptive linear systems.

Kosut and Anderson (1984) have proposed to linearize the sys-
tem about 3 time function called the tuned solution and chosen in
order to simplify the study the linearized system. Riedle and Koko-
tovic (1985) have completed this approach in the case of slow adap-

tation. Usi

averaging theory, they have derived sufficient condi-
tions for stability and unstability of the linearized system (see also
(Kokotovic et al. (1985), Riedle et al. (1988)). However a technical
difficulty to extend this result to the truely nonlinear systems stands.
y
of the linearized system and the fact that the tuned solution is actu-

i the choice of the tuned solution mentionned above: the simplic

ally a solution of the nonlinear system are incompatible in general,
In the limiting case where we have an approximation of 2 solution,
the results of stability (but not unstability) is completed invoking 3
total stabilicy argument as proposed by Anderson et al. (1986). Fol-
lowing. this

fes and under the restrictive assumption that the
tuned solution is exactly a solution, assumption proposed by Riedle
et al. (1985), a robust stabilicy result for the nonlinear system has
been derived by Praly, Rhode (1985).

However, using a different. approach, Riedle and Kokotovic
(1086) for the continuous time case and Praly (1985) for the discrete
time case bave obtained more satisfying results. The averaging
thory is applied to a reduced order nonlinear system instead of the

lincarized system as above. This requires a coordinate transforma-

tion based on the existence of a locally attractive integral manifold

ntroducing stationnarity assumptions from the begining, similar
results are obtained wsing two time scale averaging technique as
proposed by Liung (1977) (see also Bodson et al. (1986).

In

paper, we complete these resulis for the simpler case of
o periodic forcing term. A necessary condition and a sulficient con-
dition for existence and a sufficient condition for stabilicy of &
periodic solution is derived using the Poincaré method (see chap.
VILS in (Lefachetz, 1977), for example).

Problem formulation: Consider a time invariant finite dimen-
sional linear system with state Y, input u, extrancous additive dis-
turbance d, described by:

Y(E)=F Y(k)+ G ulk) + H d(k) 1)

i closed loop with & parameterized state feedback and reference

wlk) =

K(@(k)) Y (k) + J((6)) r (k) a2

whose parameters are adapted by:

Hk+1) = o(k) + LY (k)ok)r (£) MK ) 3

The L function characterizes a family of adaptation laws indexed
by Ak ). The closed loop system can readily be written in:

V) = AGE) V() + BE@k)w
ok

()
+ (Y (k) ak)w(E)AR)

with w0 =(r 4. It turns out that most adaptive controllers in feed-
Uack with a linear time invariant system with arbitrary order and
extraneous additive disturbance satisfy (1.4). For example i a least
square algorithm with forgetting factor is used, the form (L4) is
obtained by incorporating the columns of the covariance matrix in
the Govector. If an indirect pole placement were used, the function
A(6) would incorporate the operation of solving the linear system
siven by the Bezout identity... More interestingly, in all these


praly
Text Box
Proceedings of the l0th IFAC Congress, Munich, 1987, Vol. 10, pp. 40-45.


cases. the C function satifes (at least localy )
COTX LT = CIX feh), Ve 20 ws)
Consequently, if the forcing term w satsfies

Tek) €07 Wk 19)
e following transformation

VX =Y. Ve = a=en )

eads

N(E=1) = AGR)X(E) - B o .
ko) = K)o+ cuumy,.uhun‘ )

The smaller ¢ is (i.e. the forcing term is), the slower § is adapted. in
his circumtance, the actual system (L) is 3 small peréurbation of
he following system, called frozen systems

Ny (k1) = A8 (k) X, (k) + B8 (k) v(k)

bke) = 8 (k) 9

“This system can be considered as 8 family of linear systems indexed
by 67 (0). In particular. for © bounded, this system has a unique
olution (X, (6; (0)£), 9 (0), bounded on (-00,50) associated with
cach 0 (0) for which A (9 (0)) has no eigenvalue on the unit circle.
Moreover. this solution is periodic whenever v is periodic

T the following, our problem s to study under which condic
Gons this property holds for the actual system (L) with ¢
ullciently small (.. smal forcing term or orced slow adaptation)

The following tions will be used:
is Neperiodic (.e. periodic with period N).

AZ: There cxists an open set T such that A (8), B(9) are continu-

ously diferentiable on I
ABO(X 0,0,7) is continuously differentiable in X 2,0 7.

Assumption AL requires that both the reference and the disturbance

are Neperiodic, It is motivated by our desire of investigating the
local properties of the adaptive system around a particular solution.
For ease of interpretation of this analysis, this solution should be
stationnary. In this context, the periodic case is the simplest. Note
however that by a total stability argument (Theorem 1.1 of Ander-
son et al. (1986) for exampl), the results extend o any v which
can be approximated by a periodic sequence if the corresponding
approximating solution is hyperbolic
The regularity assumptions A2, A3 are generally satified. However
behind dhis restriction (o the set T is the problem of the leading
cocllcient going 1o zero in MRAC schemes or the idenified model
wabilizability in indirect pole placement schemes.

In section 2, we study how existence of M-periodic solutions of
(8.3), for any M, is related to the existence of 8, satsfying:

et
E(0) = Z, C(X; (0 k). 8; v(k),0) =0 (110)

In section 3

we show how the sta

y of these particular solutions.
4

is siven by the cigeavalues of A (6, ) and 92(s, ). Each of these
sections is illustrated in the example of section 4.
To simplify the following expressions, we omit the arguments

©.in the C function since they are unimportant.

2. EXISTENCE OF A PERIODIC SOLUTION
Let us frst consider the frozen system (1.9). Two cases are (o

be considered:

) The regular case: wissuch that A ()" i nom singu-
lar.  Then (19) has a unique N-periodic solution
Xy (k)07 (. )) satisfying:

Nx(0k) = AQF Xpx(@h)+ S AT TR (<)
Byxlek) = v @y

Notice that if ¢ is in T, X (¢k) is (locally) continvously
diferentiable in ¢, uaiformly in k
i) The singular case:  Gissuchtha 4 (¢}~ is singular,
with M multiple of N, but A (¢) has no eigenvalue in the spectrum
of v. Then (19) has a linear manifold of M-periodic solutions
(00 (94 )87 (9.4)), spanned by the kernel of A ()41

In these two cases, the initial conditions (Y, 4 (¥0), §7 (¢:0))
of these M-periodic solutions are fixed poiats of the map transforrm-
ing the inital condition (X, (0), 8 (0)) into the values at time M
(37 (M), 9 (M), using (19) recursively. Similaely, let Ty be this
0 called Meadvance map associated with the actual system (L),

(), 1) = T (X (0), 0)) @2

It (X(0),4(0)) is the inicial condition of an M-periodic solution of
(18), it is a fixed point of Ty The converse is true when M is &
multiple of N:

Lemma 2.1: [Assertion 1 of th.3.28 of Arnold (1975)): (X (k ).6(k ))
it an M-periodic solution of (L8], with M multiple of N, if and only

f its initial condition (X (0),40)) is a fized point of Ty .

Instead of looking for fixed points of Ty, we can equivalently
(for €£0) Took for zeros of Z, (X f¢) defined by:

Zu)_ (10
= o (Tuet o
() [13] 0 o
e by
Zu(X(0)4(0)9) = [ 1 XX O (29
= orae)

Let (X (0,6)63(0,6)¢) denote a zero of Zy . By defnition of Zy,
(X, (0,6)83¢(0,0)) i an initial condition of an M-periodic solution of
(1.8) we denote by (Xy (k)0 (k €)). Let (X*,9°) be one of the

accumulation points for ¢ going to zero (i it exists) of the initial

conditions (Xi (0,6)3 (0.0), ie. there exists 3 sequence of ¢ con-
verging to zero such that the corresponding sequence
(X4 (0,6)3(0.0)) comverges o (X” 7). We have the following
necessary condition for existence:

Theorem 2.1: Under assumptios

Alto A3, teger M, if
defined aboe, is in T, there cxista an M-periodic solution of
the frozen system (Xpa (9" k)07 (¥° K)), with i
7). which is

solution of the actual system and v° satisfies

4 condition

(k).

accumslation point of (X (k ¢

£ et s



Note that A4 (v" -1 may be singular.
i) In the theory of critical systems (see Miller, Michel (19

Remark 2.1:

2), equar

) is called the bifureation equation. To obtain tis equation

in our case, we have first to evaluate Xy (k) for cach ¢. For
this, one can use the first comments of this section. Secoud, with C
siven by the adaptation law, we evaluate the sum of (2.5). This is

usually done using Parseval's Theorem.

i) A< known from the averaging theory (see Millr, Michel (1982

for cxample), the bifurcation equation is also the condition for

to be an cquilibrium point of the following “averaged” system

obtained by replacing X (£) by Xy (6 (k)£ in the scond equa-

tion of (13)

By (k1) = 4, () + € Cu Bun (k)
'

Culf) = 7 Z,C X (04)0)

8)

This point of view has been considered by Ljung (197), Bodson et
al (1986).

i) The problem of existence of solutions ¥* is of main interest. In
the case of model reference adaptive controllers, Pomet (1986) has
cstablished that, genericaly, the correponding bifurcation cquation
s solutions (sce also (Riedle, 1986)).

+) Theorem 2.1 gives us all the possible accumlation sequences of
M-periodic solutions of (18) as ¢ goes to zero. In particular, if the
bifureation cquation has no solution ¥*, then cither (1.8) has no
periodic solution for ¢ in a neigborhoud of zero or By (0,¢) has no

accumulation points in the regularity domain T
Section 1, we propose an example to illustrate the use of

this Theorem.

Proof: < Since ¢" is in T, we can use assumptions A2, A3 for ¢ in
a neigborhoud of zero. The solution (Xu (& ) (k ) with initial
condition (X (0.6)f3(0.6)) depends continuously (at least for finite
&) on the parameter ¢ and this initial condition. Consider o
sequence of ¢ converging to ero such that (Xy (0.) (0,)) con-
C*0°). A Timit (X (& 0)0(k 0)) exists also for all & and
t i an Meperiodic

verges to (.
by continuity and choice of (Xy (0,6).0y (0.0))

solution of the frozen system (1.9), i.e0
Xk 0) = Xy (6" k), b (k 0) = v, ¥k (27
The conclusion follows with continuity of €. >

To obtain a suficient condition in the regular case and Me=N,
we introduce the
Bifurcation Equation assumption: The functions A (4),
B(8), C(X.0) and the sequence v are such that there exista a vec-
tor ¢, belonging to T and satislying

wa
EW) = 5 ClXn(s" k)¢ ) =0 (28)

* non degenerate, i.. the matrix.

') = ) (29)

[

and A (") 1 ace non singular.
Theorem 2.

A3 and the bifurcation

Under assumptions A1 1
mption, there ezists ¢, such that for all .|| < ¢

the syatem (18] has o (locally unigue) N-periodic solution
(X (& ), 65 (k ), continsously differentiable in .

isfying

Ve (210)

X (€ 0) = Xy (67 k) . O (k 0)

Comequently the vectors Oy (k) stay wniformly in on e
neighborhoud of the point ¥* and in particular by (k €) belongs to I'
for ll k.

Remark 2.2: i) On the contrary of Ljung (1977) or Bodson et al.
(1956), no stability assumption is needed for existence. From
Poincaré, we know that non degeneracy of the fixed point v* is
sulficient.

i) Practically, this Theorem tells us that it is sufficient to find &

non degenerate zero for the bifureation equation. Usual

this non

degeneracy i equivalent to s persistent spanning conditon (see sec-
ion 4.
i) (2.10) gives an approximation of the peridic solution of (15)
simply in terms of (X, (¥°,k),¥"), periodic solution of the frozen
system.
Proof: < Thanks to the bifuration equation sssumption, we know
that (Xy (¥ ,0),6° 0) is a zer0 of Zy, with v* in T. From the
reslariy properics given by ssumption A2, A3, we can use the
implicit function theorem (see theorem 6.1.1of (Miller, Michel,
1052). The resalt il follow i
N -
atl o, (X (57 009 0) 0 1)
B

To compute this determinant, notice that for ¢=0, we have the

frozen system for which (X (5.0)4) is known to be the iuitial con-
dition of an N-periodic solution, i, for all 9 such that A (9)" -1 is

non singular, we have:
2 (Xyn (00).00) = 0 . ZyX;(00)0.0) = E (9) (212)
Hence, let us introduce a new variable:

v X Xy (e0) (219)

‘This variable has been used previously by Riedle and Kokotovic
(1985) to rewrite the linearized system in a form suitable for appli-
cation of the averaging theory.

We decompose the Zy map at <=0 into:

o

= () = Zu (X, (90}+x.8.0)
“The first map has desivative:

X
[:, d, w,m]

o 1

The second map has derivative at xo=(

A@-1 0
[ ‘ sm]

The 10p lft block comes from (2.4) which gives for c=0:
252 (X 0.0) = (A (0" ~1) (X (00) ) + :‘: A@4B(O)e (k)

‘The top and bottom right block follow from (2.12) and the bottom



Jft block is unimportant. The result follows since we lave esta-

blished:

-
A0 0 a0
V24 (X, (00)20) P | PR [CTUE

3. STABILITY OF THE PERIODIC SOLUTION
Having obtained necessary condition and sufficient condition

for existence of periodic solutions (Xy (k ), 0 (k ), we are now

interested in their (un)stability property. We have:

Theorem 3.1: Under assumptions Al to A3 and the bifurcation

cquation assumption there cxints ¢ such that for all

0« € < o, the Neperiodic salution given by theorem 2.2 is:

i) aniformly asymptotically stable i the cigenvalucs of A (¢°) have

modutus trictly less than one and the real part of the cigensales of

S(0) are stritly negative.

i) unatable f at least one cignevalue of A (") has a modulus larger

than one or one cigenvalue of S(v") has o positive real part.

Comment: This theorem establishes that stabiliy of the periodic

solution holds if

i) 6", solution of the bifurcation equation, is a stabilizing parame-
ter, e, the spectral radius of A (u") is stretly smaller than 1

i) u” is an exponentially stable equilibrium of

G=E @

Proof: < From continuity of a solution with respect 10 its i

condition (at least on finite time intervals), we have:
Lemma 8.1 (Assertion 2 of Theorem 328 of Arnold (1978)): The

Neperiodic solution has the same (unjstabiity property as the
corresponding fred point of the N-advance map

On the other hand, the existence of invarisnt manifods for &
nap (see Theorem 5.1 and corollary 5.1 (may be used in reverse
time for unstability) of (Hartman, 1952) for example) implies that
suficient condition for (un)sabilty o  fxed paint i given by the
position of the cigeavaluss of the Jacobian matrix of this map,
evaluated a the fsed point. Consequently we are lead 1o study the
matrix Ty (X (0¢), O (0,6).0).

First, we notice that from (210 and the continuous
diferentiabily of A, B.C,Xu(00).04(00, we can use
Hadamard Lemma (see Aubin, Ekeland, 1984) to obtain the
existence of a function Afe), bounded on a neighborhoud of zero

and saisying
V25 (X 000 0:0) = V20 (X 0877 0) = € Al (32)
Secondly, ¥ Ty is equivalent to:
o o,
S !
IR e 2

i

)
Finally, 9T being related to 2y through (23), with (2.15), we
obtain:

@V Ireald eado
o) ey )+ JOY

A
S (X (0.6)0n (0.6).€) = [

where &, (c), i =14 are bounded on  neighborhoud of zero. Now,

we apply Lemma 1 of (Kokotovie, 1975): since A (v")¥ -1 is non
singular. there exists a function L (¢) bounded on a neighborhoud of
2010 such that s equivalent to (omiting ¢ as argument)
AV T eAreL 8y) 0
ea S )+HArAL)

Tt follows that the cigenvalues of ¥ T (X,

0,085 (001 are:
AL @)Y) + o (1)

L4 e Re MEWA} + o)

where of1) and 2L are continuous functions of ¢ wich tend to

260 35 ¢ tends to zero.

4. EXAMPLE
To illustrate the results of the previous sections, let us con-
sider a disturbed first order plant with an unknown pole:
y(k+1) = o y(k) + u (k) + V2 Re(del) )

in closed loop with a deadbeat adaptive controller (see (Goodwi
Sin, 1984))

") — L 20) (G (AR )y ()
Ak+1) o) Ty (k. Y
w(k) - ok) y(k) + Ve Re(rz) )

where =, 2, are toots of and &, are complex numbers

To simplify, we assume that z,, 7, are distinct and different from
&1 and that Re(z, ) i positive.
The closed loop system can be written in the form (1.4), with

A =8 BO) = ()T Oy = LDl (i)
Tony

R
The frozen system: The set of periodic solutions is completely
deseribed by:

Clearly assumptions Al to A3 are satisfied with

k) = vifRef L L)y
v [
0 (@k) = vra 4y

where a, 3 are non zero in the singular case, i.e.:

@R0 S ¥m1, BAO ] v=-t 3)

Consequently, they are all M-periodic with M=N if N is even and
Me2N if N is odd. Using Parseval's Theorem to evaluate £ (v)

defined in (2.3), we obtain:

B ﬂ[m LI ,,',,:,,f,] (a5)

B s R

The actual system: We know, with Theorem 2.1, that the set of
accumulation points of initial conditions of periodic solutions of

(12) is completely contained in:

{(w (9016, (4.0)) / E(¥) :B} (7

In pasticular this gives us all the possible limits of periodic solutions

of (1.2) which would be continuous in ¢



Hence. to g0 further, we look for
the zeros of £ . i) For a0, the numerator of £ (¢} is a third
order polsnomial which is positive for all negative v and negative
for v going to o0, Moreover its second derivative is zero for some
negative . It follows that (¢) has one and only one zero lying in

10,50) and with negative derivative. On the other hand

M [ 4] Re(z) r 2
E = S (3R WA Ll
Hence, this zero lies in [0,1] if:
IrfF L Re(z) (14Re(z,))
b 5 Rt eele) o)

i) For a % 0, we have to evaluate £ at yo=1. E(1) is zer0 i

aists
0 SR G AR () (410}
which is possible i

1P Res) (1Re(2)

1dF < 1+Re () (a1

i) For 37 0, we have to evaluste £ at Yee-1. In this case, if
Re(zy) 20, there is no 3 satisfying £ (~1)=0.
Conclusion: From Theorem 2.2, the system (4.1}(4.2), bas an N-

periodic solution for ¢ small enough if:

Lo Retaa) U=Re e) s

W
From Theorem 3.1, this solution is a stable node f:

PR, J‘;_‘é 5 Relz) (14Re (5) w9

TRe (o)
and is an unstable node if:

Re(zq) (LRe ()

TR (114)

From Theorem 2.1, there is no other periodic solutions continuous
in ¢ if (413) holds. On the other hand, if (4.14) holds, the only

other possible periodic solutions continuous in ¢ are M-periodic and

ity
i 20 ml
moke) = 1+a “13)

with a given by (4.10)

In fact, it scems from our simolations that these solutions do
cxist, are foci both stable when N is odd, one stable and one
unstable when N is even. The following figures are phase portraits
(60, y) of (4.1:{4:2). To simplify, we plot only 1 point out of M
<0 that periodic solutions appear as ixed points. The data are

Vewm0.10

Vi=005

Vem005 2

.125

075

RGO (1R (%)
TR

REFERENCES

0.D.0. Anderson, R.R. Bitmead, CR. Johnson,Jr., P.V. Kokotovie,
ILL. Kosut, IM.Y. Mareels, L. Praly, BD. Riedle (1986). *Stability
of adaptive systems: Passiity and averaging analyais”. MIT Press.
MIT Press,

AP Aubin, 1 Ekeland (1084). ~Applied non lincar analyeis®. Iohn
Wiley & Sons

M. Bodson, 5. Sastry, BD.O. Anderson, 1. Mareels, R. Bitmead
(1956)
parameter conversence rates in adaptive control”
Control Letters 7.

V. Armold (1975). *Ordinary differential equations™

“Nonlinear averaging theorems aad the deteruination of

Systema and



(.C Goodwin. 5. Sin (1984). " Adaptive Filtering, prediction and
Cantral" . Prentice-Hall
P Hartman (1982). *Ordinary differential equatio

Birkhauser

Boston.
A Riccati cquation for block-
IEEE Trans. on

PY Kokotovic

diagonalization of ill-conditioned systems”
\utomatic Control. December.

PV Kokotovie, BD. Riedle, L. Praly (1985). *On a stability cri-
terion for continuous slow adaptation”. Systems and Control letters
s

RL. Kosut. BD.O Anderson (1981). *Robust adaptive control :
Conditions for local stability™. Proc. 23rd IEEE Conf. on Decision
and Control. December.

S Lefschets (1077). "Differential equations: geometsic. theory”
Dover publications.

L. Liung (1977). ~Analysis of recursive stochastic algorithms”
IEEE Trans. on Automatic Control. August,

K. Miller, AN, Michel (1982). Ordinary differential equations”

\cademic Press.
J-B. Pomet (1936). *Periodic solutions of model reference adapive
wystems. An application of degree theory.” DEA Report. CAI Ecole
des Mines. Fontainebleau, France.

L. Praly (1982). "Commande adaptative indirecte multivarisble:
atabilité et robustesse®. Proc. of Collogue national du CNRS.
Belle-lle France

L. Proly {1983). “Robustness of indirect adaptive control based on
ole placement design”. Proc. of IFAC worshop on adaptive 135-
L in control and signal. San Francisco.

L. Praly (1995). A seometric approach for the local analysis of 4
one step ahead adaptive controlle”. Proc. 4 th Yale Workshop an
Avplications of Adoptie Systems Theory.

L. Praly (198). "Global stability of a direct adapiive control
scheme with respect o a graph topology”. In: " Adaptive and learn-
Ed. by KS. Nareadra. Ple-

ing systems: theory and applic
tum Press.

L. Praly, D. Rhode (1985). A local analysis of a one step ahead
adaptive controller”. Proc. 2 th IEEE Conf. on Decision and
Contral. December.

B.D. Riedle (1986). “Iategral manifold of slow adaptation”. Ph. D.
Thesia Urbana, Ilinois.

BD. Riedle, P.V. Kokotovie (1985). A stability-instability boun-
dary for disturbance-free slow adaptation with unmodeled dynam-
ies”. [EEE Trans. on Automatic Control. October.

B.D. Riedle, P.V. Kokotovie (1986). lntegral manifold of slow
adaptation” . [EEE Trans. on Automatic Control. April.

B.D. Riedle, L. Praly, P.V. Kokotovie (1956). *Examination of the
SPR condition in output error parameter estimation”
V.22 N4

\utomatica.





