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Abstract

A local analysis of the one step ahead adaptive
controller of [1] is presented. We study the behavior
of the closed loop adaptive system, in presence of
periodic inputs, around a trajectory defined as the
solution of a nominal system. We establish that if
this solution is unique, it is uniformly asymptotically
stable and we can tolerate a wide class of small per-
turbations from this nominal system.

1. Introduction

Consider the following adaptive controller [1].
o(k)” = (uk),v.vulk-m-d+1),yk),...,y(k=n+1))

(k=) (y (k) = 3(k-1) "¢ (k-d))
1+v(k)¢(k-d) “¢(k=d)

3k) = B(r-1) + YLK)© (1.1)

s(k) (k) = ym(k+d) (1.2)
where v(k) is a scalar gain, ym(k+d) is a reference out-
put known d steps in advance and u(k), y(k) are the in-
put and output of a plant which can be described by:
-1 -1, -1

A(qg T)y(k) = q "B(g Hu(k) +w(k) (1.3)
A(q_l) and B(q_l) are polynomials of unknown degree.
{w(k)} is a sequence which may depend upon {u(k)} and
{y(k)}. The nominal plant is given when w(k) = O.

Goodwin, Ramadge and Caines have shown in [2] if
n, m are not less than the degree of A(q~ y,B(q71y,
respectively, d is the plant delay, the plant is min-
imum phase then the adaptive controller ensures global
stability and the tracking error tends to zero for the
nominal plant. Egardt in [3] extended this result for
the plant with: [w(k)[ < w, This was done by project~
ing the parameters into a compact set to guarantee
their boundedness.

We have shown in [4] that Egardt's result can be
extended to the case where:

|[w(k)' < Ss(k) +w

s(k) = us(k-1) + max (J¢(k-d)}|,s)

s > 0 s 0 <u=<1

when & is sufficiently small. This result holds using
the projection technique of Egardt and taking:
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1

v(k) =
s(k)2

In [5] global stability is shown if there exists
a constant parameter vector €% which gives in closed
loop with the nominal plant a tracking transfer function,
(which may be noncausal), having the following properties:

i) The Nyquist plot of its causal part lies entirely
within a circle of radius 1 and center 1. This is a
conicity condition.

ii) The noncausal part is sufficiently small,

It is important to note that the preceding results made
no assumptions concerning the reference output. But,

as an extension of the work of Anderson and Johnson [6],
Kosut and Anderson [7], Astrom [8], Krause [9], Anderson,
Bitmead, Johnson and Kosut [10], Riedle and Kokotovic
[11], Kokotovic, Riedle and Praly [12], ... on the
stability of error models, it has recently been estab-
lished in [13] that if this signal is taken into account,
then the classical conicity condition can be relaxed to

a signal dependent conicity condition. This implies

that in our case we can expect the following sufficient
condition: The transfer function evaluated only at
frequencies contained in y,(k) lies in a circle of

radius 1 and center 1. However, this type of statement
is only known for v(k) small, This corresponds to the

case of slow adaptation.

In this paper we will study a problem similar to
[4]. However, instead of assuming that there exists a
constant parameter vector £#% which gives for the nominal
plant a tracking transfer function equal to 1 for any
frequency, we now assume that this holds only at the
frequencies contained in ym(k). This is not possible
in general, but is possible for some particular
sequences {yé(k)} called test reference outputs (see
definition in Section 2).

In our problem formulation, the nominal case is the
data of A(g™%),B(q™1) and a test reference output {yz(k) 1.
The constant parameter vector 9% and the corresponding
signals u*(k),y*(k) are called the tuned solution of
the adaptive system. We establish that under the assump-
tion of uniqueness of the tuned solution, this solution
is exponentially stable. It follows that the stability
is robust to a wide class of small perturbations of the
nominal plant or the nominal test reference output.

Since we will analyze only the local behavior of
the system around the tuned solution, the projection
and the normalization (v(k)=s(k)=2) introduced in [3,4],
respectively, are not active. We will concentrate our
attention on slow adaptation, i.e., with ¢ small:

v = e

2. Problem Statement

In the following a more useful representation of
the plant (1.3) will be the nominimal state space

representation defined as (cancellation of poles and
zeros at 0):
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X(k+1) X(k) + Glu(k) + sz(k)

It

v(k) h*X(k) (2.1)

with
X(k) = [yk),...

and n* and m* are large enough for X(k) to contain all
the elements of #(k-d). 1I:r follows that a matrix H
exists satisfying

,v(k=n*+1),u(k-1),...,u(k-m*) ]~

s (k-d) = HX(k)
We also introduce the following notation:
s(k) " = (u(k) :r(k)‘)

(£(k)

i
Sk) = |

Ew .

_(0)

With this notation there exists a matrix J such that the
control u(k) cen be written explicitly as:

1 2 PR i
u(k) = 2—(15 [—:r(k) JX(k) + ym(k+d)]

It follows that the complete closed loop adaptive system
can be written as a nonlinear nonautonomous system:
Glérm -3 G
= 1X(k) + = v _(k+d) + G, w(k)
2(k) g(k) "m 2
EHX(K) X(K) “[h - B8 (k-1)]
1+ eX(k) "H 'HX(k)

X(k+1) = [F - L

§(k) = &(k-1) -

(2.2}

We are interested in the existence of a bounded solution
and in its stability. For the existence problem, let
us make the following

Definition: A test reference output is an N-periodic

sequence {yg(k)} for which there exists an N-periodic

sequence {X*(k)} and constant &* with 8*#$0 satisfving:
GlE?‘J Gl

1)  X*(k+1) = (F--——E;——)X*(k)-+3;-yé(k+d) (2.3)

X*(k) “(h-H"g%) = 0

ii) All eigenvalues of

(2.4)

G,5*"J
l'r
(F- =25

are strictly inside the unit circle.

Equation 2.4 is called the tuning condition. In
the appendix we show that this condition is generically
satisfied if v*(k) does not contain more than (m+d+n/2)
frequencies. (2*,X*(k)) is called the tuned solution
of the adaptive system. If it exists, it is a solution
of (2.2) (with y,(k+d) replaced with y#(k+d) and w(k)
set to 0). We also introduce the following notation:

s%(k-d) = HX*(k)

Notice that, with condition ii, X*(k) is uniquely defin-
ed. The following assumption will be used.

Assumption Al: For the nominal plant there exists a
test reference output {y§(k)}.

We will now concentrate our attention upon the
behavior of system (2,2) around the tuned solutien.
For this we consider the actual output reference y,(k)
as being obtained from a test output reference y*(k)
by:

ym(k) = y;(k) + vi(k)

where ‘v(k)} is a bounded sequence.

Let us define the incremental variables
x(k) = X(k) - X*(k)
S(k) = &(k) - &%

After some manipulations we obtain the following
equivalent incremental form of (2.2):

|

Tx(k+1) ] x(k) i (v(k+a)
L ow(k)

ey |- Mk.E) [E(k-l)J L

I

(R (8(k),x (k) ,v(k+d) k)]
4 X

eR, (8 (k-1),x (k) , k) 2:3)

-

where:

_ -1
I 0 |
ML) =g Teesk(ked) o* (k) © |
G 3%°J G "l G -
l'r 1 . 1 |
F-—= TR A B R B
lcex(k-d) (h -6% H) 1 | o 0
R (&8,x,v,k) =—L[(5*; -z5%)" ( £ % (k) - Jx)
x T BR(2*+2) T r T'r’ CEF r
- 3(v - ZF yE(kd))]

-H

I+e (¢ *(k)+Hx) “ (9% (k) +Hx)

_ex*(k) (2x*(k)+x) "H'H
I+ (2%(k) ":*(k)

R, (5,x,k) =

[(1 )x

((3%"H-h")x+ 2*(k-d)"2) ] + (x*(k) + x)x"H" 5]

Problem Statement: In this paper we study the stability
of system (2.5) around the origin. Our objective is to
show that local stability is preserved in the presence
of small perturbations of the nominal plant and of the
test reference output. The reference output perturba-
tions are characterized by the bounded sequence v(k).
The plant perturbations are characterized by the sequence
w(k). To still encompass a wide class of unmodelled
effects, we can assume that the sequence w(k) satisfies
the following noise to signal ratio inequality:

k k-1
w(k) <3 I (=D} + W

i=0 k-1

with

$>0,w>0,0<uc<1
It is not difficult to see that w(k) may include the
effects of neglected: poles or zeros close to zero,

nearly cancellable stable poles/zeros, some nonlinearit-
ies, some time variations...

3. Exponential Stability of the Tuned Solution

The stability properties of the system (2.5)
around the origin are dictated by the following linear
time varying system:

- - -
(x(k+l) | M(k,e) &(k) | (3.1)
e (k) | L8 (k-1)
The matrix M(k,e) being N-periodic, we can study
this system applying the Floquet theory. We have:
N-1
Lemma: Under Assumption Al, if I ¢#*(k)z*(k)” is in-
k=0
vertible then the characteristic values of M(k,c) are:
GlE?'J
,7.1}‘———6?—} + 0(1) s
1 X-1
1-cx{z T ¢*%(k-d)e¢*(k-d) 1+ ¢ 0(1) y
¥ =0

where 0(l) are continuous functions of ¢ which leads to
0 as ¢ tends to O.

A more general result has been established in
We give here a proof more adapted to our problem.
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Since M(k,e) is N-periodic, there exists an N-
periodic Lyapunov transformation which maps M(k,e) into
a time invariant matrix whose eigenvalues are the
characteristic values of the system. In particular for
£e=0, this transformation is given by

I -L(k)
0 I

where L(k) is the unique N-periocdic solution of:

G,0%” G
1'rJ 1. .
Lktl) = (F-—7) L) - 55 o%(k)

Using the same transformation for £ # 0 gives:

_ I -L(k+l) I L(k)
M(k,e) =( > M(k,s)< >
0 I 0 I

Gle; J

F-T +E—:Al(k,€) EAZ(k,E>

EAB(R,E) I- a¢*(k—d)v*(k)+€2A4(k,s)

where the Ai(k,e)'s are bounded N-periodic matrices and
u*(k) is defined by:
Vr() = = (7= 8% H)L(K) + ¢%(k=d)

In appendix, we prove:

Under Assumption Al, we have:
vE(k) = ¢*(k-d)”

To complete our proof, let us take the product from
k=0 to N-1 of M(k,e). One can see by induction that:

N-1 I+A A
2 ke =< 22 21 >

Property 1:

k=0 eAlz Ii—sAll
with
Glﬁi‘J .
A22 = (F_T) -1+ EAl(E)
A21 = EAz(s) s A12 = A3(a)
N-1

= T i - * — - C’Aﬁ

All ki0¢f(k d)e*x(k-d)” + uua(a)

where the Ai(s)'s are bounded.

The result follows by noticing that, as a consequence
of Lemma 1 of [15], this product is similar to:

2
Ii—A22+-; LA12 0

2
°A12 I+aAll+e AlZL
where L is a matrix whose existence and boundedness are
guaranteed for € small enough satisfying (see (11) of
[151):
1

(fCapy - A 4054

-1 -1 -1
128228010 1 Happlbag 8,41

where invertibility of A22’ All is given by assumption.
This lemma leads us to introduce a new assumption.

Assumption A2: The test reference output yZ(k) is such
that the corresponding tuned solution satisfies:

N-1
o ooxk)eH(k)T > o
k=0
This is the classical persistent spanning assumption.
In the appendix we show that this condition is equiva-

I,2>0

lent to the uniqueness of the tuned solution and generi-

cally to the fact that the test reference output is

persistently exciting of order at least equal to the
number of parameters.

Theorem 1: Under Assumptions Al, A2, there exists €y
such that for all €, 0<eg< €,, the tuned solution is an
exponentially stable solution of the nominal system
(v(k) =w(k) =0). In particular, there exists a constant
C such that:

k

| T

j=i+1

MGG, e | < c1-en)kE

Proof: This is a direct consequence of Lemma 1. In
particular, for ¢ sufficiently small, the spectral
radius of

N-1 N-1
T M(k,e) is 1 -¢ 2min I o*(k)¢®(k)” + ¢ 0(1)
k=0 k=0
This implies the existence of C, such that
N-1 N-1
L M(k,e)f < Co(l— e amin I ¢*(k)¢*(k) " + ¢ 0(1))
k=0 k=0

£ C,(1-zal) < C (1~ su)N

where the second inequality is obtained from Assumption
A3 and the property of 0(1), for ¢ small enough. Then
using the N-periodicity we obtain:

k N-2
1 M(j,e)| < (C, T

< M(3,9) ) ((1-e)™) kl\;l
j=i+l 3=0

This theorem extends the result of Anderson and
Johnson [6] which was established for the ideal case:
any reference output is a test reference output.

It is remarkable that for this one step ahead
adaptive controller, the number of frequencies and not
their location is important. Both the tuning condition
(Assumption Al) and the persistent spanning condition
(Assumption A2) do not generically constrain the loca-
tion of the frequencies.

However, Assumption Al imposes also that the eigen-
G,8%"J

r . s s . . .
——g;——O lie in the unit circle, which is

related to the frequency location via €*. It has been
demonstrated by Astrom in ([8],[14]) that violation of
this stability condition can by itself create instabil-~
ity.

values of (F-

4. Total Stability of the Tuned Solution

Since the tuned solution i1s an exponentially stable
solution of the nominal system, it has also stability
properties with respect to all kinds of permanent per=-
turbations ( see §1.8 of [16]). In particular, we have:

Theorem 2: Under Assumptions Al, A2 and for all e,
O<e<e, there exist No(s),vo(a),éo(e) such that if the

initial conditions satisfy:
I%(0) - x%(0)| + [8(0) - 9%} < N_(e)

and if we have the following noise to signal ratio
bounds

vk} < v, (e)a
K0 k-t
lw(k)| < NOLlg (‘ﬁf‘**fﬁHX(i)H + W)
i= s pk—l
i=0

then the solution x(k), 8(k) to the actual system (2.2)
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satisfies:

Jx(k) - x* (k)| + |k - &% < N(e)

for some value N(g).

This theorem states that if the nominal plant and
its adaptive controller are such that there exists a
test reference output which is persistently exciting of
order equal to the number of adapted parameters then
generically the actual system has a bounded solution
provided that the permanent perturbations v(k) and w(k)
satisfy noise to signal ratic limitations. 1In particu-
lar, the disturbance on the reference output is limited
by the degree of persistent spanning of g¢*(k).

In [7] Kosut and Anderson were aiming at such a
result for a continuous time scheme, but their analysis
was incomplete. Here we have obtained more complete
results but in a more restricted case, because we
studied the local behavior around a particular solution
of the nominal adaptive scheme.

Proof: Let Y(k+l) be the complete state of system (2.5).
By the variation of constants formula, we have

k k k
Y(k+1l) = T ME)Y(0) + I a1 M(i)

i=0 i=0 j=i+l

r v(i+d)™ R_(5(1),x(d),v(d+d), D\ |
e < )+ < ® > \ (4.1)

‘ (1) - eR_ (6 (1-1),x(1),1) |

We define
N(k) = {Y 0

With Theorem 1, we obtain using abbreviated notations
k k-1 ‘ ;

N(kH1) < CeFN(0) + 1 KT o) Cviira) T+ e D)
i=0

HR @]+ =R DI
with ¢ =1-¢2x,
We want to show

N(1) <N ¥1 0 <1< k=N(k+#l) < N

Now, the proof proceeds by induction.

Bound on w(i): Since

with an appropriate choice of N.

Ix@f 2 sup x| + =]
k

we have with the induction assumption:

;w(k)i < ioz(Nﬁ-w*)
with

wk =

sup|x* (k)| + w
k

T
< &= and using

2
is easy to
the following

Bound on Rg,Ra: 8(k) |

the Schwarz and triangle inequalities, it
derive from the expressions for Ry and Rs
inequalities:

Assuming that

IR (D) < ¥ ()P, (K(1)) + N ()P, (N(4))

A

IR, (D] < ¥ (0P, (NE)

Where Pl, Py and P, are polynomials with positive co-
efficients of degree 1, 2 and 4, respectively. These
polynomials are increasing functions of N(k) (N(X) > 0).
With the induction assumption; it follows that, given a
bound N, there exists a constant K, such that if (B (k) !
< 18%/2 then:

IR, (1) [+e|R, (1}] < Ka(v ¥K%) , 0< 1<k, X< T

Substituting these bounds into Equation (4.1) gives:
q .(_: ~eN | z * iy N '2
N(kt1) £ =(oeX + f6f (v, + W)+ ¢l KV IN+EKXT)
Therefore, N(k+l) will be smaller than N if:

cry + (cle

£+ CRv = )N+ C(eel_+ |Gf (v +¢ wk)) <0

This inequality has a solution in N satisfying 0 <N< N
iff:
¢l Gj §,F CRv <

[e]
(g ¢+ Crv - )% > 4xc? (e +{G] (v_+3 w*))

o o "1 = B o o
This gives the bounds io(a), vo(s), NO(E). We see that

these bounds tend to zero as t¢ tends to zero.

Appendix: Properties of the Tuned Solution

Here we assume that the sequence y%(k) can be
written as:
%

B
>’;ﬁ(k> . 3 ] }m. Zi , ¥k
=—hl i
with
1 1 2ri -
N =N \ et J- = y Tty sk = v¥*
\1521\,1\252(1\ l),zi eXP(JN),}m,_i vE,

where v*, is the complex conjugate of v*,.
“mi mi

In the following we denote by E the set
= 4 ou% 3
E dyE # 0;

Its cardinal is np.

The vector V(z—l) is defined as:

-m—d+lA(z—l

—l)),

V(z_l)= (A(z—l),...,z ),z_lB(z“l),...,z_n

*B(z

Property Al: 1If
B(z;l) #0, ¥i€E

Then the tuning condition is equivalent to the follow-
ing linear system:

d-1 et SO SO e

zg B(Ai ) = 'V(z:.L ) 8%, Wi€E
Corollary Al: Under the same assumption the tuning
condition is satisfied iff:

-1, -1y .
(B(z;,7)) €R -Range (V(z;7)7)
i€ E i€E
This condition is only expressed in terms of the nominal
plant. It shows that the tuning condition is satisfied
generically if:

n,<m+d+n

This means that y%%k) contains no more than m+d+n
frequencies. 2
Proof: The tuning condition can be written in:
y#*(k) = 6%7e*(k-d) , ¥k
and the control is obtained from
yg(k+d) = gx’s%(k) , ¥k

It follows readily that:
y*(k) = yx(k) , ¥k



Now we notice that the characteristic polynomial of the
tuned closed loop system 1is:

p(z7l) = vz lyex
Let T (z_l) be the transfer function between

b4
yg(k+d) and y*(k). From the state space representation,
we have: P G

T, LT

And from the polynomial representation, we have:
-1, _ z_lB(z_l)

J P(z-l)

The identity of the sequences {y*(k)} and 1y*(k)}
yields:

= h*(zI-(F-G

d -1 k

* - =
'Z ymi(ziT (zi ) l)z:,L 0, ¥k .

i€E
But since the sequences {z }, 1€EE are linearly indepen-
dent,_this relation shows %hat with the expression of
T (27D,
y

d-lB(le)

z,
1 1

~ Vi€E
V(Zi )%

-1=0 ,

And since B(zzl) is not zero. We have obtained the

following necessary condition:
d-1_, -1 1

B(z,7) = V{z_")"6%

z, Vi€E
i i i

Clearly, this is also a sufficient condition.

Under Assumption Al, we have:

Corollary A2:

(k=) ) = T (a7 D (xR}, y* (k=) F =T (@ D {50}
Proof: The second relation has already been establish-
ed, For the first one, we notice that u*(k) is also

N-periodic and, therefore:

uk(k) = L u, z? , ¥k
i€E

The conclusion follows from the identity

T (z,7) = =z, , Vi€E .
y i i
Property A2: If the tuning condition is satisfied and

B(z;l) #0 , Vi€E

The uniqueness of 9% and persistent spanning (Assump-
tion A2) are equivalent properties.

Proof: Let Tu(z_l) be the transfer function between
yE(k+d) and u*(k), we have:
-1
T h = e :
P(z )

Let T ) be the transfer function between
yg(k+d) an% 6%(k). From the state representation, we
have:

6*’ G
-1, _ -1 71
T¢(z ) = H(zI- (F- Gl B* J)) g%

But also comparing the definitions of ¢*(k) and V(z 1)
and using the expre551on of T (z" ), T (z~1 ), we have:
T (z-l) V(z_ )
° P(z )

This expression allows us to rewrite the persistent
spanning condition in the frequency domain as:

s A mmpmal P N R AR IO APV P

N-1 5 V(z-l)V(z;l)‘

I os*(k)e*(k)"= L Ey;if —— [ 3¢ I .
k=0 i€l \P(zi )|

And we know that both y;i and P(zgl) are not equal to

zero for i€ E. Therefore, the fact that this matrix is
positive definite is equivalent to the fact that the
matrix (V(zzl)].‘_e E) is full rank. But with Property Al

we know that this is equivalent to the uniqueness of 6%,

Let us now prove Property 1.

Lemma: For any 8%, we have the following identity:
e*‘ -1 Gl -d
% - — =
6%“H(zI - (F - Gl B* ) 2% z .

Proof: This tranmsfer function is just z de*‘T¢(z_
where T¢(z 1y is defined in the proof of Property A2
Since we have

- V(z_l)
V(z ) “e%

The conclusion follows readily.

T¢(z-l)

Now to prove Property 1, we have to show that the
transfer function:

-1 -d 1S
H(z ) =z ~ + (h.- 6.H) (21 - (F - Gl J)) %
with {¢*(k)} as input, has {¢*(k-d)} as an ouput. From
this lemma, we can rewrite H(z'l) simply as:
9* G
-1 -1 71
H(z ™) = h*(zI1- (F- Gl 8* I)) % .

But this is just T (z—l). Therefore, the conclusion
follows from the definition of ¢*(k) and Corollary A2.
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