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ABSTRACT

Several modifications to the adaptive schemes aimed at enhancing
its robustness properties are studied from the point of view of classical
compensation and sensitivity theories. Bounded output disturbance cancella-
tion and reduced order modelling are considered. The effect of outer-loop
compensation, usually carried in practice, is theoretically formalized.
Some open questions and further research topics are presented.

INTRODUCTION

In this paper we shall be concerned with the problem of verifying
the stability conditions that arise in the theory of robust discrete
adaptive control [1,2]. We will consider two classes of uncertainty:
bounded output disturbances (BOD) and reduced order modelling.

The following assumptions will be made regarding the process:
linear time invariancy, finite dimenmsion, state invertibility and known
delay. For this class of systems the robust stability conditions reduce
to the existence of a regulator parameter vector verlfylng. i) the resul-
ting closed loop transfer function is inside a conic sector (contained in
the passivity sector), ii)the regulator incorporates the internal models
of the reference and BOD signals. Sidestepping of both conditions will be
studied in the paper from the point of view of classical compensator design.
Although the results presented in [3] relax the requirement of ii) preser-
ving L _-stability, we believe it is important to properly understand its
implications in view of its effects on performance deterioration.

The effect on the conicity condition of two types of filters is
established. It is shown that phase Lead 6d,te/u_ng 0§ the adaptation ewion
and Low pass §iltering of the n son and 1 affects
in an identical way the conicity condition. Constructive procedures to
design thesefilters are given when either one of the following a priori
informatiors is available: an upper bound on the profile of the phase shift
induced by the neglected dynamics or a "sufficiently tight" conic bound
for the closed-loop process transfer function. Model reference and
minimum variance controllers are also compared from this perspective.

Incorporation of a negulatLon Loop around the tracking ewron,
which has proven useful in practice, is also evaluated. Both adaptive
and fixed gain compensation are considered and its effect on the conicity
condition formally established. Using the recent results on optimal sensi
tivity [4] a design process comsisting of two separate stages is sketched
1) Approaching the plant to the model reference with the adaptive control-
ler. That is shrinking the radius of the cone centered at the model refe-




rence which contains the adaptively controlled system. 2) Filtering of
the resulting uncertainty with the outer-loop compensator. A possible
alternative for applying the results in [4,section VII] to give bounds

on the conicity condition verification (that is the achievable sensiti-
vity reduction) in terms of the singularity measure of the model reference
is outlined.

The condition of BOD canceflation is shown to be easily verified
by a modified scheme incorporating the BOD internal model.

A brief presentation of the adaptive controller and the main
stability theorem is done in Section 2. The conicity condition relaxation
by filtering and outer-loop compensation are presented in Sections 3 and
4 respectively. Section 5 is devoted to the BOD cancellation problem.

2. ADAPTIVE CONTROLLER AND STABILITY CONDITIONS'

2.1. Adaptive scheme
Let the known defay process described by

-1 ~d -1
AGQTDY, = q B(@ DU+ V, (2.1)
be adaptively controlled with
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Wepq = Sela DU+ R@ DY, B 60 0, (2.2.2)
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being our desired objective
e 2y -t w s0 (2.3)

L

that is the model reference is q'd/cR.

1 . PR : s
See [2,3] for a detailed description of this section.



A.1 (u-Stabilizability assumption). Let ng, np and y be given scalars
as in (Z.2.5) and (2.2.e) respectively. For the closed-loop polynomial
clsarqirs (2.4)
8 8
the following condition of stabilizability holds:
1/2
0,3 (0 R e #0,vacCla>u’? 40 @.5)

.
where n=ng*ng+2 and 6 contains the coefficients of the polynomials S,,
%

2.2. Error model stabi

ity
Combining (2.1, (2.2.a), (2.3) and (2.4) we get the error model
“t

RN S | -1 JE e |
= -Hp ve, 5 e = (Hy=Cp) w, + €SV, 5 Hy 2 ¢ B (2.6.a)

Srog = My @b WV

(2.6.b)
where
LY T
20 g0 by 2.7
_ R -ng _ " -d-n,
Sl s o a tas g q s, g S8 (8.
-d-n
-1 - —a- R
W, 2 cl-q %, —a 4 Ry, g R,
-d-n
-d, -a-1 s T
=q S,, q Syr +ee q s, 1 (2.8.b)

Notice that H, 48 the transfer function Y:/ut, i.e. the process
in closed-loop with a'i-stabilizing regulator.

Global Lz—s(ability of the adaptively controlled process is esta-
blished in the following theorem [2].

Theorem 2.1.(L,~ Stability conditions). Consider the known delay LTI
system (2+1) in closed-loop with the adaptive controller (2.2), (2.3).
If assumption A.l holds and

! Refered in the sequel as y-stabilizing regulator.



(conicity) 1) |50, (623 ™= 1</15, veero,m,

G > 1/ +]| A;“”) (2.9.a)
(80D cancelation)' 2) el e L, (2.9.b)
then ¥, e, € L, (hence > 0) and ¢, € L.

2.3. Discussion

We will separately discuss the various implications of the assump-
tions above.

1. The process defay is needed to be known to get a Reparametrization
in terms of causal operators. For the unknown delay case see [3].This is

a fundamental assumption for robustness studies. It allows to insure that
H, is proper hence its global phase shift (when taking 8e[0,7]) is zero
for all stably invertible processes. This in its turn implies that the
phase shift required to verify the conicity condition can always be provi-
ded with a stable filter.

2. The condition e} ¢ L, implies that [(Cy-a R,)B-S,A] and S, contain
the internal models of ®, and V, respectively. While the former may be
interpreted as a model-following requirement, i.e. H, approaches 1/Cg

(see 2.6.a) the latter is of a completely different nature. Although not
requiring the a priori knowledge of the internal models (2.9.b) is a
restrictive assumption. It constitutes a second restriction on the set of
allowable regulator parameters, the first being p-stabilizability. Further-
more, simulated evidence [5] has proven that convergence is usually
extremely slow in the presence of BOD. In Section 5 an alternative scheme
that explicitly incorporates the BOD internal model (if this is available)
and preserves closed-loop stability is proposed.

3. Understanding the nature of the two parameters (G and 1) appearing
in the conicity condition (2.9.a) furnishes considerable inmsight into the
design problem. 0 ranges in [0,1] and is a designer choosen parameter.
When the papameter adaptation algorithm (PAA) does not include normaliza-
tion i.e. N # p;!, it will depend on the level of excitation (¢,) and

the speed of conVergence (M™X(F,)) [2]. Better robustmess properties,
that is a larger allowable come for Hy, is obtained with smaller G. At

the limit (2.9.a) becomes a passivity condition of the form? Re

{H,} >1/2. The coefficient | establishes an alertness-robustness trade-off,

! This condition has been relaxed in [3] in a L, context.

2 By suitable selection of X we may relax to Re le) > 0.



appearing its robustness aspect at both the i-stabilizability (2.5) and
conicity (2.9.b) assumptions. PAA alertmess is directly affected since
1t defines the normalization filter time constant (2.2.e). 0 can also
be proved to be related to the contraction factor of the PAA, hence
affecting the speed of convergence.

4. In [2,3] the adaptation error was defined as the tracking ewton
(2.3) wwwd by CR. The conicity condition is transformed to:

CgHy € A 2 cove (1/5, /i) (2.10)
and it has the nice interpretation of requiring H, £ c . We will find

convenient to use this filtered adaptation error In the sequel, it will
be demoted eS

N R © @.11)

>

e

5. Notice that we have been able to recapture in the stability
conditions (2.9) the usual performance (in the sense of pole-placement)
and disturbance rejection design objectives.

3. CONICITY CONDITION RELAXATION BY FILTERING

Two different filters will be considered in this section: phase
lead filtering of the adaptation error and low pass filtering of the
regressor and reference sequence. Its effect on the conicity condition
will be proved to be equivalent. Also it will be shown that from this
perspective, the robustness of minimum variance and model reference
controllers is identical.

3.1. Adaptation error phase lead filtering

In most practical situations the closed-loop transfer function
Hp will have a phase lag larger than! 90°. However, this may only happen
at a frequency range strictly contained in (0,7), since ¥ {H,(el® } =
;(az(eﬂ)) This motivates the inclusion of a phase lead filterea adapta—
tiofi error

Lige

-1
ey © 5 LeR(q) 3.1

! Specifically, any multiplicative modelling error causing more than 30°
phase lag violates (2.9.a).



in the PAA (eq. 2.2.c) to insure LH,eA. It is clear that if an upper
bound on the profile of the phase sfiift of H, is known it is always
possible to construct L verifying the passivity condition. Stable in-
vertibility of H, further insures the stability of L.

It is customary in robust linear design to use conic bounded
transfers functions to characterize coarsely defined systems [4]. Since
the conicity condition is given §or any u-stabilizing regulator, in our
adaptive context we only require the knowledge of a conic bound for &
closed-loop transfer function attainable with the choosen regulator. In
particular for stable systems we may simply take the open-loop bound. It
is reasonable to assume that the bounds on H, will be tighter than the
open-loop bounds. Furthermore a natural choice for the cone center is
simply the model reference. With this idea in mind a procedure to choose
L is given below.

Lemna 3.1. If [H,=C,| < [Ry| , CpR,€R (4 ') with C,, R, proper stable
L. A1y 2. 2 2 2
and stably invertibfe
and L is chosen as o
= (© C2) (3.2)

then LH, €A for all (sufficiently tight) comes verifying

IRl </ 1 -5 (3.3)
Proof
-1 -1 =
[Hy=Cy| < Ry =[50, - 1]<[C5 Ry < /15 (from eq.3
> [LGH,-1]</T5" (from eq.3

= LH,eA

Notice that though filtering e by L or Cp affects in a similar
way, L is significant only in the adapfive design‘and it G003 ot change
zhe desined closed Loop perfonmance. Prefiltering of the reference sequence
by Cg in (2.2.a) would add the interpretation of observer polynomial to Cp

3.2. Regressor and reference sequence low-pass filtering

We will prove in this section that the well established practice
of low-pass filtering of the regressor and reference signals improves the
robustness of the adaptive scheme in the sense that phase advance is
added to H,. The following lemma defines the error model for the modified
scheme .



Lemma 3.2. For a given M €R (¢ '), proper, stable and stably invertible
define

LA
sw, =M

MA Z T M
s Vet 60T ol (.0

t

and use them to replace "t and Wy in (2.2). Under these conditions the
tracking error verifies

M»
e = HM Ut e (3.5)

Proof. The modified regulator equation (2.2.a) may be written as
34T
Vg T PG O (3.6)

where Py(.) is an operator defined as
A -1
PM(Xt) SMxXM

From the linearity and invariancy to constant X, of PM’ i.e.
By (X) =X

T a T M
Weyg = 0, &, * MG 0" ¢ 3.7

Since

S v (3.8)

we can, substituting (3.7) and (3.8) in (2.3) get (3.5).

A stability theorem analogous to Th.2.l can be easily derived,
defining an operator H:e »>W! which verifies the same conicity conditions
ag Hy:epo¥, [2,5]. Notice that in contrast to L and Cp, M does not affect
ey. However its effect on H) is identical. Remark also that a Low pass M~!
gAves phase Lead %o H,, henCe robustness improvement.

3.3. Regressor extension

Mininum variance (MV) controllers [6] require, to insure conver-
gence, to augment the regressor vector in the PAA by
Wy . T
O T D0 D Werao1> “era-22" " Ytedony]
in order to estimate a prefilter y (a ') of the reference sequence.
Consequently the MV control law is'given as
MV MV

SN

Yera T %

(3.10)



Define the following polynomial
A -d -1 -1
2as, +qBR +q I B=C+q B a3.11)

with T of degree n ~1. Multiplying (3.11) by ¥,

T A MV, T '
CyyYe = BO, G _g*BT Y, | +SV = BO) ¢ _y+SV, (3.12)
Notice that for CR
MV T, -1
[CAPRICHIE ey (3.13)

substituting in (3.12) and using (2.3)
Gygee = BLOMT O a7l e 1+ s,y - cy
Using (3.11) and adding and substracting Btut we get
=B - 1+ B-u, v s,V
consequently using (3.11) and definning a corresponding q,‘t‘"
1

+ [H, (1-q~ r*)- 1w, + ¢ AN (3.14)

Compare (3.14) with (2.6). We remark that from the point of view
of the conicity and the BOD cancelation condition no improvement is ob-
tained by adapting the reference signal precompensator. However, we
remark that the component of e¥ due to the reference sequence is modified.

4 - OUTER-LOOP COMPENSATION

In this section we will study a modification to the adaptive
scheme consisting of an outer-loop compensator taken around the error
signal (see Fig.l). Both fixed and adaptive compensators will be consi-
dered. Such a modification has been proved useful in practice [7], its
theoretical implications are formalized here.

Fig. 1

4.1. Fixed and adaptive ion

Adding to the control law (2.2.a) the regulation-loop gives

~p -1 . -1,
Wepq = Opby * Hyla ey 5 Hy e Ra ) .0



and the error model
- -4, L =
e, = (1+q “HH )T [-HY +eX] (4.2)

Compare (4.2) with (2.6.a). Notice that the outer—logr compensation is
equivalent to a feedback interconnection of H, and q . This can be
easily seen from Fig.2 where we have equated the dotted section transfer
function to q"“H, and recalling that due to the definition of y_ (eq.2.7)
the process delay is reflected in w_ (hence in the feedback branch).

An interesting linear control problem arises immediately. How to
characterize (in the frequency domain) the class of transfer functions
we can obtain from the feedback interconmection of a proper, stable and
stably invertible system (H,) and a stable compensator with fixed relative
degree (q"°Hy)?. A first pfeliminary answer arises from the restriction
of causality of H, . This simply implies that the first d-1 Markov
parameters of the closed-loop transfer function and those of Hy must be
equal. In continuous time this means that the high frequency behaviour

of the closed-loop system approach that of &, as w > @. We will

further elaborate this point in section 4.2.

Fig. 2

Since the choice of Hy strongly depends on the knowledge of H,,
adaptive theoreticians would simply suggest to let the PAA search the
"best" HOL’ e.g. to adapt also Ho . In fact this can easily be done
augmentif the regressor (assumifg for simplicity Hy €Rlq~'])

oL

B
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The new (i-stabilized) characteristic polynomial would be

’AMt tee e

N -4 —dx P
Cop 288, + a4 BR, 4+ q7lm) = cv g m) (4.4)
and the error model
[ B A B | -1
ep = Cop B¥e  * Cop (B-C Cpuwy + CpS,Ve .5)

uhere Yg" is defined as in (2.7) with ¢~ and the augmented parapeter
vectors. Remark that C-1B is the closed“loop tramsfer function Y*/m‘.
It is clear from (4.4) that from the point of view of the conicify
condition (now imposed to C-IB) adding H (t,q ) is equivalent to
augmenting the order of R[(q—]). Hence no (structurally new) robustness
improvement is obtained.

4.2. Interpretation as a plant uncertainty filter

In this section we will give an interpretation to the outer-loop
compensated scheme in terms of the following design problem: given a model



reference c;{l and an uncertainty bound on H, (the closed-loop tranmsfer
function attainable placing a ji-stabilizing regulator around an uncertain
plant q~dB/A), find the filters H . and L (or M) which strink the ball of
uncertainty (the new allowable coné equivalent to condition (2.9.3)),_l
define bounds on the optimal shrinkage and look at its dependence on Cg
and the uncertainty over H,. Compare with Problem 2 of [4]. The motiva-
tions to pose in that way the problem are twofold. Firstly, we believe
thzt this formulation helps us to apmmch classical sensitivity thzony

o adaptive controf theony, which is our final objective. Secondly, in
our framework, the two stages of control-fLaw synthesis: design of a
control law for a nominal plant and filtering of plant uncertainty are
clearly identified. The former, being restricted to the well structured
part of the process, is realized with a model reference adaptive control-
ler. The outer-loop and adaptation error (or regressor and reference)
compensation are then viewed as filters for the plant uncertainty. In
contrast with the linear case, the design stages in adaptive control
are not independent and they are related by the conicity condition (2.9.a).

Depending on the error (e , e, e“) introduced to the PAA and
the outer-loop compensator, the tfansfer Function required to satisty
the conicity condition may take different forms. In all cases, it is
possible to represent it as the transfer between nodes 1 and 2 of the
model reference scheme of Fig.3.

Fig. 3
Typically P represents a plant with a controller attached, P is
an estimate of P and Q provides the additional filtering required to
the extent that P differs from P.

Assume P is known to the extent that it lies inside a come of
the form

peP 2 coNEP, W) , 850 (4.6)

where W is a unitary norm filter. The following propositions regarding
the scheme of Fig.3 are proved in [4].

Proposition 4.1. The feedback system is stable if

-1
lfwall, < s .7

Proposition 4.2. Let K 2(?) be the operator m.ppmg P into the (closed-
Toop) transfer function between nodes 1 and 2. It is easy to see that
KIZ(P) = PT (4.8)

Kp,®) = K, (®) = (1-8Q) (@-P) [ 1+Q@-D)1™'1 .9



Propositions 4.3. Define

v(®,2,8) 2 supl|| WK ,(B) =K, (1] 87"} (sensitivity to plant
PeP perturbations)
@) 2 ine{ ]| Wa-p) ||, ) (singularity measure of P)
Q
v(,8) 2 inf (v (2,P,0)} (optimal sensitivity)
qQ

The following relations hold:

V2,8 2w “4.10)
lim v(2,8) = u(®) .1
§+o

v®,6 < [Wa-20 ||, a-dlall p7', ¥seto,llal;' 1wz

For our application P and P represent H, and 1! respectively
and T,Q contain all the additional filters intréduced to enhance the
robustness. Current research is under way to establish the relationship
between v and the conicity condition. To dateonly an indirect interpre-
tation is available.

BOUNDED OUTPUT DISTYRBANCE CANCELLATION

When the internal model of the BOD is known a prioni, it is
possible to incorporate it into the adaptive controller to cancel their
effect. The only modification required is in the regressor, which should
be taken as

D A . T

be = [mrt,l)u[_‘,...Dut_“S I 4% SNTORN A

where
v, =0 , DeR [CH]

It is easy to show that the new error model is

Notice that to insure e’ e L, we still require (BCp-Cplu, = 0.
This is however a requirement that is satisfied whenever the pole-
placement objective is fulfilled. Since comstant disturbances are always
present, an integrating term in D should usually be added. It is clear



that simply augmenting the order of S, would allow the PAA to accommodate
the BOD internal model, however simulated evidence [5] has shown that
convergence is extremely slow. Remark also that when explicitly adding

D, the order of Ry should be incremented.

The condition ef € L,, which is equivalent to say that robust
servo behaviour is possible for the choosen regulator orders, is not only
a technical requirement. The existing adaptive schemes are highly sensi-
tive to its violation. The flexibility available for the PAA to search to
satisfy the pole-placement requirement is considerably reduced since it is
constrained to the parameter subspace containing the BOD internal model.
In order to reduce the BOD deleterious effects the design objective should
take into account, besides the usual pole-zero placement some frequency
selective mechanism.
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