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ABSTRACT

We study the stability given by a modified model
reference adaptive controller. Modifications are pro-
jections of the adapted parameters into a compact set,
normalization of the signals entering the adaptation
Taw by a weighted ip-norm of the I/0 signals. The
a priori knowledge about the plant is implicit: order
of a stabilizing regulator, compact set containing its
coefficients. Global boundedness of the signals is
established using both the error to signal approach of
[10] and the operator theoretic appreoach of [8]. A
conicity condition is involved but its robustness with
respect to the graph topclocy of [20] is proved.

1. INTRCDUCTION

Nominal adaptive contrcliers (as those of [13] for
example) may lead to a nonrcbust stability. The most
evident symptom of this problem is the drift of the
adapted parameters as noticed by Egardt in [1]. There-
fore modifications have to be introduced. Either the
signals (active modification) (see [3] for example),
or the adapted parameters (passive modification) can be
modified. Here only passive modifications will be
used: projection of the parameters into a bounded
area (following [1]), and normalization of the signals
entering the adaptation law (see [1],[4]).

Operator theoretic approach: In [7], in order to
study stability, the operator theoretic approach has
been applied to the error model given by nominal direct
adaptive controllers. Then plants can be defined for
which the previously mentioned drift does not occur.
They are such that their transfer function, in closed
Toop with a Tinear time invariant controller (lying
among those reachable by the adaptation law), is
strictly inside a cone. Howsver, no proof is avail-
able that the radius of this cone does or does not
vanish. As mentioned in [4],{10], normalization, the
passive modification mentionad above, allows us to
derive a lower bound for this radius, see [8].
However, to establish global boundedness in the
presence of output disturbances, an active modifica-
tioen is also needed in order to meet a condition of
persistent span of the parameter space. These results
are still too restrictive. The conicity condition
implies perfect knowledge of the plant delay. This is
not robust. And, today, no proof is available that
persistent excitation of the output reference leads to
persistent span of the parameter space. Using a
different approach similar though more conservative
results have been obtained in [9]. Here we relax
these assumptions. Due to space limitations, only
results for discrete time plants have been presented
(see [2],[5],{6], for example, for the continuous time
case).
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Error to signal ratio approach: 1In [10], the
author has proposed to reflect the unmodeled effects
outside the closed loop system as an open loop dis-
turbance, the modeling error. To make the assumptions
signal independent, this modeling error is normalized
by an ip-norm of these signals. Then unmodeled effects
are captured in terms of an error to signal ratio,
equivalent to an operator gain. Thus we are motivated
to normalize the signals entering the adaptation law.
When both normalization and projection are used, global
boundedness of the signals is established provided the
error to signal ratio is sufficiently small. However,
though a wide class of unmodeled effects (see [4]) is
captured by this approach, it is essentially qualita-
tive. Taking care of the transformation by feedback
of the unmodeled effecs could make it more quantita-
tive. This is the goal of this paper.

The paper is organized as for the simultaneous
stabilization problem (see [11], for example). In
Section 2 we define the adaptive controller. In
Section 3, we restrict our attention to a class of
plants. And, in Section 4, we state that these plants
are stabilized by our controller. The following sec-
tions are devoted to the proof of this theorem.

Notations:

- The :5[T,,T1]-norm of the sequence x(t) is:
SIPR

‘ 2,3
r (t;Tox(t) )2 (1.1)

Ix(t):
- Uniformly with respect to T ,T; means that the bounds
do not depend on To’Tl‘

- The conditional gain ; of an operator G is (compare

with [18]): for a given ¢ (the conditioning bound)
o(6) = sup 2K (1.2)
xl_<g X
- The 22(;)[O,T]-norm is:
2 L T2
SIOTLE S (1.3)
for a constant sequence or a delayed sequence, we
have:
X = constant = “xf$ i xzu'(T+2) (1.4)
2 -dy 2
Ix(t-d)ly =TIy (1.5)

2. AN ADAPTIVE CONTROLLER

Let y(t),u(t) be the output and input of the
plant to be controlled. The adaptive controller we
consider in this paper is a usual model reference
scheme based on a least squares estimation incorpora-
ting both projection and normalization. It is para-
meterized by integers Ng» Nps d, positive constants
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s hgs Ay Us £ K, o (xos hys w< 1), a vector 8 in

0
R" (n =ns+nR+2)(f1rst component of
nomial ¢{q-1).
tracking error:
Lo, a1
e(t) = C(a™ ) (y(t)-y"(t))

where ym(t) is a uniformly bounded ocutput reference.

g2 oo) and a poly-
Its objective is to minimize the

(2.1)

As usual, let &(t),s(t) be the following vectors
in R":
s(t) = (u(t) (t-ng) y(t) ... y(t-np)) (2.2)
(8] = (5508) oo 5, (1) rgl8) ooy (8], (23
s

the algorithm is:
g(t) =1/(x+3(t

usual update

~d)TE(t-d)3(t-d))

g'(t) = 6(t-d) + g(t)F(t-d)e(t-d)&(t) (2.4)
F' () = F(t-¢)-g(t)F(t-0)3(t-d)3(t-¢) TF(t-0)
matrix regularization
F(t) = (1-Ao/x1)F'(t) + on (2.5)

leading coefficient regularization

8"(t) =8"(t) +Max(0, o =5 ())F j(t)/F; (t)  (2.6)

Projection into the sphere (5 _,K)

c
e(t)=ec+(e”( )= IMax(1,K/ls(t)-2 i) (2.7)
control law (implicit in u(t), recall so(t) O):
C(q'l)ym(t+d> = 8(t)Te(t) (2.8)

where F is the first_colum of F(t), Fyq(t) is

the f1rs% entry of F(t); ¢{t-d), &(t) are normalized
signals as defined below. In the following, we call
adaptation law Egs. (2.4) to (2.7).

Normalization procedure: Before entering the
adaptation Taw, the signals arriving from the plant
are normalized as follows: Tlet o(t) be the output of
a first order filter with &(t- d)T (t-d) as input or
more precisely:

o(t) = uo(t-1) +max(le(t-d)1%,0), (2.9)
then a sequence x(t) is normalized as:
2(t) = o(t) i (t). (2.10)

In the following, we denote (7) the normalized signals
and operators acting on them. Note that c(t)-=,
s(t)er,.

Comment: The algorithm presented here is a least
square version of the "DSA-algorithm with projection”
proposed by Egardt (p. 69, [11). Our goal being to
deal with uncertain plant structure, it incorporates
four modifications compared with the nominal least
squares algorithm:

1. Monitoring of the adapted parameters using pro-
jections (2.6),(2.7). This is an efficient remedy
to the problem of bounded disturbances (see [1]).

2. Normalizations procedure: This causes the adapta-
tion law to see the effects of unmodeled dynamics
as a bounded disturbance (see [4],[101).

3. Matrix regularization (2.5): this keeps alertness
of the adaptation, a desirable property in the pre-
sence of mismodeling.

4, d-interlaced recursion algorithms. This is moti-
vated only by analyzability in terms of the I/0
theoretic approach. It is not needed in [10] for
example.

The technical interest of the first three modifi-
cations s that they guarantee the following property
mentioned in [4],[10].

Conicity property of the adaptation law: Let 6,
be any vector with its first component > o, and in the

open sphere with center ¢ and radius Kv x //
Depending on 8,, we defink ¥(t) as:

¢(t) = (5(t-d) - e*>T¢<t-d>.

Then we may consider the adaptation law as an operator

Ha w1th input (¢(t),e(t)), output ¥(t), and state

(e e*), or in terms of normalized signals as
E(t))+¥(t). More interesting, independently

o% we have

(2.15)

Property 2.1:

With respect to the 2,[Tq,T1]-norm and
uniformly in T,,T1, the operator: é% %

t)>9(t) is out-

side the cone with center -1 and radius vx/k+x1 (for a
definition see [16]).

Proof: See [4],[17], for example.

This property has been recognized earlier [17].
However, without normalization there is no proof that
the radius does not vanish, and without projection the
result is established only for the LZ[O,T]-norm.

3. A CLASS OF STABILIZED PLANTS

With definitions (2.2),(2.3), the control law
(2.9) may be rewritten as:
s(t,q'l)u(t>-+R<t,q'1>y(t>

= yM(t+d) (3.1)

where S(t ,q'l) R(t,q ") are time varying polynomials
in the unit delay operator g~* with coefficients
si(t),ri(t), respectively. This is a linear control
law. Then we restrict the plant to be "nearly" linear,
or more precisely, letting any Yo such that
0 < Ug < e (3.2)
Plant description assumption: We assume that the
following (unknown) relation exists between u(t) and
y(t):

A Dy(t) = B(g ™ )u(t-1) + v(t)

where A(q'l) is a monic polynomial and B(q'l} is a
power series with coefficients b; whose ll(ug)-norm
is finite:

(3.3)

o -i/2 .
1Eo{bi‘”o < e

(3.4)

and v(t), appearing as an extraneous signal, may incor-
porate nonlinearities or the effects of time varia-
tions, but is restricted to satisfy with v,V>0 (see
[14] for a discussion)
()] < volted-1) +v. (3.5)
In the following we note P any plant which satis-
fies this assumption and P the set of such plants.
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Clearly P depends on =, v, V.

Since we consider a controller with imposed order
(ng,>ng) it is reasonable to restrict our attention to
plants for which there exists an implementable stabi-
1izing linear time invariant controller of this order:

Set of stabilizing reduced order controllers: For
ease of notation, Tet us define S{q-1),R(g-1) as any of
the following polynomials:

-1 -n
S(a77) = s, + - +s g (3.6)
5 on
-1, R
R(g™ ") = ro + rnsq (3.7)
and let ¢ be the corresponding vector
T
s=(s_ ...5. r ...r_ ). (3.8)
o re o g

For any plant PEP we define SS(P) as the following
open subset of RM:

Py = t2eR™ Is(eTa ) + oIRGB > 0,

v s i (3.9)

Conversely, for any s€R" we define P(z) as the
following subset of P:

Dagh« q'lR(q'l)B(q'l); >0,

P) is the set of controllers which swmu]taneou§1y
siab111ze P (with po]es within a disk of radius =2)
The dual set P(s) is the set of plants 51mu1taneoas1y
stabilized by 2. In adaptive control, since the con-
troller is not fixed, we are interested in union of
sets P(z). However, implementation requires control-
Ters with bounded gains. This was the goal of the
projection in our adaptation law.

P(=)={PEP/ S(q

(3.10)

O N

Implementation condition: Let 2 be the inter-
section in R7 of the open sphere with center 5.,

radius Kv: / 1 and the open half space s;> 5.

°

is given w1th our adaptive controller. Then we define
P. as the set of plants having at least one stabilizing
reéduced order controller in ey

P.= U P(e). (3.11)
s€ s,

A

Then for a plant PEP., iet 3. (P) be the open subset

of stabilizing controT]ers wi ﬁ1n )5 we have also:

=peEp aais(P)=3in J(PY# ol (3.12)
43 depends on 3, Ng» Nps 5¢s Ky o parameters
of our adaptive controller. L1m1%at1on o% P; by 54

would not be very restrictive if we did not have the
constraint sq> o This is the usual assumption about
the leading coef$1c1ent in the ideally modeled case.

Now, for a given plant PE€P,, let 5, be any ele-
ment of 3is(P)' It corresponds to the following
invertible operator (use (3.4),(3.10) to apply Wiener

theorem (Ex. 4, p. 251 [12]))
-1 - - Sl olyog-
Cola™h) = syla Al a7 iR hiBle . (3.13)
And use of ¢, as a time invariant controller in (3.1)
Teads to the following operatcr between y™(t) and y(t)

101

Folah) = Cola e lee™hate ). (3.14)
This operator is the operator for which a conicity
condition is imposed in [7],[8]. Here we remark tha
if the plant delay is smaller than (d-1), then H,(q"")
is noncausal. This case is not treated in these
earlier works. Therefore, we represent K, (q~") as the
sum of a causal operator H;{q~') and a polynomial
~+(a), that is,

d-1

He(a™h) 26 g +---+fd_2q)+H§(q'1). (3.15)

o]

The presence of adaptation will lead us to intro-
duce the following subset of P, .
Let P:,

Conicity relation condition: be the sub-

set of P. such that for each PEP, ., there exists

e*_€61s(P) such that H ((ug)-1) 15 ?tr1ct1y inside the
s+l +>

cone with center and radius ! We call

(P) the set of‘such §,. It is aﬁ open subset of
VwS%P (therefore not reduced to one point).

Given P, 4 depends only on d, C(g~ 1), Uy 2y 21
With Pya, we are now in a position to state our result.

4. MAIN THEOREM

Main theorem: Our adaDt1ve controller (2.1)-({2.8)
stabiTizes any plant P of P.. (in the sense of global
boundedness of the I/0 s1qna?s provided

i) v in (3.5) is sufficiently small.
i1) there exists 9*65313C(P) leading to a poTyn8m1a1

_,(a) as defined by (3.15) such that 2= zo—f is

sufficiently small.

The expression
in our proof.

"sufficiently small" will be quantified

NDiscussion: If a usual linear time invariant
controller 5 (with order ”S’”R) were used instead of
our adaptive controller, only the set P(s) (see (3.10))
would lead to stability. Therefore, use of adaptation
allows us to extend stability to the Warger set P..
Unfortunately this extension is not free since we
actually have only the set P;3. No equivalent restric-
tion appears for linear time invariant controllers.

As we have ment1one? P.a is completely parameterized
in terms of d, C(g Y, 0, 0, It is, therefore,
important to c]arlfy the role of each of these para-
meters. In order to limit the size of this paper,
we restrict our attention to d.

Though not often mentioned, this parameter plays
an important role in the stability of adaptive
schemes. d is commonly confused with the plant delay.
In fact d is a parameter which can be chosen different
or equal to an estimated plant delay. This choice
may be gu1ded by.the conicity condition. Since we
require HS((: q)-1) to be strictly 1nside a cone which

does not contain the origin, H%({xq)~!) has to be
minimum phase. Since
= plant delay = Hi(q-l) = H*(q-l), (4.1)

we conclude that this choice is convenient only when
the plant is minimum phase. More generally (as a
complete answer to the question in [15]), if in deter-
mining the delay of a plant, there are very small
responses at delays smaller or equal to d;-1 and a
larger response at de]ay d; following a step change in
the input, then it is better to t%ke d equal to dj.
More precisely, if we choose C{qg =1 and we assume
that our choice of parameters a11ows us to find a 2,
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in the set &4
such that

(P), corresponding to the plant PEP,,

clah) =1, (4.2)

then
(4.3)

Hence d should be chosen in order to make Hi(q'l)
{truncation of B(g~*)) minimum phase. Then, following
our main theorem, if the rejected coefficients of
B(g~*) are sufficiently small, we will have bounde?
ness. This means that the neglected zeros of B(g

may be unstable but close to infinity in the comp]ex
plane. This clarifies the restricted use of model
reference adaptive controllers. Since the objective
of such controllers does not take the input into
account, their use is inherently limited to plants
for which output stability implies input stability.
If this property may be strongly violated (fast
sampling, for example) another scheme should be used.

Ho(a™l) = o9 Bgh).

Another conseq ence is that the conicity cond{-
tion is about H% }, i.e., a projection of Hx(g™")

A condition on H (q- } could be nonrobust since it
implies the nonrobust (with respect to useful topology)
assumption: d=plant delay. On the contrary, our con-
dition on H*(q‘l) is robust. To state this result
precisely, let us restrict our attention to plants such
that v=0 in (3.5). Then P can be represented as the
set of operators (A(q-1)-1B(g-1)) (which adm1§ coprime
factorization in terms of operators with kl(; )-finite
impulse response).

Lemma 4.1: is an open subset of P supplied with
the graph topo?ogy of [20].

Proof: By de{1n1tion of the graph topology the appli-
cation: P-g*"%H, is cont1nToHs The same property
holds for the projection: {q' =HS(g-1). To
conc]ude we notice that ”HC((pq) ) is strictly inside
a cone" defines an open ball in our topology. There-
fore, Py, is the preimage of an open set by a contin-
uous application.

With the same arguments: the subset of Py for
which T« is sufficiently small is open. The inter-
pretation of this result is as follows: given an
adaptive controller, if it leads to bounded signals
for a plant in P;5, then there exists a neighborhood
(in the sense of the graph topology) of plants in Pra
for which the signals are also bounded.

An open problem for future research is to have a
more concrete idea on how P, is restrictive compared
to P;. Moreover, one can eas11y check that filtering
either &(t) or e(t) before entering the adaptation law
modify Hx(g-1) by multiplying it by this filter. Hence
we have a mean to change the "size" of Py 3. How to
incorporate a priori knowledge on the piant in order to
increase this size?

Proof of the Theorem: In the following sections we
give the proof of our theorem. In Section 5 we give a
description of the feedback systems in terms of oper-
ator. This clearly reveals two interconnected loops:
the slgna1 loop and the error loop which incorporates
H,(q in its feedback path. To solve the problem of
its noncausal part we establish properties guaranteed
by normatization and projection. In Section 6 we first
derive bounds on the normalized error loop using the
conic-relation stability theorem, this allows us to
prove stability of the signal loop using a small gain
1ike theorem

5. OPERATOR DESCRIPTION

Given a plant P;, let e, be any (unknown) element
in its corresponding Si4(P). Let ¢4(t), ex(t) be the
signals eguivalent to ¢?t), e(t), respectively, we
should obtain if 8« were used as linear time invariant

controller instead of the actual adapted 8(t). ox(t)
and e, (t) depend on yM(t+d),v(t) via linear time invar-
jant causal operators. Then simple computations Tead
to a representa%ion of the closed loop system as in
Fig. 1. Hy2(q7%) and Hgy(g-1) may be noncausal and in
particular 'with def1n1t1on (3.14), we have

Hoa7h) = He(a7h). (5.1)

ey
Moreover, if we write &(t) without its component u(t)as

$7(t) = (u(t-1) . ultong) y(t) .. y(teng)),  (5.2)
then correspondingly, we get with ql'dHrU(q‘l) causal:

8(8) = N, (a7)e(t) + eL(). ' (5.3)
Since 8, is a stabilizing regulator, each H,.(q’l) is

a stable ooerato; with in particular an impulse response
with finite 21 -norm. Hence, noting that, for t<i:
-1 i-t i-t

< oy .

My (5.4)

o(t) p(i) s u
It follows with (3.5) the existence of positive con-

stants &1, ¢p, €1, ep such that (use the 35(u,)-norm):
(5.5)

Mﬁz(t)i‘s SRR p(t+d-1)%

e (t)] < epteyV p(t+d-l)%.

A

(5.6)

The signal e,(t) is the input of the normalized
error loop as shown by Fig. 2 when from Fig. 1 we show
explicitly the normalization operation. However, due
to the difficulty in handling noncausal operators,
here we reflect the effects of the (possible) noncausal
part of H, as an external signal n,(t):

1 (t) = -my(a)u(t). (5.7)

If we establish that n,(t) €:_ whatever the internal
signal ¥(t) is, then internal 2=stability of the nor-
malized error loop will be preserved. As shown below,
both projection and normalization guarantee this key
property.

Property due to projection and normalization:
Whatever the adaptation law and the signals are, if
9(t), 1/sg(t) €2, if u(t),y(t) are related by both
(2.8) and (3.3) and if (3. 4) (3.5) are satisfied, then

i) %(t) is uniformly bounded.

i1) There exists positive constants Ky, Ly, K, L,
Kp» ¥, such that: e

. r }
u(t)] < K,l¢ (t),1+Lu (5.8)
o(t+1) ¢ Kp o{t)+L (5.9)
- N
Tul) < gtk o(t)7h) (5.10)
2 _ 4 2 2 5.11
T LI T (5.11)
Proof: 1) is straightforward since 6(t), 2(t) €.
(5.8) is derived in writing the control law in teFms
of u(t)
(5.9): From definition of p(t), we have

R O I OF (5.12)
J:

Thenfrom (3.3}, using this inequality and the Cauchy-
Schwartz 1nequa11ty, we get

[(y(t-d+1) 12 c2( T (e “J(a J2.+1 ?))p(t)+2v(t-d+1)2. (5.13)
Then (5.9) follows from (3.4), (3.5), and (5.8).

(5.10): If in the definition of n(t) we write ¥v(t) in
terms of s(t),s(t) and we apply the Cauchy-Schwartz
inequality, we get
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1F*<t)325ff(s%p 5(t)-2, 2)a(t)7? f i s(t-¢+1)12. (5.14)
The conclusion follows from definition of c(t) and

recursive use of {5.9).

It follows from (5.10),(5.6) and recursive use of
{5.9) that the inout of the normalized error loop can
be bounded as:

B, (8) + T (0)12 ¢ (5 -1

+ Kz(t) (5.15)

6. PROCF OF THE MAIN THEOREM

Normalized Error Stability Theorem

In fact we know already that the sianals of this
Toop belong to i, then only conditional properties of
operators are needed (see notations). As a direct
consequence of the conic-relation stability theorem of
[16] (except that we have to extend it for i,[Ty,T1]-
norm and check uniformity), we have:

Thecrem 6.1: If, with respect to the & [TO,T1] norm
and uniformly in [TO, 1, the operator ﬁ* is condi-
tionally strictly inside the cone with center »+: 1/ 1
and radius »)( “+51)/~1, then the operator, &,(t)
+7 (t)-’%(t) is cond1t1ona11y o[ TgsT11- -finite gain
un1‘orm1y in Ty,Tq.

Corollary 6.1: Under this ccndition it follows from
{5.15) that there exist positive constants ar Ygo K
e
such thﬁt
1712
‘)+

. " 2
we(t)wTi) < (P (T T ) k()7 r

e

w

o

(6.1)
As a consequence we consider the adaptation law

as an operator: c(t)¥-3(t) for which (neglectina Kg

for the time be1ng) (6.1) provides a bound on thg

average value of its instantaneous gain <(t)/-(t)Z=.

This corollary completely describes the behavior of the

normalized error loop. Unfortunately, its assumption

is signal dependent since Hi is signal dependent.

However, the following result can be proved:

temma 6.1: If an operator H has an impulse response
with finite ?l(w -norm and if it Ties strictly inside
the cone with ce ter ¢, radius r with respect to the

(v}-norm, then A is exponentially stable and condi-
t1ona1xy strictly inside the same cone with respect to
the JZ[TO,le-norm and uniformly in T,,Ty.

Proof: See [19].
We conclude that Theorem 6,1 holds for any plant
PEP.,, choosing ¢, in ﬁ,T.SC(P).

Signal Loop Stability Theorem

From Corollary 6.1 we can represent the sianal
loop as shown in Fig. 3. We will apply a small gain
theorem on this lcop. However, since we have informa-
tion only on average instantaneous gain we have to
derive a special theorem.

Bounds on the feedback path: From (5.3),(5.5) and
the i,(u)-stabiTity of H,{q-1), it follows that

constants v and j exist such that
Tle) s vl bi(ted-1)] i
< (t)‘-‘r,“ 8] A(t+d l)}T,;i’ 1 (t+d l) T,_
T2 .

+‘2u +~1 (6.2)
and if we take {5.8) into account we may write:
: . ¢ : i . T
()i svpieltrdl) g vgvee(trd-1) Ty ket

(6.3)

To complete our bounds, we note with the definition of
=(t) that

Cosleeaf o (69)

LS

Hence we have obtained the following theorem,.

Theorem 6.2: If the nlant belongs to P., then there
exist constants v _, & , v such that

-T | 2 2: 32 . =T
B 5( )S x/h‘lff(t)‘T_l’_‘*ﬂ!/V ‘1:<t)2 T- 1,u+5:" . (65)

To complete the proof of our main theorem, we
need the following result: if (5.9),(6.1),(6.5) hold
then o(t)€:_. This result is true provided

2
oy (88 el

TxtvT) + v < log ; .

e (6.6)

This explains why =, and v must be sufficiently small.
The proof of this result relies on the Bellman-Gronwall
lemma (see p. 254 [12]). It can be found in [19].
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