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We  study  the  stability  given by a  modified  model 
reference  adaptive  controller.  Modifications  are  pro- 
jections of  the adapted  parameters  into  a  compact  set, 
normalization  of  the  signals  entering  the  adaptation 
law by  a  weighted  ;2-norm of  the 1/0 signals.  The 
a  priori knowledge  about  the  plant  is  implicit:  order 
of a  stabilizing  regulator,  compact  set  containing  its 
coefficients.  Global  boundedness of the  signals is 
established  using  both  the  error  to  signal  aporoach of 
[lo] and  the  operator  theoretic  approach of [8]. A 
conicity  condition  is  involved  but  its  robustness 'with 
resDect  to  the  graph  topology of [20] is proved. 

1. INTRODUCTION 

Nominal adaptive  contrcllers  (as  those  of [13] for 
exavple)  may  lead  to  a  nonrobust  stability.  The  most 
evident  symptom of this  problem  is  the  drift  of  the 
adapted  parameters  as  noticed  by  Egardt in [l]. There- 
fore  modifications  have  to be introduced.  Either  the 
signals  (active  nodification)  (see [3] for example), 
or the  adapted  parameters  (Dassive  modification)  can  be 
modified.  Here  only  passive  nodifications  will be 
used:  projection of  the  parameters into  a  bounded 
area  (following [l]), and  normalization  of  the  signals 
enterfng  the  adaptation  law  (see [1],[4]). 

Operator  theoretic  approach: In [7], in order  to 
study  stability,  the  operator  theoretic  approach has 
been  applied  to  the  error  model  given by nominal direct 
adaptive  controllers.  Then  plants  can  be  defined  for 
which  the  previously  mentioned  drift  does  not  occur. 
They  are  such  that  their  transfer  function, in closed 
loop  with  a  linear  time  invariant  controller  (lying 
among  those  reachable by the  adaptation law), is 
strictly  inside  a  cone.  However, no  proof  is  avail- 
able  that  the  radius  of  this  cone  does  or  does  not 
vanish.  As  mentioned in [4],[10], normalization,  the 
passive  modification  mentionzd  above,  allows us to 
derive  a  lower bound for  this  radius,  see [8]. 
However,  to  establish global boundedness in the 
presence of  output  disturbances, an  active  modifica- 
tion is also  needed in order  to  meet a  condition of 
persistent  span  of  the  parameter space. These  results 
are  still  too  restrictive.  The  conicity  condition 
implies  perfect  knowledge  of  the  olant  delay.  This  is 
not  robust.  And,  today, no  proof  is  available  that 
persistent  excitation  of  the  output  reference  leads  to 
persistent  soan  of  the  parameter space. Using  a 
different  approach  similar  though  nore  conservative 
results  have been obtained  in [9]. Here  we  relax 
these  assumptions.  Due  to  space  linitations,  only 
results  for  discrete  time  plants  have been presented 
(see [2],[5],[6], for  example,  for  the  continuous  time 
case). 
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Error  to signal  ratio  approach: In [lo], the 
author  has proposed to  reflect  the  unmodeled  effects 
outside  the  closed  loop  system  as  an  open  loop  dis- 
turbance,  the  modeling  error.  To  make  the  assumptions 
signal  independent,  this  modeling  error  is  normalized 
by an  ;Z-norm  of  these  signals.  Then  unmodeled  effects 
are  captured  in  terms of  an  error  to signal  ratio, 
equivalent  to  an  operator  gain.  Thus  we  are  motivated 
to  normalize  the  signals  entering  the  adaptation  law. 
When  both  normalization  and  projection  are  used, global 
boundedness of  the  signals is  established  provided  the 
error  to signal ratio  is  sufficiently  small.  However, 
though  a  wide  class of unmodeled  effects  (see [4]) is 
captured by this  approach,  it  is  essentially  qualita- 
tive.  Takina  care of  the  transformation by feedback 
of the  unmodeled  effecs  could  make  it  more  quantita- 
tive.  This  is  the goal of  this  paper. 

The  paper  is  organized  as  for  the  simultaneous 
stabilization  problem  (see [Ill, for example). In 
Section  2  we  define  the  adaptive  controller. In 
Section 3,  we  restrict  our  attention  to a  class  of 
plants. And, in Section 4, we  state  that  these  plants 
are  stabilized by our controller.  The  following  sec- 
tions  are  devoted  to  the  proof  of  this  theorem. 

Notations: 

- The :2[To,T1]-norm of the 
T. T1 

sequence x(t) is: 

- Uniformly  with  respect  to 
do  not  depend  on To,T1. 

To,T1  means  that  the bounds 

- The  conditional  gain .: of an  operator G is (compare 
with [18]): for  a  given 5 (the  conditioning  bound) 

- The ;,2(;)[0,T]-norm is: 

for a  constant  sequence  or  a  delayed  sequence,  we 
have : 

x = constant => !'x' T,u 2 -< x > 2 -(T+2) (1.4) 

2. AN  ADAPTIVE  CONTROLLER 

Let y(t),u(t) be  the  output  and  input  of  the 
plant  to be controlled. The  adaptive  controller  we 
consider  in  this  paper  is  a  usual  model  reference 
scheme  based  on  a  least  squares  estimation  incorpora- 
ting  both  projection  and  normalization.  It  is para- 
meterized  by  integers  ns, nR,  d, positive  constants 
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A, l.o, il, u, F ,  K, a0 ( ~ ~ o < a . ~ ,  p <  l), a  vector e in 
Rn (n = nstnR+2)(first  component of ec 2 oo)  and  a  ooly- 

C 

nomial C(q-l). Its  objective is to  minimize  the 
tracking  error: 

where  ym(t) is a  uniformly  bounded  output  reference. 

let j(t),e(t)  be 

. . .  u(t-ns) y(t) 

1 .. . sn  (t) ro(t 
is: usual update 

S 

the  follow 

. . . y(t-nR 
) . . .  rn  (t 

R 

ling vectors 

. ;(t-d)TF(t-d)i(t-d)) 

) )  (2.2) 

) ) I  (2.3) 

(2.4) 

Fi(t) = F ( t - d ) - g ( t ) F ( t - d ) ; ( t - d ) z , ( t - d )  F(t-d) T 
?'(t) = e(t-d) t g(t)F(t-d)b(t-d)e(t) 

matrix  regularization 

F(t) = (l-io/hl)F'(t) f ;,oI 

leading  coefficient  regularization 

s"(t) = e'(t) t Max(0, ao-~~(t))F.l(t)/F 

Projection  into  the  sphere  (sC,K) 

e(t) = ec f (e"(t)-Ec)Max(l,K/ll~(t)-3c~ 

control  law  (implicit in  u(t), recall so(t 

c(q )y (ttd) = e(t)Tc(t) -1 m 

1 

where F. (t) is the  first-column  Gf F(t), Fll(t) is 
the  firsi  entry o f  F(t);  b(t-d),  e(t) are  normalized 
signals  as  defined  below. In the  following,  we call 
adaptation  law  Eqs.  (2.4)  to ( 2 . 7 ) .  

Normalization  procedure:  Before  entering  the 
adaptation  law,  the  signals  arriving  from  the  plant 
are  normalized  as  follows:  let s(t)  be the output  of 
a  first  order  filter  with 5(t-d)rz'(t-d) as  input  or 
more  precisely: 

P(t) = pp(t-1)  fmax(l!+(t-d);12,a), (2.9) 

then  a  sequence x(t) is normalized  as: 

i(t) = p(t)-$x(t). (2.10) 

In the  following,  we  denote (T) the  normalized,signals 
and  operators  acting  on  them.  Note  that p(t)-z, 
@(t)Er:m. 

Comment:  The  algorithm  presented  here is a  least 
square  version  of  the  "DSA-algorithm  with  projection" 
proposed by Egardt (p. 69, [ll). Our goal being  to 
deal with  uncertain  plant  structure,  it  incorporates 
four tnodifications compared  with  the  nominal  least 
sqtlares algorithm: 

l. Monitoring  of  the  adapted  parameters  using  pro- 
jections (2.6),(2.7). This is an efficient  remedy 
to  the  problem of bounded  disturbances  (see [l]). 

2 .  Normalizations  procedure:  This  causes  the  adapta- 
tion  law  to  see  the  effects  of  unmodeled  dynamics 
as  a bounr!ed disturbance  (see [4],[10]). 

3.  Matrix  regularization (2.5): this  keeps  alertness 
of  the  adaptation,  a  desirable  property in the  pre- 
sence of mismodeling. 

4.  d-interlaced  recursion  algorithms.  This  is  moti- 
vated  only by analyzability in terms  of  the 1/0 
theoretic  approach. It is not  needed in [lo] for 
example. 

The technical  interest o f  the  first  three  modifi- 
cations is that  they  guarantee  the  following  property 
mentioned in [4],[10]. 

Conicity  property  of  the  adaptation  law:  Let 6, 
be any  vector  with its first  component > G~ and in the 
open  sphere  with  center e and  radius  K l T l .  
Depending  on e * ,  we  defing y(t) as: 

!(t) = (3(t-d) - e,)T$(t-d). (2.15) 

Then  we  may  consider  the  adaptation  law  as  an  operator 
Ha  with  input (@(t),e(t)), output y(t), and  state 
ie(t)-s,), or in terms  of  normalized  signals  as 
H : ($(t)  ,F(t))  +.?(t). More  interesting,  independently 07 ;(t) we have. 

Property  2.1: ldith respect  to  the 1 [T T-]-nom and 
uniformly in To,T1,  the  operator:  eft)y;it)  is  out- 
side  the  cone  with  center -1 and  radius ,h/X+Xl (for  a 
definition  see [16]). 

Proof:  See [4],[17], for  example. 

This  property  has  been  recognized  earlier [17]. 
However,  without  normalization  there is no  proof  that 
the  radius  does  not  vanish,  and  without  projection  the 
result is established  only  for  the 5.2[0,T]-norm. 

3. A CLASS OF STABILIZED PLANTS 

With  definitions (2.2),(2.3), the  control  law 

s(t,q-')u(t) f R(t,q-l)y(t) = ym(t+d)  (3.1) 

(2.9)  may be rewritten  as: 

where S(t,q  ),R(t,q-') are  t'me  varying  polynomials 
in the  unit  delay  operator q-] with  coefficients 
si(t),ri(t), respectively.  This is a  linear  control 
law.  Then  we  restrict  the  plant  to be "nearly"  linear, 
or  more  precisely,  letting  any uo such  that 

-1 

0 < \lo p .  ( 3 . 2 )  

Plant  description  assumption:  We  assume  that  the 
following  (unknown)  relation  exists  between u(t) and 
y(t): 

A(q-')y(t) = B(q-')u(t-l) f v(t) (3.3) 

where A(q- ) is a  monic  polynomial  and B(q-') is  a 
power  series  with  coefficients bi whose kl(u;)-norm 
is  finite: 

1 

(3.4) 

and v(t), appearing  as  an  extraneous  signal,  may  incor- 
porate  nonlinearities  or  the  effects of  time  varia- 
tions,  but  is  restricted  to  satisfy  with v , V > O  (see 
[14] for  a  discussion) 

iv(t)/ < vo(tfd-1) + V .  f (3.5) 

In the  following  we  note P any  plant  which  satis- 
fies  this  assumption  and P the  set  of  such  plants. 
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Clearly P depends  on L, v, V .  

Since  we  consider a  controller  with  imposed  order 
(ns,nR)  it  is  reasonable  to  restrict  our  attention  to 
plants for  which  there  exists  an  implementable  stabi- 
lizing  linear  tire  invariant  controller  of  this  order: 

Set  of  stabilizing redu:ed order  contrpllers:  For 
ease  of  notation,  let us define S(q-l),R(q-l) as  any o f  
the  following  polynomials: 

R(q-') = ro 
+ + rn 9 

K (3.7) 
S 

and  let 5 be  the  corresponding  vector - 
5 = ( s o  . . .  'rS o r , . .  r ) ' .  (3.8) 

nR 

For  any  plant P€P  we define ss(P) as  the  following 
open  subset of Rn: 

S (P) = !?€R'//S(q- 1 )A(q-l) +q-lR(q-l)B(q-l) i > 0, 

v q 2 . - 2 ; . .  
0 (3.9) 

Conversely,  for  any 5ERn we  define P(r) as  the 
following  subset  of P: 

P ( 5 )  = {P€P/ S(q-';A(q-l) + q-'R(q-')B(q-l), > 0, 

V(q) -> (3.10) 

s (P)  is  the  set of  controllers  which sirnultaneou?ly 
sSabilize  P  (with  poles  within  a  disk of  radius L ~ ) .  
The dual set P(s) is the  set  of  plants  simultaneoesly 
stabilized by :. In adaptive  control,  since  the  con- 
troller  is  not  fixed,  we  are  interested in  union of 
sets P ( 5 ) .  However,  implementation  requires  control- 
lers  with  bounded  gains.  This  was  the goal of  the 
projection  in our  adaptation  law. 

Implementation  condition:  Let Zi be the  inter- 
section  in Rrl of  the  open  sphere  with  center s C ,  
radius K v ~ ; , ~ / ; , ~  and  the  open  half  space so  > z 0 .  :i 
is  given  with  our  adaptive  controller.  Then  we  define 
P. as  the  set  of  plants  having  at  least  one  stabilizing 
reiduced order  controller in zi : 

P* = u P ( S ) .  
LE' 

"i 
(3.11) 

Then  for a  plant P E P - ,  iet E. ( P )  be the  open  subset 
of  stabilizing  controrlers  within  #Ei,  we  have also: 

P, * = .:PEP 'QP) = Cin p + F - .  (3.12) 

P i  depends  on ?, ns,  n , sC, K, 5 , lo, ' A + ,  paramzters 
ot our  adaptive  controvler.  Limieation o P, by 
would  not be very  restrictive if we did  not  have  the 
constraint so  > c . This i s  the  usual  assumption  about 
the  leading  coefPicient in the  ideally  modeled  case. 

Now,  for a  given  plant P E P ; ,  let 4, be any  ele- 
ment  of :is(P). It  corresponds  to  the  following 
invertible  operatot  (use (3.4),(3.10) to  apply  Wiener 
theorem (Ex. 4, p. 251 [12])) 

C,(q-') = S,(q-')A(q-l) + q-'R*(q-')B(q-'). (3.13) 

And use of f, as a  time  invariant  controller in  (3.1) 
leads  to  the  following  operatcr  between ym(t) and y(t) 

This  operator is the  operator  for  which a  conicity 
condition  is  imposed  in [7],[8]. Here  we  remark  tha 
i f  the  plant  delay is  smaller  than (d-l), then H,(q- i ) 
is  noncausal. This case  is  not  treated  in  thBse 
earlier  works.  Therefore,  we  represent H,(q- ) as  the 
sum of  a  causal ooerator H;(q-l) and  a polynomial 
- , ( q ) ,  that  is, 

The presence of  adaptation will lead us to  intro- 
duce  the  following  subset  of Pi. 

Conicity  relation  condition:  Let P;, be  the  sub- 
set  of P;. such  that  for  each PEP;,, there  exists 
?,€:is(?) such  that H;((pq)-I) is  strictly  inside  the 

cone  with  center it'l and  radius ., 
/. 1 

. We  call 
:is ( ? )  the  set  of  such 5,. It i s  an  open  subset  of 
cistP)  (therefore  not  reduced  to  one point). 

, z T  

Given P:, Pia deDends  only  on  d, C(q-l), U, ;, i.1. 
With Pga,  we  are  now in a  position  to state  our  result. 

4. MAIN THEOREM 

Main  theorem:  Our  adaotive  controller (2.1)-(2.8) 
stabilizes  any  plant  P  of P; ( i n  the  sense  of global 
boundedness of  the I/0 signaTs),  provided 

i i )  there  exists ~,E:~,,(P) leading  to a  polynomial 
-,(q) as defined by (3.15) such  that - $ =  7 -* ' 

sufficiently  small. 

i) v in (3.5) is sufficiently  small. 

d-2 
1 s  i;o i 

The  exoression  "sufficiently  small" will be quantified 
in our proof. 

Discussion: If a usual linear  time  invariant 
controller s (with  order ns,nR) were used instead of 
our  adaptive  controller,  only  the  set P(s) (see (3.10)) 
would  lead  to  stability.  Therefore,  use  of  adaptation 
allows us to  extend  stability  to  the  larger  set P:. 
Unfortunately  this  extension i s  not  free  since  we 
actually  have  only  the  set P2<. No equivalent  restric- 
tion  appears  for  linear  time  invariant  controllers. 
As we have  mentione? Pi,! is  completely  parameterized 
in terms of  d, C(q- ) ,  -, I ,  '1. It is,  therefore, 
important  to  clarify  the  role  of  each of  these  para- 
meters. In order  to  limit  the  size  of  this  paper, 
we  restrict  our  attention  to d. 

Though  not  often  mentioned,  this  parameter  plays 
an  important  role in the  stability o f  adaptive 
schemes.  d  is  commonly  confused  with  the  plant  delay. 
In fact d  is  a  oarameter  which  can be chosen  different 
or equal  to  an  estimated  olant  delay.  This  choice 
may  be  guided  by  the  conicity  condition.  Since  we 
require H:((,q)-l) to  be  strictly  ins'de  a  cone  which 
does  not  contain  the  origin, H:((Lq)- 1 ) has to  be 
minimum  phase.  Since 

d = plant  delay = H:(q-') = H,(q- 1 ) ,  (4.1) 

we  conclude  that  this  choice is  convenient  only  when 
the  plant  is  minimum  ohase.  More  generally  (as  a 
complete  answer  to  the  question in [15]), if in deter- 
mining  the  delay  of a  plant,  there  are  very  small 
responses  at  delays  smaller  or equal to  dl-1  and  a 
larger  response  at  delay  dl  following  a  step  change  in 
the  inout,  then it  is  better to t  ke  d  equal  to dl. 
Hore  precisely, if we  choose C(q-') = 1  and we  assume 
that  our  choice  of  parameters  allows us to  find  a 5 ,  
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in the  set 6is(P), corresponding  to  the  plant P E P i ,  
such  that 

C*(q-l) = 1,  (4.2) 
then 

H,(q-') = qd-lB(q-'). (4.3) 

Hence  d  should be c  osen in order  to  make H;(q-l) 
(truncation  of B(q- P ) )  minimum " phase.  Then,  following 
our  main  theorem, if the  rejected  coefficients of 
B(q-l) are  sufficiently  small,  we will have  bounde 
ness.  This  means  that  the  neglected  zeros  of B(q- f - ) 
may be unstable  but  close  to  infinity in the  complex 
plane.  This  clarifies  the  restricted  use  of  model 
reference  adaptive  controllers.  Since  the  objective 
of such  controllers  does  not  take  the  input  into 
account,  their  use is inherently  limited  to  plants 
for  which  output  stability  implies  input  stability. 
If  this  property  may be strongly  violated  (fast 
sampling,  for  example)  another  scheme  should be used. 

that  the  conicity  cond - 
a  projection of H*(q- i ) .  
be nonrobust  since it 

implies  the  nonrobust  (with  respect  to  useful  topology) 
assumption: d =  plant  delay. On the  contrary,  our  con- 
dition  on H;(q-l) is robust.  To  state  this  result 
precisely,  let us restrict  our  attention  to  plants  such 
that  v=O in  (3.5). Then P can be represented  as  the 
set  of  operators (A(q-l)-lB(q-l)) (which  admil  coprime 
factorization in terms  of  operators  with sl(;;)-finite 
impulse  response). 
Lemma  4.1: Pi is an  open  subset o f  P supplied  with 
the  graph  topo7ogy of [20]. 
Proof: By de  inition of  the  graph  topology  the  appli- 
cation:  P+qIidH, is contin o s The  same  property 
holds  for  the  projection: qY-!H:[q-l) + Hiiq-1). To 
conclude  we  notice  that "H:((vq)- ) is strictly  inside 
a  cone"  defines  an  open ball in our  topology.  There- 
fore, P, is the  preimage o f  an  open  set by a  contin- 
uous  app7ication. 

liith the  same arguments.: the  subset  of P, for 
which T *  is sufficiently  small is open.  The  inter- 
pretation  of  this  result is as  follows:  given  an 
adaptive  controller,  if  it  leads  to  bounded  signals 
for  a  plant in Pray then  there  exists  a  neighborhood 
(in  the  sense of  the graph  topology) o f  plants in P,, 
for  which  the  signals  are  also  bounded. 

An open  problem  for  future  research is to  have  a 
more  concrete  idea  on  how  PLa,is  restrictive  compared 
to P,. Moreover,  one  can  easily  check  that  filtering 
either $(t) or e(t) before  entering  the  adaptation  law 
modify H*(q-l) by multiplying  it by this  filter.  Hence 
we  have  a  mean  to  change  the  "size"  of Pp,a. How  to 
incorporate  a  priori  knowledge  on  the  plant in order  to 
increase  this  size? 
Proof  of  the  Theorem: In the  following  sections  we 
give  the  proof  of  our  theorem. In Section  5  we  give  a 
description  of  the  feedback  systems in terms  of  oper- 
ator.  This  clearly  reveals  two  interconnected  loops: 
the s'gnal loop  and  the  error  loop  which  incorporates 
H*(q-]) in its feedback  path.  To  solve  the problem of 
its  noncausal  part  we  establish  properties  guaranteed 
by normalization  and  projection. In Section 6 we  first 
derive  bounds  on  the  normalized  error  loop  using  the 
conic-relation  stability  theorem,  this  allows us to 
prove  stability  of  the  signal  loop  using  a  small  gain 
1 i ke  theorem 

5.  OPERATOR  DESCRIPTION 

in its  corresponding ( P ) .  Let +,(t),  e*(t) be the 
signals  equivalent  to +tt), e(t), respectively,  we 
should  obtain if e* were  used  as  linear  time  invariant 

Given  a  plant PL, let e ,  be any  (unknown)  element 

cont-roller instead  of  the  actual  adapted o(t).  +*(t) 
and e*(t) depend  on ym(t+d),v(t) via  linear  time  invar- 
iant  causal  operators.  Then  simple  computations  lead 
to  a  representa  ion  of  the  closed  loop  system  as in 
Fig- 1. Hp"(q- i ) and He,(q-l) may be noncausal  and in 
Particular  with  definition (3.14), we  have 

-1 -1 Heq(q 1 = H,(q ) .  (5.1) 

Moreover, if we  write 4(t) without its component u(t) as 
Cr(t) = (u(t-1) .. . u(t-nS) y(t) . . . y(t-nR)), (5.2) 

ir(t) = -H:,(q-')v(t) + iL(t). (5.3) 

Since 8* is a  stabilizing  regulator,  each H..(q-') is 
a  stable  operato  with in particular  an  impulse respome 
with  finite Ll(;i)-norm . Hence,  noting  that,  for t s i :  

?(t)-lp(i) 5 pi-t < (5.4) 

then  correspondingly,  we  get  with  ql-dHL.u(q-l)  causal: 

It  follows  with  (3.5)  the  existence  of  positive  con- 
stants  $1, $2, el,  e2 such  that  (use  the ;,2(po)-norm): 

I 

~ +*(t)im 5 h1 + O2v p(t+d-1)' 2 (5.5) 

ie*(t) i 5 el + e2v F(t+d-1) 1 . (5.6) 

The  signal e*(t) is the  input  of  the  normalized 
error  loop  as  shown by Fig. 2 when  from  Fig. 1 we  show 
explicitly  the  normalization  operation.  However,  due 
to  the  difficulty in handling  noncausal  operators, 
here  we  reflect  the  effects o f  thg  (possible)  noncausal 
part of H, as an  external  signal n*(t): 

7*(t) = -7T*(q)u(t). ( 5 . 7 )  
If  we  establish  that ;*(t)  EL^ whatever  the internal 
signal li.(t) is,  then  internal ,;stability of  the  nor- 
malized  error  loop will be preserved.  As  shown  below, 
both  projection  and  normalization  guarantee  this  key 
property. 

Whatever  the  adaptation  law  and  the  signals  are,  if 
8(t), l/so(t) E,,, if u(t),y(t) are  related by both 
(2.8) and  (3.3)  and if (3.4),(3.5) are  satisfied,  then 

Property  due t o  projection  and  normalization: 

i )  .(t) is uniformly  bounded. 
i i )  There  exists  positive  constants  Ku,  Lu,  Kp,  L2, 

Kp, yP such  that: 
iu(t)I s Kullbr(t):l t L U  (5.8) 

(5.9) p(tt1) 5 K a(t) + L o  
P 

(5.10) 

(5.11) 

Proof: i )  is  straightforward  since ~(t), :(!)EL,. 
(5.8) is derived in writing  the  control  law in terms 

(5.9): From  definition  of p(t), we have 
of u(t). 

m .  

c pJ(u(t-d-j) 2  +y(t-d-j)2) s .(t). (5.12) 
j =O 

Thenfrom  (3.3),  using  this  inequality  and  the  Cauchy- 
Schwartz  inequality,  we  get 

[ (y(t-dtl) j 2  -< 2( .: p-j(aJT+l+b~))~(t)+2v(t-d+l)2. (5.13) 

Then (5.9) follows  from (3.4),  (3.5), and (5.8). 
(5.10): If in the  definition of r , ( t )  we  write Y(t) in 
terms  of s(t),+(t) and  we  aoply  the  Cauchy-Schwartz 
inequality,  we  get 

J =o 
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T h e   c o n c l u s i o n   f o l l o w s   f r o m   d e f i n i t i o n   o f  ~ ( t  
r e c u r s i v e   u s e  o f  ( 5 . 9 ) .  

I t  f o l l o w s   f r o m   ( 5 . 1 0 ) , ( 5 . 6 )   a n d   r e c u r s i  
( 5 . 9 )   t h a t   t h e   i n 3 u t   o f   t h e   n o r m a l i z e d   e r r o r  
be  bounded  as:  

i e * ( t )  f ' * ( t )  ~ 5 ..,( - * t v  ) t K c ( t ) - ' .  2 2 2  

1 2 .  ( 5 . 1 4 )  

and 

e u s e   o f  
oop  can 

( 5 . 1 5 )  

6 .  PROOF OF  THE M A I N  THEOREM 

N o r m a l i z e d   E r r o r   S t a b i l i t y   T h e o r e m  

I n   f a c t  we know a l r e a d y   t h a t   t h e   s i a n a l s   o f   t h i s  
l o o p   b e l o n g   t o  ;=, t h e n   o n l y   c o n d i t i o n a l   p r o p e r t i e s   o f  
o p e r a t o r s   a r e   n e e d e d   ( s e e   n o t a t i o n s ) .  As a d i r e c t  
c o n s e q u e n c e   o f   t h e   c o n i c - r e l a t i o n   s t a b i l i t y   t h e o r e m   o f  
[16] ( e x c e p t   t h a t  we h a v e   t o   e x t e n d  i t  f o r  ;.2[To,T1]- 
n o r m   a n d   c h e c k   u n i f o r m i t y ) ,  we have :  

Theorem  6 .1 :  I f ,  w i t h   r e s p e c t   t o   t h e  ;2[T T1]-norm 
a n d   u n i f o r m l y   i n   [ T o , T  1 ,  t h e   o p e r a t o r  $ais c o n d i -  
t i o n a l l y   s t r i c t l y   i n s i a e   t h e   c o n e   w i t h   c e n t e r  
a n d   r a d i u s  +i( . ,+; l ) / ; , . l ,  t h e n   t h e   o p e r a t o r ,  $,(t) 
+-,,(t) - i ( t )   i s   c o n d i t i o n a l l y   ; . 2 [ T o , T 1 ] - f i n i t e   g a i n  
u n i f o r m l y  i n  To,T1. 

&here e x i s t   o o s i t i v e   c o n s t a n t s  se, -:e, Ke 
C o r o l l a r   6 . 1 :   U n d e r   t h i s   c c n d i t i o n  i t  f o l l o w s   f r o m  

s u c h   t h q t  

As a consequence  we c o n s i d e r   t h e   a d a p t a t i o n   l a w  
a s   a n   o p e r a t o r :   ; ( t ) & +   : ( t )   f o r   w h i c h   ( n e g l e c t i n p  Ke 
f o r   t h e   t i m e   b e i n g ) ,   ( 6 . 1 )   p r o v i d e s  a b o u n d   o n   t h ?  
a v e r a g e   v a l u e   o f   ' t s   i n s t a n t a n e o u s   g a i n   : ( t ) / : ( t ) Z .  
T h i s   c o r o l l a r y   c o m p l e t e l y   d e s c r i b e s   t h e   b e h a v i o r   o f   t h e  
n o r m a l i z e d   e r r o r   l o o p .   U n f o r t u n a t e l y ,   i t s   a s s u m p t i o n  
is s i g n a l   d e p e n d e n t   s i n c e  H i  i s   s i g n a l   d e o e n d e n t .  
H o w e v e r ,   t i l e   f o l l o w i n g   r e s u l t   c a n   b e   p r o v e d :  

Lemma 6 . 1 :  If a ?   o p e r a t o r  H has  an i m u l s e   r e s o o n s e  
w i t h   f i n i t e  ; l (LT)-norm  and i f  i t  l i e s   s t r i c t l y   i n s i d e  
t h e   c o n e   w i t h   c e 8 t e r   c ,   r a d i u s  r w i t h   r e s p e c t   t o   t h e  
. 2 ( . ~ ) - n o r n ,   t h e n  H i s  e x p o n e n t i a l l y   s t a b l e   a n d   c o n d i -  
t l o n a l i y   s t r i c t l y   i n s i d e   t h e  same c o n e   w i t h   r e s o e c t   t o  
t h e   , - 2 [ T o , T : ] - n 3 r ~   a n d   u n i f o r l l y   i n   T o , T 1 .  

P r o o f :  See [ 1 9 ] .  

P E P - , ,   c h o o s i n g  C* i n  f iSc(P) .  

S i g n a l   L o o p   S t a b i l i t y  Theorerr, 

F r o r   C o r o l l a r y  6.1 we c s n   r e p r e s e n t   t h e   s i g n a l  
l o o p   a s  shown i n   F i g .   3 .  We .will a o o l y  a s m a l l   a a i n  
t h e o r e m   o n   t h i s   l c o p .   H o w e v e r ,   s i n c e  we h a v e   i n f o r m a -  
t i o n   o n l y   o n   a v e r a g e   i n s t a n t a n e o u s   g a i n  we h a v e   t o  
d e r i v e  a s p e c i a l   t h e o r e m .  

\ l e   c o n c l u d e   t h a t   T h e o r e n   6 . 1   h o l d s   f o r   a n y   o l a n t  

t h e   ; , l u ) - s t a b i l i t v   o f  H k  i t  f o l l o w s   t h a t  
B o u n d s   o n   t h e   f e e d b a c k   s t h :   F r o m   ( 5 . 3 ) , ( 5 . 5 )   a n d  

c o n s t i n t s  ..' a n d   - l - e x i s t - ; u c h   t h a t  

L 1 

and  i f  we t a k e  ( 5 . 8 )  i n t o   a c c o u n t  we may w r i t e :  

T o   c o m p l e t e   o u r   b o u n d s ,  we n o t e   w i t h   t h e   d e f i n i t i o n   o f  
c ( t )   t h a t  

--T:(T) -< ~ ( 0 )  + : L - ~ - ~ +   ; i ( t - d ) l l T , L .  2 ( 6 . 4 )  

Hence we h a v e   o b t a i n e d   t h e   f o l l o w i n a   t h e o r e m .  

Theorem  6 .2 :  I f  t h e   p l a n t   b e l o n g s   t o  PC,,  t h e n   t h e r e  
e x i s t   c o n s t a n t s  y - ,  E - ,  'i s u c h   t h a t  

To c o m p l e t e   t h e   o r o o f   o f   o u r   m a i n   t h e o r e m ,  we 
n e e d   t h e   f o l l o w i n g   r e s u l t :  i f  ( 5 . 9 ) , ( 6 . 1 ) , ( 6 . 5 )   h o l d  
t h e n   z ( t ) E ; . = .   T h i s   r e s u l t  i s   t r u e   p r o v i d e d  

T h i s   e x p l a i n s  why ;* and v m u s t   b e   s u f f i c i e n t l y   s m a l l .  
The p r o o f   o f   t h i s   r e s u l t  r e l i e s   o n   t h e   B e l l m a n - G r o n w a l l  
lemma ( s e e   p .   2 5 4   [ 1 2 ] ) .  It c a n   b e   f o u n d  i n  [ 1 9 ] .  
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