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ROBUSTNESS OF INDIRECT ADAPTIVE CONTROL
BASED ON POLE PLACEMENT DESIGN
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France

Abstract. We study the robustness of an indireet adaptive control scheme based on pole
placement design with respect to unmodeled dynamies, non linearities, time variations or
to ill-modeled measurement disturbances. The known results about this problem show that
classical adaptation mechanisms have to be modified. Here introducing a regularized
normalized least squares algorithm with a projection, we state a boundedness property

in presence of mismodeling gquantified in terms of noise to signal ratio. However an
extra condition avout the controllability of the adapted model is required.
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INTRODUCTION
Most of the proofs of stability of adaptive (Ortega, Landau, 1983; Gawthrop, Lim, 1982).
control algorithms available today have been And, in the presence of unmodeled dynamies,
established for linear time invariant plant H  may produce unbounded adapted parameters.
with known order and well modeled disturbances It may follow unboundedness of the complete
(bounded or movering average). There still system as mentionned by Egardt (1979) or
remains a signifieant gap between these theo- it makes inaccurate the cornerstone
retical methodologies and the potential appli- assumptions used by Kreisselmeier (1932),
cations. In particular it is important to
determine the robustness of adaptive schemes To limit the gain of H_, Egardt (1979} and
with respect to unmodeled dynamies, non line- Narendra, Kreisselmeier® (1982 ) propose to
arities, time variations or to ill-modeled keep the estimated parameters inside a
measurement disturbances. compact set using a projection. This solu-
tion only requires an a priori bound of
Several attempts have been made to formulate these parameters (necessa_rily introduced
and analyse such problems (Kreisselmeier. by compu_ter) and does not modify the initial
1082 3 Gawthrop, Lim, 1982 ; Praly, 1983 a, control objective. About the gain of H ,
1983 b ; Ortega, landau, 1983). Among them let ye have proposed to use a normalized léast
us mentionn Ioannou and Kokotovie (1 982) who sguares algorithm as adapti\re mechanism
study a singularly perturbed continuous time (Praly, 198% a, 1983 b). As a consequence
MRAC scheme and using a Lyapounov formulation the gain of H_ is bounded and the unmodeled
exhibit an upperbound of the admissible para- effects are chiracterized in term of noise
sitiec time constants in terms of initial to signal ratio.

conditions. Kosut and Friedlander (1982) study
an MRAC scheme for a plant with known DC gain  7¢ show how projection and normalized least

and relative degree less than one and apply squares algorithm are sufficient to get

I/0 stability concepts for interconnected robustness of adaptive schemes with respect

blocks to characterize plant uncertainty by to a very wide class of unmodeled effects,

conic sector. we will here study the indireet adaptive
control scheme bzased on pole placement

However the assumptions required in these design proposed by Goodwin and Sin (1981 ). In

results are still too restrictive. In faet, Praly, 1083¢) suech a study is presented for

as mentionned by Rohrs and co-workers (1982), a direct adaptive control scheme.

one of the major difficulties is due to the

existence in classical adaptation mechanisms ROBUSTNESS PROBLEM STATEMENT

of infinite gain operators (see Remark 2 ) ,

below) : the operator M_ between the output Consider a plant with u(t), y(t) as sealar

error and the adapted pabameters, the operator  inPut and output respectively. We define a
H_ between the output error and the estimation  model by9°h°°51“g an integer n and a
error. Unfortunately the inverSe gain of He veotor
8 = (-a

m

aiE -anb1 o BT (1)

limits the admissible unmodeled effects n

1
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We call residuals the error w(t) between the
true output y(t) and the modeled output :

w(t) = y(t) - 873(¢) (2)
where ®(t) is the following veetor

&(t) = (3(t=1) voo ylt=nlult=1) ... a(t-n) )

(3)
tet a(q"'),B(a"") be polynomials defined
from 6 as :

alqd™")

-1 = =
B(a™') b,q L b " (5)

=1 =1
1 + a1q + ees +anq (&)

The following assumption about the plant will
be used :

AP : Given an integer n, a vector BD and a
positive secalar p _, there exists 4 unknof?
relatively prime pSlynomials a*(q”' ),B*(q” ')
such that :

i g*-8 || <

1) flex=s l <o, (6)

ii) The corresponding residuals as defined by
eq.(2) satisfy :

wti

where :
s(t) = o s(t-1) + Max{le(t)ll,s}  (8)

0<o<1 ,s8>0 (9)
Inequality (T) characterizes a very wide
class of unmodeled effects : w(t) may
contain nonlinearities f£(y(t-i),u(t=3)),
higher order terms (an+iy(t—n—i)+bn+.u(t—n—j

or time variations ((a.-a. (t))y(t-i)+
+(bi—bj(t))u(t—j)) W

With this assumption the robustness problem
may be formulated as follows : find an
adaptive control law such that :

i) #n >0: n, <= u(t),y(t) are uniformly
bounded.

ii) If there is no residuals, the ogtput y(t)
tracks some reference output y (t) as
"well" as possible.

Note that the second part of this problem
deals with a tracking property with its
inherent problems of delays and non minimum
phase.

ADAPTIVE CONTROL
Following Goodwin and Sin (1981), let AN
be a strietly stable polynomial

M -2n+ (10)

My =1y _ M -1
A (q ) = 1+a1q +oeeta,  LQ

For any veetor © (with the primeness condi-
tion), we define a vector ¢ :

8 (11)

as solution of the following linear system
(Diophantine equation) :

w:(fQOQOfn_.1191 . .en_,l

— — — —
0 1 1
M
'k:t,| 0 a, 1 a,
© e . 1 1e = . (12)
bn b1 an a1 =
. bn & agn-1
E b It
We note symboliecally
ale) =B (13)

To solve the robustness problem, we propose
the following indireet adaptive control
scheme :

Wt) = y(t) - 8(t=1)"2(t) (14)

a(t)
O {8 - 357 coxm - ey BESED
6(t- ) = 8(t=1) + g(£)P(t=1)2(t)(t) (16)
P(t)=p (t-1)-g(t)P(t-1 )w(tmt)%(t-}) )
- 17

= in s L2 9 '1—..
a(t)%aom {1 Ile(t—%i-ealil( (t-2) eo) (18)
P(t) > P(t——;-) (19)
o(t) =ale(+)) B (20)
o(8)Te(t+1) = B(e)a" (0" )y(e) (21)
}_3_(1_’1 }if [B(t,1)] > ¢
E(t) = (22)

1 if not

where i) eq.(19) means that P(t) is any
positive symetric definite matrix greater
than P(t-!) and such that :
2
0 < A < Amin P(t) < Amax P(t) <A, (23)

For instance we can take

p(t) =B P(t—Ja-) +(1-8) A T (24)
ii) a(t), p(t) are chosen such that

0 <a=<alt) <1 (25)

plt=1 )7 [[8(t=F)-0(t=1)ll

A, < p(t) <p (26)
Ab Po
det a(8(t)) 40 (27)
1ii) B(t,1) = ﬁbi(t) (28)
i=1
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Remark 1 : Eq. (27) is always possible if

det ae ) and det a(e(0)) are different from
zero. °

We have the following :

Lemma 1 : subject to assumption AP, we have :

le(e)]l < Mg (1)
e
(qsk), |y (t)]
¥(q,k) %=q+1 g-%;% <VE M+ L n
(B2)
q+
Yla,k), 2 1e(t)-6(t-1)]l
t=q+
<V N +k Lyn (23)

where M., M, o are positve constants
. v
independants~ of N, and :

A
g - 1
L, =1+~ (29)
2
A
2 2 1
Ly = (241) T P (30)

1
Proof : see appendix.

Remark 2 : As discussed in introduction, the
projection (18) limits the gain of
HP : : : ~6(t) and the presence of s(t)

in eq. (15) limits the gain of

vit
Ne .;%?%

H_ 1is exterior to the c?nic sector with
cénter — 1 and radius (compare with

« In partieular,

L
W
Ortega, lLandau (1983)).

lemma 2 : Subject to assumption AP, if there

exists a strictly positive constant & sueh
that

|det a(8(t))| = & (31)
then we have :

(eIl < m, (c1)
¥i <n, [l6(t)-e(t-1)|l< que(t)-e(t-i)”.

(c2)

Proof : with assumption (31) ¢(t) is a
differentiable funetion of 6(t).

Remark 3: The choice of a(t), p(t)
ineq. 227) is met, does not prevent
lim inf det @(6(t)) fr-m being null.

t — oo

Therefore assumption (31) is an extra condi-
tion to be considered for the fortheoming
bourdedness study.

such that

With these bounds Me, MU, M and these gains
I@' Lv’ L, we are in positigh to state our
main result :

Theorem : Subject to assumption AP, if the
adaptive scheme defined by eq. (‘Ids to eq.
(22 is applied and is such that ineq. (1)
is met, then the robustness problem is
solved :

i) if we have :

§1-§}§1-a!
((M¢+L¢MB)L9 + 1 M¢Lv}]w< ) 3 (32)

then u(t), y(t) are uniformly boupded. Here
£ 1is the spectral radius of AM(q7'), ¥ i
a positive constant which depends on

AM(q'1}, I is a positive constant which
depends on n, o, E.

ii) Moreover if N, 18 equal to zero, then
we have :

lim .nLM(q’1 Yy (t) _i bi(t)r(t-i) =0 (33)
t o= oo i=1

#(t) = E(t)a"(q~" ) (34)

Proof : see appendix.

Discussion : Let us study expression (32).
About the control part of the scheme, we

have the terms (M¢+Hbﬂe), M¢. Given our

assumption AP (i.e. Me,c), ILICS

(i.e. E,y) should be chosen such that (1-£)
is greater and M , L are smaller. In this
3tability—robustngss gomywomise y not only
the amplitude of the econtroller parameters
but also its sensitivity with respect to
variations of 8 appear.

About the adaptation part of the scheme, we
have L., L . The less L., L are, the
more rogustvthe scheme is. Hywever looking
at eq. (29), (30) we see that L., L are
smaller if 2 is smaller i.e. if the adap-

tation ab&lity is reduced. Therefore to the
classical stability-robustness compromise

an adaptation-robustness compromise is added
for adaptive control schemes.

CONCLUSION

We have analysed stability of the indireect
adaptive control scheme proposed by Goodwin
and Sin (1981), when the residual between
the plant and its assumed linear model is
ill-modeled. More precisely we have shown
the boundedness of the input-output signals
when the residual to signal ratio meets :

B <

where w(t) is the residual, s(t) is the norm
of the input-output signals passed through a
first order filter and n is a bound which
can be computed from the scheme characte-
risties.

(35)

To get this result we have been led to intro-
duce a projection and = normalization in

the adaptation algorithm. In particular we
have shown that these modifieations limit

the gain of the infinite gain operators
mentionned by Rohrs, and co-workers (1 982) as
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leading to instability. This new algorithm
reaches the initial control objective when
there is no reanidual.

As an important consequence of our study, we
have shown that not only the classieal
stability-robustness compromise, but also an
adaptation-robustness compromise has to be
made in adaptive control.

Note that for our result to hold, we need an
extra condition sbout the adaptive scheme, It
concerns the controllability of the estimated
model.
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APPENDIX
Proof Of Lemms 1

The technigue used here is by now standard
and we only point out the major steps :
let V(t) be defined as follows :

v (£) =(e(t)-8%)"p(£)7" (6(t)-0%) (a1)
From eq.(Z), eq.(14) to eq.(22), and projec—
tion property, the following relations can
be derived :

v(u:J = V(t-1) i)
+ e Gt ))

1 (£2)

v(t) = V(t-;) (43)
lle(t)-exl < p(t) +p, (a4)
llo(t)-8(t=1)ll<(241)g(t) ] v(t)|[[P(t=1 (e )l
(85)

Ineq. (A4) directly leads to E1 and with
ineq.(23) yields the boundedness of V(t).

Then eq. (A2) and ineq. (43),(a5),(23)
lead to
A
B4 +=L) (v (61 v (¢))
u
> ()? ()
A
1 W t) 2
P e ER)
“M = (v (t=1)-v(¢)) 5
lle(t)=e(t=1 )1
wit 2 2
*'Tw ) G B St
Use Schwartz inequality to get E2, E3.

Proof Of The rem
Notations Let |[.|| be the usual euclidian
norm and

| be any other egquivalent norm.

We have
¥ (48)
Lemma & : Let o(t), £(t) be sequences of
positive real numbers such that :
o(t+) <t it) glt) + 1 (89)
§+k
v(a,k), g(t) sV § +kn (a10)
t=q+
If we have
0<n, <1 (a11)
Then ¢(t) is uniformly bounded.
Proof : From assumption (19), it follows
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q
(m z(t))g(o)
t=0 = ¢(q+1)
q
+ (14 § I g(t) (a12)
k=1 t=qH-k ®
But with assumption (A10), let
n
A = exp - (l;.i) (a13)
We have
M, 2 q
2 Ly o k
k ’(1-ng =K 0 88) <A™ (a4)
k <K =
q 2
o g(t) sexpE2) = (a15)
t=qH-k g <
It follows :
+ Lo a-K
pla+t) <A%g(0) + (1M 12a )MQ
Y
(a16)

3tep 1. (A closedloop state space representa-
tion) : Let (-a,(t), b, (t)) (resp. fi(t),
ai(t)) be the = compofients of 6(t)

b(t)). From the Diophantine equation (20)
ipplied to u(t) and y(t), it follows :

T e, ()(y(t-i)-6(t)%o(e-1))
i=0

(resp.

. ="y (e)
kS b ()t %’(tﬂ-i) (417)
i=1

n-1
-2 2, (4)(y (-1 )0(2) 0 (4-1))
i=0

n =" u(e)
-2 ai(t)d»(t)%(tﬂ-i) (a18)
i=0

nd with eq.(14) , (21), (34) this yields :
n=1

A ei(t) v(t-1)

1=0

3 e (6)(8(ttm1 )-6(t a(tot)

:z M wie)
) b, (t)r(t-1)

1=0

§ bi(t)(w(t)-u»(t-i))T®(t+1-i (419)
1=t

T 1

_ifi(t)v(t-i)

1n—-1

5 £, (£)(6(t)-8(t-11))"0(t-1)
i;o =A1\((q-1 )u(‘t)
% ai(t)r(t—i)

i=0

T s (e(tke(1) (1)) (a20)
i=t

Then let X(t) be the following vector
x(t) = (y(t=1).y(t-2n41 Ju(t=1)ou(t-2n+1))T

(a21)
We ean rewrite eq.(419), {420) in :

X(t+1 )=(F+6Ft)x(t)+’¥ta(t)+9tﬁ(t) (a22)

where F 1is a companion matrix with charac-
teristic polynomial AM(q=1)2;%¥  includes
the controller parameters e. (t)f. (t) ;

et ineludes the estimated %arame%ers
&i(t)sbi(t): ﬁFt incorporates the following

differences :

e, (t)(6(t-1-1)-6(t)), b, (¢)(e(t u(t-1),
£, (£)(8(t)-6(t-1i-1)), a, (t)(o(t)-0(t-1)).

ALt) = (vlt) suv v(Exm ))T
REE) =04 ) e sl

With the striet stability of A'(q"'), there
exists a norm |l ||| such that :

elllx(ell|

HxCes)ll|<
#llar x(t) e a(t)+0 (I (a25)

(a23)
(424)

Il

with

E <1 (a26)

Step 2.(some inequalities) : Using Ei, Cf of

lemma 1,2 and the rorm equivalence (48),

we have :

ar x| <=2 far, . [x (o)l (a27)
sl < v, u, 1ate)y (a28)
|||8tH(t)|]| <y, M = ()]l (a29)

From the definitions of &(t), X(t), we have :
=GN > v, lle(e)l]

Introducing this inequality in the definition
of s(t) yields

(430)

(a31)

On the other hand, from the definition of A(t)
and property E2 of lemma 2, we have :

2(6) <o s(1) + 1 [IxGe)]| +
1

V(Q!k)r
q+k n
ale)l 1 1-g
t=q# slt < on—1 1=0 (?EMv+kLvnw) (k32)
In the following, let us note :
x(t) = [||x(e)ll] (433)
\F)
¥ s (434)

1
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Step 3. (use of Lemma &) : let us put together
ineq. (425), (A31) to get the following
system :

(E+vllaF, [1)x(t)

x(t#+) =

e, 185 )4 wlRCe)]) (a35)

s(t) < o6 s(t=1) +17— x(t) +s
1

With (4%2) and property E1, C1 of lemma 1,

2, llalt)ll anda :'.\F‘tH are bounded. Then
st

there exists Mx’ Ms such that :

(vior, v, 1EE1e(0)
x(t+)<
+o oy, M, 1A - | s(t=1) +m_ (a36)

s(t) sJYTx(t) +0 s(t=1) + M,

let ¢(t) be defined as :

p(t) = x(t) + Y, o(1-8)s(t-1) (437)
We get from (436) :
e(t) = gsyllar, [+ Jmm, "‘:—%“ +o(1-g) (a38)

Note that from the definition of AF, and
property E1, C1 of lemma 1, 2, we hdve :

n=1
M, 2 I8 (£)-8(t=i-1)||
i=0
> [lar. |

+ M E ot )= (t=1)) (a39)
O34

Then from property E3, C2, we get

+&

2 —
% IIAF, |l n° (M +L M )(VkM.# L.n ) (440)
teqt TR 8 oW

Hence to meet assumption (A9) of lemma A, using
using ineq. (438), (432),(440) we let :

+ yne(M¢+L¢Me)ﬁe

5 + I
1 1=0
3—1_5 —d % T M M, (ad1)
= E+a(1=
nc £+0(1-E)

g% ML ]
a1 (1-8)(1=0)
(a42)

2
+ an[(M¢+L¢MG)n Le +

Then we conclude that ¢(t) is bounded if
assumption (A10) is met. In this condition
s(t) is bounded and if n_ is equal to
zero we obtain eq. (33) ¥rom properties
B2, E3 and eq. (A19).



