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ABSTRACT

A direct adaptive control scheme for not

necessarily minimum phase systems is presented.

The algorithm is based on simultaneous identi-

fication of Iinput and output predictiocn models.

This leads to a bilinear parameters estimation
probler for which a least squares criterion
minimization is proposed. This framework makes
it possible to establish global convergence
without any extra condition. We give examples
to 1llustrate practical features.

I - INTRODUCTION

Nowadays one of the most important problem of
adaptive control theory is that of direct
adaptive control of non minimum phase systems
(sampled continuous time systems frequently
are not minimum phase [9]). It may be opposed
to indirect adaptive control for which condi-
tionned boundedness has been established [2].
This conditionning generally requires that the
identified model be stabilizable and implies
constrained identification [3]. We will here
see that, in direct adaptive control, non
linear identification is substituted for
constrained identification.

The primary problem of adaptive control
algorithm is to guarentee boundedness of both
input and output signals. To get this double
property, two kinds of informations about the
closed loop system are needed. In indirect
adaptive control they are given by model
parameter estimation on the one hand and
controller parameter computation on the other
hand [2], [10]. 1In direct adaptive control
of minimum phase systems they are given by
controller estimation on the one hand and
knowledge of the minimum phase property on
the other hand [4). For direct adaptive
control of non minimum phase systems, they
will be given by controller plus extra
parameters estimation.

In {1] or [8], these extra parameters are
those of the model. However this leads to
parameter estimation based on a bilinear
observation equation. A relaxation method 1is
used to solve this problem. It consists at
the first step in a classical linear model
parameter estimation whose result is then used
at the second step to linearize the bilinear
observation equation. This is in fact very
close to an indirect scheme with the problem
of stabilizability coming in.

In [5] the extra parameters are those of a
partial state predictor. The observation of
the parameters is linear. But it only yields
one piece of information about the system.
Therefore we think that without any persis-
tency of excitation assumption only local
stability may be ascertained (hence staying
in the vicinity of the true system is the
second piece of information).

Here we introduce an input prediction model
which together with an output prediction model
define an implicit prediction model which 1is
bilinear in the parameters. To solve this
estimation problem a least squares criterion
minimization is proposed. This framework makes
it possible to establish global stability.
Moreover in [6] we have shown that our
formulation can be extended to imbed such
problems as MIMO systems with reduced order
model, neglected weak coupling or some time
variation effects and non linearities.

However, to day we do not know any computa-
tionnally efficient algorithm to solve the
minimization problem involved in our approach.
Nevertheless to get some insight into
practical features, we offer a more imple-
mentable algorithm and we present simulation
results.

IT - DIRECT ADAPTIVE CONTROL SCHEME

Assumptions Let a system with y(t), u(t)

as scalar output and input respectively. The

following assumptions will be used

AQ. there exists (unknown) scalar polynomials
in the unit delay operator g such that
the system can be represented by

—1 —1
A(q ) y(t) = B(q ) u(r) N
with
— — _n
A(ql) = l+a q1+...+a q 4 (2)
1 nA
B(3') = b +b,q'4...+4b_ g B (3)
[e) i ng
> .
Al. n max {nA,nB} is known

A2. An upperbound (which does not need to
be small) of the coefficients of
A(El),B(El) is known.

A3, Given an (knowg) exponentially stable
polynomial R(ql)
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R(El)=1+r El+...+r EDR , n_. S n (4)
1 ng R
There exists (unknown) polynomials C(El),

D(q ) of degree n,(n-1) respectively with
C(0) = 1, such that

=1 —1 -1 _ =1 =1, _ o=l
A(qg ) C(qg) + q B{g) D(a'} = R(a") (5)

Moreover an upperbound of the coefficients of

c@’y , p@'y is known.

System reparametrization Using assumption

A3, let
-1 -1 —,—1
A(g) =1 + A(g )
c(dhy =1+ 2 T@h (6)
R(ZH =1+ 3 R@H
From (1), (5) we get
_ +E<51>u<c>+D<€’>y<t>+K<E‘>u<t>
R(q Ju(t)= (7.a)

2@ 1@ - +p@Hy(e-1) ]

R(7y () =3(d) [u(e)+T(T ) ule=1)+D(q Dy (e=1)]
(7.b)

Equations (7) may be considered as equivalent
to_equations ((1),(5)). Given a(qly, B(TYHY,
C(q ) D(ql), R(q*) this is an implicit
input-output prediction model. Given R(q ),
fu(t)i,{y(t)} this is a bilinear observation
equations_in the coefficients of A(El),
B(ql), c(qly, p(gh.

Feedback control law If the input u(t) is
generated by the causal feedback control law

= =1 -1 -1, M
u(t+1)=-C(q Ju(t)-D(g Iy (t)+E R(g )y (t) (8)
v
where {yj(t)} is an arbitrary bounded set
point sequence and E 1s a scalar, then the
resulting closed loop 1is
—1 —1 M
R(q ) (u(t)-A(q JE y (t-1))=0 (9)
-1 —1 M
R({q ) (y(t)-B(q )E y (t-1))=0 (1o
It is exponentially stable since R(El) is
exponentially stable. It achieves a traking
objective 1if
1 = B(1)E (1D

is made about the stabi-
lity of the inverse system, it may not be
possible that y(t) tends to yM(t). Therefore,
at least special consideration has to be given
to the question of steady-state errors in
output sequence.

Since no assumption

Adaptive control scheme In this paper we
shall be concerned with the situation when
A(ql), B(4:), c(ql), D(g!) are unknown. Only
R(q+) is given and the input u(t) and the
output y(t) are measured. Our problem 1is to
determine an algorithm to achieve the following
objectives

- “u(t)} and ‘y{(t)} remain bounded. 1
- the closed loop polynomial approaches R(q™)
for the given set point sequence {yM(t)}
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In section III we investigate the properties
of the following algorithm at each sampling
time t, we proceed in two steps

] - Identification of both system and control-

ler polynomials using prediction model (7).

This_ glves time varylng polynomials
ACt,qt), B(t,ql), T(t,q%), p(t,qh).
2 - Computation of the control as
W(e+ 1) ==T(e,THu(e)=d(e, Ty (D +E()R(THy ()
(12)
71 : 1 .
with mlf !B(t,l)i > €
E(t)= ’ (13)
1 if not
ITI - BILINEAR ESTIMATION AND STABILITY

Let us derive a predic-

(71

Bllinear estimation
tion error formulation

lLet $* , 8¥ be the true system and controller
parameter vector respectively
g* = e . ! 14
(dO dn-lcl cn) (14)
y¥ = P !
v (a,...a b, b ) (15)

For other particular value of these vectors

say 9,9 we may define from (7) the following
prediction error vector
8(t,6,v>=z(t)—(Hu(t)Hy<t))F(9,¢) (16)
where — .
z(t)=(R(g Ju(t) R(q)Iy(t))' (173
_ /y(t)...y(t—2n+l)u(t)...u(t—2n+1>\

Ba0= 1o 0 /

) RN (18)
_ (o cee o\

B (o= {y(e-1) . oy (e=2m) u(e) o+ . ult-2n) )
F(g,¥) is a vector whose coord1nate= are the
coefficients of A(g )U(q ), A(q! )C(q ),

B(q )D(q ), B(q )C(q Y. The function F(.
has the following properties

lemma |
i) F is a continuous function from R(4n+1)

to R(SH"‘])
ii) if HF(8,ull is finite then so is(6,y)l
iii) F(.,.) is generally not monic. But if
€,v) is an antecedent such that both

(a(qt),
then 1t is

correspondlng (c(qly, D(q D),
B(q ) are relatively prime,

unique.
Proof due to space limitation, the proof is
omitted.

Let J(t,&,y) be the least squares criterion

with forgettlng factor recursively defined
as follows

J(t,8,9)=u J(t-1,8,u)+e(t,&,v)'Qe(t,,yv)(19)

0 < u < 1| (20)

J(0,8,0)= (F(8,¥)-F(8(0),3(0)))"' (21)
x PO(F(G,v)-F(G(O),w(O))

where Q, P are positive definite matrices,
(6(0),3(0))° is a priori estimates.
A classical estimation procedure lies in
minimizing J(t,8,¥). To introduce a less
stringent algorithm, let J be a positive
scalar given by boundednes$ assumption in A2,
A3, such that

J(o,8%*

SR < T (22)
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Let Y be thne set defined as follows
. ) t .

o= 105,00 /30850 < LTal (23)
Then at time t we take the estimates
(2(t),u(t)) as an element of Wt We have
tne following property
Lemma 2 Subject to assumptions A0, Al, A2,
A3, we have
11 Fzee)lh, e (et remain bounded
12 1inm le(t), “(ty, (o)l =0

t’—m

I3 : M_is a decreasing sequence of compact

subsets.

Proof see appendix A.

=]

n M
the set ¢

=0 i
cenerally consist of oniy one point.

However limit does not

As a
consequence, parateter time variations may be
introcuced without improving estimation. To

round this difficulty, we have to define a

rule to choose (€(t),y{(t)) in M_ . For example
let (5(t),u(t)) Dbe the element of My that
minimizes LE-S(t-1)I4, 1i.e. (2(t),ou(t))is
given by solving
(2(t),4(t)) € Arg Min fe-2(e-1)12 (24)
(2, u€My
with c
i - (= ' ! o : U g
Moo= B0 /I, 5,0 < J3 (25)
then we have
Lemma 3 Subject to assumptions A0, Al, AZ,
A3, 1f  (8(t),v(t)) are as defined by (24),
(25) then we have properties Il, I2, I3 and
13" lim F3(t) - (=10 =0
t—)oo
Proof see appendix A.
Now with properties I1, I2, I3' we are in
position to state that our objectives are
achieved
Global stability
Theoren Let (=(t),v(t)) be such that
properties I1, I2, I3' are verified, 1f u(t+1)
is given by (12) > fult)t,v(t)}? remain
bounded and
. =1 —1
Iim (R(q Jy(t) - B(t,q J)y*(t-1)) = 0 (26)
e —1, o
y*(t) = E(t) R(q ) y (v) (27)
Proof see appendix A.
IV - TOWARDS AN IMPLEMENTABLE ALGORITHM
The algorithm presented in the previous
secticn 1s conceptual. At each time t, it

requires the computation of a minimizer of a
quadratic criterion over an implicitely

defined non convex set. However it should be
noted that given z (resp <) M%n J(t,yza,y)

(resp. Mén J(t,%,%)) 1s a classical quadratic

minimization problem.
minimization in

Consequently an alternate
is a candidate for an

Tyl

Algorithm at each time t

i=0, % =3(t-1),v =¢v(t=-1)

) o

o = NE z
1.1, e Arg Jén J(t’“’ri>

Y M1 2
1.2, Yo Arg Jin J(t,vi+1,v)
2 if i2i max then e<t>=5i+],w(t>=¢i+1 end
3. i=1+1 return to 1.
Due to one-line consideration, (i<i max) is
substituted for (J(t,%,u)sSptJ.) to stop the

iterations.

The computational complexity
consists in 1.1, 1.2.:
linear system has
tively n'

of this algorithm
A positive symetric

to be computed (approxima-
operations) and solved.

Simulations using this algorithm are presented
in appendix B.

Remark In fact J(t,%,>) may have several
staticnnary points. One of the reasons is the
non monicity of the F(.,.) function (since J

depends explicitely on F and not on (£,%)). To
round this difficulty, we can limit the set of
admissible (&6,u) for the minimization such
that F(.,.) is monic. Using lemma I, this is
met 1f (%,v) are such that the corresponding
polynomials verify

=1y .= =1 = -
a@he@h + ¢ s@H p@hH = (28)
Note that this leads to choose R(El) =1 as
desired closed loop poles.
This constraint could be introduced in the

estimation algorithm using penalty function
let G(%,¢) be the quadratic sum cf the
relations in the coefficients given by (28)
(Note that again G(%,Y) is separately
quadratic in %,v)), in the algorithm above
we could replace J(t,%,v) by

I(t,5,0) = G(z,0) (29)

a positive Lagrange multiplier.

J(t,8,0) +

where v 1is

V - CONCLUSION

An adaptive direct control scheme 1s presented
in this paper. It is obtained with a pole
placement as underlying design method. The
characteristics of this technique are

- estimationof both model and controller
parameters

- an estimation procedure which is bilinear
in these parameters and which is obtained
from both input and output prediction error
model.

We show that a conceptual least squares
criterion minimization is sufficient to get
global convergence with very weak assumptions:

stabilizability of the svystem
knowledge of an upper bound of the parameters
and of the system order.

efficient descent algorithm which converges to
any i:aFion?ary point of J(t,%,7). Sl§§e In particular no assumption is required about
q(t’“ s ¥ ) is strictly smalleF than & qO the estimated parameters.
if J(t,%,v) has only one stationnary point,
o?e'c?uld‘expect that using this alternate However our statement should be considered
minimization procedure, £(t),.(t) can be rather as a theoretical existence result than
computed in a finite number of operation. This g 4 practical scheme. Nevertheless, we have
leads to the following estimaticn algorithm
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introduced a more implementable algorithm
which leads to encouraging simulation results.

Much more work remain to be done for converting

these ideas into an efficient algorithm. Our
preliminary results suggest an interesting
and surely fruitful subject for future study.
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APPENDIX A

First note that (8%,y*)
which is consequently not
J(t,6,¥) we

Proof of lemma |
belongs to My

empty. From the definition of
have

J(t-1,0,y) < % J(t,8,¥) (AP.2)

This implies that if (6,¢) belongs to M, , it
also belongs to My_-j. Moreover using the
properties of F{(.,.) (see lemma 1), we can
state that M, is a compact subset. This
yields properties I1, I3.

Ultimately, property I2 can be obtained by
noting that

IEEE Trans AC, Dec.1981.

e(t,8,)qe(t,E,y) < J(t,8,4) (AP.2)
8(t) minimizes

for any integer s,
(use property I3),

Proof of lemma 2 Since
Te-s(t-1)1Z on Mt, and,

§(t+s) belongs to Mt
we have

fe(t+s)-e(e-1) =2 Te(e)y-e(t~1)l

(AP.3)

Now by contradiction, suppose there exists

€ > 0 and an infinite set of indices T
such that

vt € T,I8(t)=-9(t=1)I > ¢ (AP.4)
with (AP.3), we also have

VYt # s € T,Is(s=1)-6(t-1I > ¢ (AP.5)

&
Let B(8(t-1),7) be the closed sphere around
5(t-1) with rddius £

. . €
The family B(U(t—l),f) covers a subset

_ t€T 2
of Mo the compact subset of R " defined a:
—_ B ‘ €
= 8, ! : g-3 + .
M {8]3¢ or¥,) €M s le-s i< =} (aP.6)

Moreover we have

B(8(s-1),2)N B(E(t=1),2) = ¢ Veds € T (AP.7)
Then let v (resp. V) be the volume of B(e,%)
(resp. MO), and let card T denote the number

of elements of T. It follows that
(AP.8)

This implies that card T is finite which
contradicts the definition of T.

v. card T €V

Proof of theorem
Let d(t) be the following vector

d(t)=(y(t)...y(t-n+1)ult)...u{t-n+1)) (AP.9)
(12) may be rewritten in
u(t+1)==8(t) "o (t)+y*(¢)
Let Eu(t),ey(t) be the coordinates of
e(t,8(t),v(t))

(AP.10)

we have

R@Huor-e(0) "¢ (o)

g (t)= n
v -3 ai(t)[e(t)'¢(t—i)+u(t+1-i)]
i=1
(AP.11)
R(3)y (o)
£ (t): n
M -I b () [8(e) e (e-i-T)+u(e-1)]

i=1
It follows that

) ACe,TDy* () e ()
R(gHu(t+1)={ n
+% a, (e)[e(r)-8(t-i)] 6 (t-1)
i=1
(AP.12)
_ B(t,q )y*(t-1i)+e_(t)
R(g )y(t)=( n y
+X bi(t)[e(t)—e(t—i—l)]'¢(t—i-l)

i=1

Let us rewrite these equations in a more
classical state space representation
let X(t) he the following vector

X(e)=(y(t-1)...y(t-2n)u(t)...u(t=-2n)) '(AP.13)
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We rewrite (AP.12) in
X(t+1)=(F+AFt)X(t)+G€(t,€(t),b(t))+

Hie)Y*(t)

(AP.14)

Where F is a companion matrix of (R(El))2

AFt incorporates -the following differences

ai(t)(i(t)-e(t-i)),bi(t)(e(t)°5(t-i-l)

G is a constant matrix

H(t)_ includes the coefficients of A(t,al),

B(t,q%)
Y*(t)

is the feollowing vector

Y*(e)=(y*(t)...y*(t-n-1))"' (AP.15)

Now F 1s exponentially stable. There exists a
norm such that
ITF < & <1 (AP.16)

And with I], we know that ai(t)’bi(t) in

are bounded, then with I3', there exists a

time T such that
1-0

vt 2 T TaF I € —= (AP.17)
t 2

With I2, I1

are bounded.

bounded.

Then using I2,

e(t,5(t),v(t)),H(t)
that X(t) remain

we know that
It follows
I3' in (AP.12) leads to (27).
Remark if (25), (26) are used to get uy(t),
5(t) ; before stating uniform boundedness of
X(t) we need to show that J(t,5,7) makes
sense for any time t, i.e. (H (1)H (1)) in
(18) are finte for T € t. v y

Let us state this property recursively
Assume that, for T € t, (Hu(T)Hy(r)) are
finite. Then X(t) and ¢(t) are finite. But
also Mt is well defined and therefore

g(t),y(t) are finite.
eu(t) is finite.
ult+1)

Then using (AP.11)
It follows from (AP.12) that
is finite and from (1) that y(t+!) 1is

finite. This yields (Hu(t+1)Hy(t+1)) finite.

APPENDIX B

To illustrate some practical features of the
procedure proposed in this paper, we offer
simulations for a very difficult example
presented in [2].

The following system is considered

a@h = 1.0 - 1.27"
B(3') = 1.0 - 3.1q + 2.2¢°
The objectives are
R(gH) = 1.0
M 1.0 0<t<60
yoh(t) = - 1.0 61<t<80
1.0 8I1<t<100

It follows that the controller is defined by
c(g'y = 1.0 + 22.89' - 39.6q2
D(qh) = - 21.6

Note very high coefficients. This is;due to
the proximity of roots of A(ql), B{(q )

()
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(1.2. for A(3') and 1.1. for 3(g')). This will
also explain a very high sensitivity of the
controller parameters with respect to
variations of the model parameters when they
are in the vicinity of the system parameters.

We use the estimation algorithm of section IV
with the following conditions

o= .8
imax = 28
initial parameters

a(qhy = !

1.0 - 1.0q
B(3') = -2.03' + 3.09°
c(@y = 1.0+ 1.05" + 3.09°
D(3'y = 1.0
initial signals = 0

P, is obtained by simulating the closed loop
plant given by initial parameters with yM(t)
a white noise gnd by taking

T
P = Z uT

-t ,
o 2o (Hu(t)Hy(t))(Hu(t>Hy<t>)

The figure shows the output and input of the
system and the estimated parameters for our
algorithm. We can see that

i) the output converges to the reference
output. However we have a bad step
response due to the unstable zeros of

the system, its small gain and the choice
of closed loop poles (see (10)).

the parameters converge to their true
values. Note the jump of the controller
parameters when the model parameters
have converged.

ii)

With this very crude algorithm,
the same behaviours than those presented in
[2) for an indirect scheme. By now the matter
is not to compare these two schemes since our
algorithm is too much time consuming. However
the weakness of our assumptions and these
first simulation results suggest an
interesting subject for future study.

we nearly have
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