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ABSTRACT

Ar zdaptive on line pole placement control
scheme 1s presented which involves at each
step identification of the unknown system
matrices followed by a nornlinear computation
of the adaptive feedback matrices. We show
that a priori knowlege of an upperbound of
the degree of the numerator, and of column
degrees of a column proper denominator is
sufficient to get local boundedness even
when the system is corrupted by bounded
disturbances.

I - INTRODUCTION

During last years crucial advances have
been made in discrete time adeptive control
from a theoretical point of view. First
global stability has been established for
single input single output (SISO) minimum
phase deterministic and stochastic systems
using direct or implicit schemes [1]1,[2].
For SISO non minimum phase systems, prefe-
rence has been put on indirect or explicit
schemes, in the general context defined by
de Larminat in [3] and using on line pole
placement [4] or quadratic control [5].
For these techniques, local stability has
been established.

As far as multi input multi output (MIMC)
systems are concerned, results about SISO
minimum phase systems have been extended
in [6]1,[7]. On the other hand, amcng the
works we are aware of, no rigorous results
exist for non minimum phase MIMO systems.

In [9], Prager et al propose an on line
pole placement technique without proving
stability butalso with a strong assumption
about the system structure.

Here we propose to extend the scheme of

[4] zo MIMO systems. And with weaker a
priori knowledge required about the system
structure tharn in [9], we state condi<ionned
stability even when the system is corrupted
by bounded disturbances. In [16] this

result i1s enhanced when the norm of the
residuals between the true plant and the
assumed linear model is bounded from above
by the norm of the signals (reduced ordcer
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model, weak coupling ...).

Section II 1is devoted to the control law
description for known systems. In Section
III we describe our indirect adaptive
control scheme, giving general hypotheses
to get local stability. Section IV shows
how to achieve these hypotheses. Section V
draws conclusions.

All ideas introduced here are developped
in [12]. The details of the proofs may be

found in [12] or [17].

LINEAR TIME INVARIANT CONTROL SCHEME
MIMO SYSTEM REPRESENTATION

I1 -
IT.1.

MIMO system, for which, at each
time n, we let up be the control input
vector (in R®) and y, be the output vector
(in RY) and we assume the following
representation

Consider a

There exist relatively left prime polyno-
mial matrices A(b), B(b) of appropriate
dimensions such that

Vug , A(B)yn-B(blupy=wy (1)
v Twpll < W (2)
where

- wp 1s the residue between the true plant

and the assumed linear model and is
reguired to be only bounded.

- b is the backward shift operator

bup = uy-1 (3)
- A(0) is the identity matrix

4(0) = 1 (1)

IT.2. CONTROL LAV

From the primeness of A4(b),bE(b), for any
polynomial r(b), one carn find polynomial

matrices C(b), D{(b) such that (see [12] or
(171}

A(b) - DbB(b) - .
det D(5) c(p) = r(b) (s)
where det].| denotes the determinant. Note
that if r(0) is different from zerc, C(0)

is invertible.
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Then let us take the following ccntrol law: F(s)=F=c(2)87 () 15)
. +
5(5)C(5)uns15-p(5)D(5)y +r(5)5(5)yn where =
. N 5 Rermarx :
S rEew, (8 R
N polynceni
respectively a
al maetrices and y} 4 (b)
qg(2)
sed loop Tehaviour may be characte- N
n the following way : Using the 1(2)
matrix, there exist polynomial we Tay W
s X(5),Y(5),4,(2),3-(5) such that : N
A(b)y_ = 3(bJu_ + w_ + & (1¢)
[%(5) B2 (B)Y [&(b) ~ 23(3)\ __, ./ o\ ., - " n 8
i) AT(x)/) \D(by c(xy) _'<“)\Q z) (79 where &_ due toc initial conditicns ternd to
zero,
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tner) T Al (m))
( p(z) o \<w2> by
\-o(5)5 (5, r(b);(b)/ 75 L(b) are unknown.
if r(>) andé (b, are stadle pclynomials, AT each time n, we sclve this problem iz
e wp I1s bounded by assumption and if three steps :
z]z;giezad 4 dnced. Z. I§§ : i?n of the linear model (1).
This gives time varying polyromial
Eﬂ(:)::1u(k>31:(b) (3) matrices Ln(b)’En(:>
trices
) ois rtitle tolyncomial
s ze te cleosed unit
;(b) i“vert%bl§ poly- (20)
1% W are strictly out-
it d he clecsed loop
neti w, One may
. ned as iz
~re ter om.

(109

(11)

- R . Let 7 3 : 1 b +
- for regulsticn Let 5:., Oy denote ouLDJt‘arcA_npu~
respectively when filtered by *he solyno-
o) mial o)

4

—~—~
(84 I53
e

- B ”(b)?r(b))wn (12) e

= Tl
S dls_u)r(n) o .
dr(s) = b Y (13) = p(blu (22)
Then fclleowing L8] we verify trat wit Let 9. be a block matrix defined as follows
I L ¢ CWln 4, 1Ty fat wilth N a- -
fte mhed e miny = N N
apprepriate choice of p(b), rv(k),E(k),T(b) L PR N 5 b (23)
we carn exhaustively Zescribe the set c¢f n ~ n " o n """ Tn
trackingand regulation <ransfer functions
the process can assume by lirear closed where
locp control while mseting constraint of i i
robust internal stebility. Hence the B A‘ (resp BA) are ixi (resp ixn) scalar
contrel law design may be reduced to finding Watr;ces, . 1 .
stable polynomials p(b),r(b) and polynomial ga (reshWE is he)max1ma assumed
. z ; r
matrices Z(k),F(b) such that these closed egree © (resp B
loop transfer funciions are as "best" as R . R
sossible L ¢n be the vector given by
s "3 =+ O T T — . -+ —
Simply to get the "best” asymptotic beta o = [yn_~ Cev Yoy Ug e ULy ](24)
viour, it is sufficient to take : : - S a ' b
- Syt - . : . . :
E(D)=E=(C(1)B (1)A(L1)+D(1)) p(1) (14) Then we can rewrite (1) in the following

r(1) way
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t €
n

n

8- 9 (25)

n

vo= +
Yn

. £ . .-
a vector in R, 1s the fiitere

our time varying linear model.

where € .
. 1
residue of

The identification step consists in defi-
ning a new matrix © given all past and
present observations.

We shall assume that the adaptive identi-
fication scheme we use meets the following
specifications (compare with lemma 3.1. in

fad)

HI1 e ll <M
n 1
I P <
HI2 Han S M, o+ anHQHH
with a_ a sequence of positive real
numbers$ such that lim a_ =0
n = ©
HI3 vé 3(@l . Nl) such that
Yk > Nl s ¥Yqa such that
vn € [q+l,q+k] “¢nn > ¢l
4 a+k
then i T ”@n-e _ln < 8
n=g+1l o

boundedness of th
ensures that the
error le Il stays

HI1 regquires the uniform
model estimates 0O, HI2
norm of the a posteriori
very small compared with the norm of the
signals |l ¢l when this norm becomes larg
Finally HI3 means that for any time inter-
val where [¢zl is growing at a ligh leve
the mean difference between successive mod
estimates becomes smaller.

IIT.3. COMPUTATION STEP

In [17] we show that if AL(b), bBn(b) are
relatively left prime, there exist Cp(b),
Dn(b) such that, with Nz, Np as defined in
(23)

N -1
D (b) = %z 1F p¥ (26)
i k=0 n
" Kk
c (») =1+ I pc (27)
k=1 n

and (20) is satisfied with degree of r(b)
smaller than (deg(detAn(b))+mNb) and

r(0) = 1 (28)
Let Wy be the following matrix
n
t o Na_l 1 Nb
v = (D D I C c_7) (29)
n n n n n
To get Y, from the m-linear relation (20)

algorithm which gives an esti-
of by Then let us note Cp(b),
corresponding polynomial matrice
the following polynomial

we use an
mation v,
Dnr(b) the
and rn(b)

A _(b) - bB_(b)
n ol
d det R = fn(b) (30)
Dn(b) Cn(b)
Note that
£ (0) = r(0) = 1 (31)
Let ﬁn and R be vectors whose entries arr

the coefficients of FL(d) and r(b). We
respectively assume that the following
properties hold for the approximation
algorithm we use

HR1 "vnH < M3
HR?2 vy > 0, 3(N2,u) such that
vk > N2 s ¥q such that
1 q+k
= z le_-o <y
K nzqt+l n 1
then
; q=k - -
r -Z nwn—wn l“ < v
nzg+l
e
and
1 q+tk -
e X z ] RD_R” <y
' n=g+1

1
el HR1 requires the uniform boundedness of the
controller estimates {; and HR2 ensures
that when the mean difference between
successive model estimates goes to zero so
does the mean difference between successive
controller estimates and the mean diffe-
rence between the real and the desired

closed loop poles,

ITI.4. CONTRCL STEP

Given AnL(b), Bn(b), 5n(b), ﬁn(b), first we
compute Ep(b), Fp(b) (see discussion in
section II) such that

HCI Eq(b),Fr(b) are polynomial matrices
whose coefficients_are locally bounded
functions of O, , Yp and whose degree

is bounded from above.

Then the next step control u is given by

+1
ot x _ -—
L r(b)En(b)yn Fn(b)sn (32)
Or, equivalently
N Nf
e . n
- _ i % —_
u z Ey_.- z Fe_
n+l j=p D i h=0 n-n-h
Nb-l Na-l (33)
s r ctig L - = By
k=0 T PTN gz PR
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D For instance this constraint may be formu-
= - i Ty lated in the following wa
“ntl i§O Piyi¥n-i%¥n41 (3%) ee an cring Y
N Let © represent (&4(b),B(b)) as in (23) and
where _ g b (35) p be a positive constant, we substitute
p(b) = 1 + . Py assumption HII' for HIL
N i=1
e : : 1
HI1 HE 4 S <
E(p) = I bTE] (38) ms Mo el <o
;;O Compared with HI1l, the assumed model ©
. : i i . Tt i min f thi
F(r) m ¥ birt (37) appears he pragtlcal meaming o ?Hlf
n c A n fact i1s the requirement c¢f an & priori
1=y knowlecdge of some structure characteristics
(see IV.3.). An other limitation is given
III.5. BEHAVIOURAL THEOREM by the parameter p which is computed in
If HI1-HI2-HI3, HR1-HR2, HCl hold and Iif such a way that (HR) could be met. Moreover
p(b),r(b) are stable polyromials then : as the initial condition 90 must also
satisfy HIl', this confines our behavioural
(1) ups ¥, are bounded theorem to & local property.
(ii) if Moreover we have : Let us now give examples of Identification
and Computation algorithms.
1 HI3' : lim lo_-e .1 =0
n > : - IV.2. IDENTIFICATION ALGORITHM
: The problem here is tc meet conditions
1 . 3 -0 =
HR2 e “Jn vn—lH 0 HI1' , HI2 , HI3 given the representation
n - o . - <
of section II.1. In fact all classical
-~ - identification algorithms are sufficient
lim bv_-v —l” = 0 for this purpose. For instance when the
implies e o7 filtered disturbance bound W is known, we
TmpLies may use the following algorithm
1im IR _-RI = 0O
n oo O Let v be the a priori identification
error,
HC2 lim E_() - E__,(b) =0 v =T -0t e
n = ® n n n-1 "rn
lim F_(b) - F —l(b) =0 9 is computed as follows
n = o - n
6. =8 ., + g P ¢ v (40)
Then we asymptotically meet the first B R non-l 'nor
equation (8), namely .
m =P - g P ¢ ¢ P (u41)
R = _ - * n n-1 nm "n-1 'n "n "n-1
limer(b)(yn Bln(b)‘n(b)yn-l)
" _ (36) P> (42)
- (X_(b)-bB, (DB)F_(b)le I = 0 :
n in n n a -
W
g, = ____?f—————— Max {1- WC'F’O} (43)
| A
IV - HOW TO ACHIEVE THE BEHAVIOQURAL Ln.{wn n—l¢n v
THEOREM HYPOTHESES
where - (42) means that Py, is any matrix
IV.,1. INTRODUCTION : greater than My in the sense of definite

etric matri b
In ITI.5., no specific hypothesis about the  SYMmetric matrices and such that

underlying functiornal link between the two
sequences up and yp was needed. Here, for
a more concrete discussion, we shall assume
that the representation in II.1. is valid.

¢ < A <€ imin Pn < Anin Pn < A (4y)

where Amin (resp. Amax) denotes the minimum
(resp maximum) eigen value.

In this case, as we will see later on,
Identificatiorn hypotheses (HI) are satis-
fied as soon as "good" algorithms are
chosen. In fact the mair difficulties arise

- G@n s Ur are sequences of positive
real numbers such that

from (HR). Here is the ccmmon problem of 0 <ax %n <1 (45)
all indirect schemes : is the adapted

; < < < )
model stabilizable zs suppcsed for the ° s Bn " (46)

assumed model ? A positive answer implici-
tely yields putting constraint on the
identification scheme.

This algorithm may be reduced to many
commonly used algorithms such as stochastic
approximation [5], modified least squares

757
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[15), or constant trace algorithm [ig8]. 1t
verifies the following property
If ; satisfies
n
7 -oF < W 47
Hyn © ¢J| (47)
Then HI1', HI2, HI3' hold.
Moreover if H¢ﬁH is bounded from above then
lim sup lle I < W (49)
n = © o

This last inequality 1s very attractive
when brought together with (38) and
compared with (8).

When the bound W is unknown we may use a
projection algorithm as in [19]

IV.3. CONTROL LAW COMPUTATION ALGORITHM

We have here to show existence of p and

a priori knowledge about structure charac-
teristics such that when 0O, satisfy HIL'
one can find a computation algorithm which
realizes HR1 , HR2.

We may proceed on the following conceptual

way.

Choice of p and structure characteristics

Let A(b), B(b) be the polynomial matrices
of the assumed model where A(Db) 1s column
proper. With the following a priori know-
ledge
.th .
’ N, , 1 colomn degree of A(b) is
- known
Ny s upperbound of degree of B(b) is
known
i
Then in [17), we show that if in (5)
2
deg r(b) € X N, +m N_ , (50)
. _ i b
i=1
. .th
We may impose 1 column of D(b) to have
degree strictly less than N; and degree of
C(b) to be less than or equal to Np.
Moreover if
r(0) = 1 (51)
we may choose
c(o) = 1 (52)
Then let us write
_ [(d(p) c(b) \ 1
(D(B)C(b)) = \D* () c* (b)) m-1 (53)
2 m

where d(b), <¢(b) are polynomial row vectors.
Using a Laplace's expansion of (5), we show
in [17] that coefficients of the entries of
d(b), ¢(b) are solutions of an invertible
linear system we symbolically note

A X =B (54)

where A is made up from coefficients of
minors of

758

(a(B)  -bB(b))

\D*(bp) C*(b))
Now using a continuity argument, with an
appropriate topelogy defined on the polyrno-
mial coefficlent space, there exists p such

that for arny 8(A(b),B(b)) in the ocpen
sphere with centre ©(A(b),B(b)) and
radius p, minors of

[E(5)  -bB(1))

\D*(p) C*(b)
give a "strictly" nonsingular matrix A

(this "strictly" will be defined in the

next section).

Choice of an algorithm In the previous
section we have shown that if HI1l' is
satisfied, by keeping constant the (m-1)
last rows of (Dp(b)Cpr(Db)), the computaticn
step may be reduced to solve an invertible

linear system where unknowns are coeffi-
cients of the first row of (Dp(b)Cn(b)).
Let

AL Xy = Bp (55)
be this time varying linear system. To get

a "good" estimation of X, only one step of
any strictly contractive iterative algorithm
is sufficient.

Fer instance, if A is said to be strictly
nonsingular when there exists a square
nmatrix C such that

bz -CA oI < IICli (56)

then following the previous section, HI1'
implies A, to be stric:ily nonsingular.
Moreover the following sequence of vectecrs

CofAy X1 - By) (57)

T

n <1, <7

Xp = Xp-1

meets conditions (HR) (note that A,, B,
arepolynemial functions of ©,'s entries).

Remark This algorithm is very restrictive
ard 1t seems reasonnable that sufficient a
priori knowledge about structure charac-
teristics is, when A(b) is column proper
[ N .th
. N, , upperbound of I
A(b)

upperbound of

column degree of

degree of B(b)

underbound of degree of det A(b)

Then we impcse

deg r(b) € N + m Nb

LTk R
1 column degree of

degree of C(b) = N

D(b) = N, -1

b

For further discussion see [12].

V - CONCLUSION
pole placement control
which involves at each

of the unknown system

An adaptive on line
scheme is presented
step identification
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