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Abstract This study addresses the problem of delay compensation via a predictor-
based output feedback for a class of linear systems subject to input delay which itself
depends on the input. The equation defining the delay is implicit and involves past
values of the input through an integral relation, the kernel of which is a polynomial
function of the input. This modeling represents systems where transport phenomena
take place at the inlet of a system involving a nonlinearity, which frequently occurs
in the processing industry. The conditions of asymptotic stabilization require the
magnitude of the feedback gain to comply with the initial conditions. Arguments for
the proof of this novel result include general Halanay inequalities for delay differ-
ential equations and take advantage of recent advances in backstepping techniques
for uncertain or varying delay systems.

1 Introduction

Numerous control systems involve a physical dead-time which proves to be trou-
blesome in the design and tuning of feedback control laws. The dead-time results
from the fact that sensors and actuators are rarely co-located, for example in pro-
cesses that involve the transport of materials, such as mixing processes for liquid or
gaseous fluids, chemical reactors [12], automotive engine and exhaust lines [9], heat
collector plants [24], networks for blending liquids and solids [8], and batch pro-
cesses [22]. In all of these, and also in the crushing mill system described by [23],
the lag directly depends on the control variable and is inherently input-dependent.
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It seems that the stabilization of such processes with input-dependent time-delay
in the input D(u) or D(ut), where ut denotes past values over a finite horizon, has
seldom been theoretically studied. Rather, a widely considered approach is to recast
the delay dependence on the control, e.g., by modeling this dependence as D(u) ≈
D(t) (or even by a constant average value D) and expecting the controller to deal
with a certain level of unstructured model variability. The advantage of such an
approach is that it enables the use of a wide range of technical tools previously
developed to deal with disturbances. However, recasting this input-dependency into
the more general class of input-disturbance reduces performance potential. For this
reason we propose to explicitly take this dependency into account and to employ a
prediction-based controller, in an effort of improving transient performances.

Predictor-based control strategies [1, 17, 25], which are state-of-the-art for sys-
tems with constant input time-delays (as studied in [3, 10, 14, 18, 19] or [23] and
the references therein) are much more complex to apply for time-varying delays. As
shown in [20] or, more recently, in [16], to compensate a time-varying input delay,
the prediction has to be calculated over a time window whose length matches the
value of the future delay. In other words, future variations in the delay must be pre-
dicted. This can be done, for example, when one has access to a given delay model
as in [27] or when the delay is state-dependent, by carefully predicting the future
system state, as proposed in [2].

Yet, when the delay depends on the input, things become very involved. Deter-
mining the required prediction horizon is then an implicit issue, which in practice
may not be resolvable or even well-posed. This implicit nature is caused by the re-
ciprocal interactions between the (current and past) control values and the delay,
yielding a closed-loop dependency.

In order to design such a prediction-based control law, we advocate a two-step
method of disrupting the implicit loop, as proposed in our recent works on the
topic [4, 6] and establish sufficient conditions for asymptotic stabilization.

In a first step, we considered the input-dependency as a particular form of time-
variation. It enables us to then use a robust compensation result for linear systems
with time-varying input delay, using the backstepping tools proposed in [15] for the
analysis of input-delay system stability. Technically, this guarantees stabilization,
provided the delay variations are sufficiently small. Second, a sufficient bound on
the delay variations was obtained by relating them to the control tracking error,
which is analyzed using the asymptotic convergence of delay differential equations
(DDE) (Halanay-type inequalities [11]).

The result holds for potentially unstable linear systems of any arbitrary order n ∈
N. Assuming that the kernel defining the integral is a positive polynomial function
of the input, our previous result was extended to such a framework. This is the
main novelty of this study. As shown, this delay model encompasses a large class of
transport processes. For this class of systems, robust compensation is shown to be
achievable, provided that the initial conditions are sufficiently close to equilibrium
and that the feedback gain is chosen accordingly.

This chapter is organized as follows. In Section 2, the problem is illustrated by
a rocket engine system as an motivating example. A prediction-based controller is
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designed in Section 3. Sufficient conditions for stabilization are derived through a
proof of convergence, calling on Halanay-like inequalities arguments in Section 4.

Notation and Definitions. In the following, |.| stands for the usual Euclidean
norm, and C 0(S1,S2) denotes the set of all continuous functions on a set S1 with
values into a set S2. For a given symmetric matrix, λ (.) and λ (.) stand respectively
for minimum and maximum eigenvalues.

Classically, xt refers to the function xt : [−D,0]→ x(t + s) defined by xt(s) =
x(t + s) for a given function x and D > 0 and max|xt |= max{|xt(s)| : s ∈ [−D,0]}.

For any bounded function k defined on [−D,0] and any polynomial function π ,
we write

π(xt) =

(
x(t1), . . . ,x(tn−2),

∫ tn

tn−1

k(t− s)x(s)ds
)

(1)

for (t1, . . . , tn) ∈ [t−D, t]n. We also refer to π(xt) as a polynomial function in xt .
A polynomial function π in the variables (x1, . . . ,xn,xn+1) is said to be at least

quadratic in x1, . . . ,xn if, for any given xn+1, the corresponding polynomial function
πxn+1 defined as

πxn+1(x1, . . . ,xn) =π(x1, . . . ,xn,xn+1)

has no terms of order 0 or 1, e.g., π = x2
1 + x1x2x3 and π = x2x1 + x3x2

1 are both at
least quadratic in (x1,x2) while π = x3 + x3x2

2 is not.

2 Problem Statement

Consider the following potentially unstable linear time-invariant plant sketched in
Fig. 1:

x(n)(t)+an−1x(n−1)(t)+ . . .+a1ẋ(t)+a0x(t) = b0u(t−D(t)) (2)

driven by a delayed input, where the varying delay D(t) is implicitly defined in
terms of the input history by

∫ t

t−D(t)
ϕ(u(s))ds = 1 , (3)

in which ϕ : R 7→ [ϕ,∞) is a polynomial function with positive values (i.e., ϕ > 0).
Physically, the integral equation (3) corresponds to a plug-flow assumption [21] in
a transport phenomenon and appears in a large class of applications. The variable ϕ

is a (normalized) flow rate, which depends polynomially on the system input. Since
ϕ ≥ ϕ > 0, this transport delay is well defined1 and is upper-bounded, as follows:

1 The delay is positive and, besides, its derivative can be expressed as
Ḋ(t) = 1−ϕ(u(t))/(ϕ(u(t−D)))< 1 which guarantees strict causality.
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Process
Transport delay∫ t

t−D(t)
ϕ(u(s))ds = 1

u(t) u(t−D)

Fig. 1 The addressed problem, where the input is delayed by a transport delay which is input-
varying.

D(t)≤ D = 1/ϕ for all t ≥ 0. (4)

In particular, as

D 7→
∫ t

t−D
ϕ(u(s))ds (5)

is strictly increasing, it is invertible and the delay can be calculated and so is as-
sumed to be known in the following.

Motivating Example Consider a liquid non-hypergolic propellant rocket such
as the one pictured on Fig. 2. The fuel and oxidizer are stored in separate tanks,
blended and then fed through a system of pipes, valves, and turbopumps to a com-

Fuel mixture

Comburant

Turbopump
Fuel/comburant
burner caps
Combustion chamber

Comburant valve

efficiency

Inlet comburant/fuel ratio

1

Fig. 2 Left: Schematic view of a low cost designed (single choke) bipropellant rocket engine.
Zoom in on the transport phenomenon in the top right corner. Right: Schematic view of the evolu-
tion of the combustion efficiency with respect to the comburant/fuel ratio entering the chamber.

bustion chamber, where they are burned to generate thrust. As the mixture is non-
hypergolic, combustion is started by an ignition system in the chamber. Compared
to more classical setups (with dual pumps and pipes convecting the tanks directly
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to the combustion chamber), this architecture has been chosen for cost reasons, as it
uses only one pipe, one turbopump and one choke.

After being premixed downstream of the tanks, the mixture flows to the combus-
tion chamber, which generates a transport delay satisfying

∫ t

t−D(t)

Q(s)
VP

ds =1 , (6)

in which VP is the pipe holdup and Q(s) = Q1 +Q2(s) is the total volume flow rate
after mixing, i.e., the sum of the (constant) outlet fuel flow rate and the comburant
flow rate. Following Newton’s law, the (longitudinal) dynamics of the rocket can
therefore be written as

ẍ(t) =η(t)F0 ,

in which F0 is the optimal thrust, corresponding to a stoichiometric mixture, and η

is the combustion efficiency. The latter is significantly nonlinear at high flow-rate
ratios, which vanishes for low ratios [26]. Hence, it can reasonably be modeled as
η(t) = η0

√
Q2(t−D(t)) for example (without loss of generality), with the oxygen

volume flow rate Q2(t−D(t) entering the combustion chamber. Therefore, account-
ing for (6) and setting

u(t) = η0F0
√

Q2(t), (7)

one obtains




ẍ(t) = u(t−D(t))
∫ t

t−D(t)

1
VP

(
Q1 +

u(s)2

η2
0 F2

0

)
ds = 1

which is indeed in the form (2)–(3) with

ϕ(u(s)) =
1

VP

(
Q1 +

u(s)2

η2
0 F2

0

)
(8)

being a second-order polynomial function with strictly positive values. More com-
plex polynomial expressions can be considered to account for more detailed fit of
experimental data and thrust maps.

Control Design Objective The control task is to stabilize the plant at any equi-
librium point xr such that xr = b0/a0ur, where ur is the corresponding input. For
this purpose, a predictor-based feedback law will be employed here.

With this aim in view, we first formulate a state-space representation of this sys-
tem as





Ẋ(t) = AX(t)+Bu(t−D(t))
∫ t

t−D(t)
ϕ(u(s))ds = 1
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where

A =




0 1 0
...

. . .

0 0 1
−a0 −a1 . . . −an−1


 and B =




0
...
0
b0


 . (9)

For the sake of clarity, we assume in the following that the system state X is fully
measured. Extending this to output feedback for observable systems is straightfor-
ward, following the methodology of [7]. To construct a prediction-based control law,
we use the following theorem, a proof of which is given in [4] and [5].

Theorem 1 (Step 1: Preliminary result). Consider the closed-loop single input
system

Ẋ(t) =AX(t)+Bu(t−D(t)) (10a)

u(t) =K
[

eAD(t)X(t)+
∫ t

t−D(t)
eA(t−s)Bu(s)ds

]
, (10b)

where X ∈Rn, u∈R, K is chosen such that A+BK is Hurwitz, and D : R+→ [0,D]
is a time-differentiable function. Define

ϒ0(t) =|X(t)|2 +
∫ t

t−D(t)
u(s)2ds+D(t)2

∫ t

t−D(t)
u̇(s)2ds .

There exists ∆ ∗(K) ∈ (0,1) such that, if

|Ḋ(t)|< ∆
∗(K) , t ≥ 0 , (11)

then the plant (10a) exponentially converges to the origin, in the sense that there
exist R > 0 and ρ > 0 such that ϒ0(t)≤ Rϒ0(0)e−ρt for all t ≥ 0.

The prediction controller (10b) is a natural extension from the case of constant
delay. It forecasts values of the state over a time window of varying length D(t). Of
course, exact compensation of the delay is not achieved with this controller. To do
so, one would need to consider a time window whose length exactly matched the
value of the future delay, as done in [20] and [16]. In detail, defining η(t) = t−D(t)
and assuming that its inverse exists2, exact delay-compensation is obtained form
the feedback law U(t) = KX(η−1(t)). Yet, implementing this relation requires the
future variation of the delay to be predicted via η−1(t), which is not achievable in
practice for an input-varying delay.

Equation (11) can be interpreted as a condition for achieving robust delay com-
pensation3. The essence of this condition is that, if the delay were to vary sufficiently

2 This is the case if Ḋ < 1.
3 Interestingly, a similar condition is often stated in Linear Matrix Inequality approaches, such
as [28] for example, where the delay is also assumed to be time-differentiable.
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slowly, its current value D(t) used for prediction would remain sufficiently close to
its future values, and the corresponding prediction would be accurate enough to
guarantee the stabilization of the plant through the feedback loop.

We now focus on an alternative sufficient condition guaranteeing (11) when the
delay varies in accordance with the integral relation (3). For practical control design,
this new condition involves the control gain and the initial conditions.

3 Control Design

In this section, we now establish a sufficient condition guaranteeing (11) when the
delay varies in accordance with the integral relation (3). This new condition is rele-
vant to the initial conditions (and thus, to the choice of control gain).

Theorem 2. Consider the closed-loop system

Ẋ(t) = AX(t)+Bu(t−D(t)) (12)
∫ t

t−D(t)
ϕ((u(s))ds = 1 (13)

u(t) = ur +K
[

eAD(t)X(t)+
∫ t

t−D(t)
eA(t−s)Bu(s)ds−X r

]
. (14)

where ϕ : R 7→ [ϕ,∞) is a polynomial function, with ϕ > 0 constant, A and B are
defined in (9), K is such that A+BK is Hurwitz, u is scalar, X r is the state equi-
librium corresponding to the original equilibrium xr of the plant (2) and ur is the
corresponding (constant) reference control. Consider the functionals

Θ(t) =|X(t)−X r|+maxs∈[t−D,t]

∣∣∣[u(s)−ur u̇(s) . . . u(n−1)(s)]T
∣∣∣ (15)

ϒ (t) =|X(t)−X r|2 +
∫ t

t−D(t)
(u(s)−ur)2ds+D(t)2

∫ t

t−D(t)
u̇(s)2ds . (16)

Provided that u0 ∈ C n([−D,0],R), there exists θ : Rn 7→ R?
+ such that, if Θ(0) <

θ(K), then condition (11) is fulfilled and the plant exponentially converges to X r in
the sense that there exist R > 0 and ρ > 0 such that ϒ (t)≤ Rϒ (0)e−ρt for all t ≥ 0.

This result has a relatively direct interpretation: the previously presented Theo-
rem 1 requires the delay to vary sufficiently slowly, while on the other hand, the
delay variations implicitly depend on the control input through the integral equa-
tion (3), with variations whose rapid swings are scaled by the gain K. Therefore,
it would seem to be a natural requirement to restrict input variations by choosing
initial conditions sufficiently near the desired equilibrium and which comply with
the magnitude of the feedback gain.

The behavior of θ with respect to K must be investigated in future work. From
the expression (31), this would involve a study of the solution of the Lyapunov
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equation and the behavior of its eigenvalues with respect to K. One would expect
that θ(K)→ 0 while K→−∞ (since r(K) is expected in this case to tend to ∞). For
this reason, for given initial conditions, the magnitude of the feedback gain should
be chosen accordingly. For relatively large initial conditions, this would imply the
use of a small feedback gain; therefore, this result can be interpreted as a small-gain
condition. We now detail the proof of Theorem 2 .

4 Proof of Theorem - Halanay-like Inequalities

We prove Theorem 2. Taking a time-derivative of (13) and defining the error variable
ε = u−ur, one gets

Ḋ(t) =
ϕ(u(t−D(t)))−ϕ(u(t))

ϕ(u(t−D(t)))
=

ϕ(ε(t−D(t))+ur)−ϕ(ε(t)+ur)

ϕ(u(t−D(t)))
.

As ϕ is a polynomial function, it is locally Lipschitz with a constant M(κ) on the
interval [−κ,κ] for any positive scalar κ . Then, since ϕ ≥ ϕ , we obtain

Ḋ(t)≤ M(κ)|ε(t−D(t))+ur−(ε(t)+ur)|
ϕ

= M(κ)|ε(t−D(t))−ε(t)|
ϕ

≤ 2M(κ)max|εt |
ϕ

,

if max|εt | ≤ κ . Hence, for any positive parameter κ > 0, condition (11) is satisfied
if

∀t ≥ 0 , max|εt |< min
{

ϕ∆∗(K)

2M(κ) ,κ
}
. (17)

This is the condition we now focus on. It yields the analysis of the dynamics of
the variable ε . Before beginning this analysis in detail, we recall some well-known
stability results for DDE and their extensions.

4.1 Halanay Inequality for Delay Equations of Order n≥ 1

We first recall the following result ( [11], [13])4.

Lemma 1. (Halanay inequality) Consider a continuous positive- and real-valued
function x such that, for some t0 ∈ R,

ẋ(t)≤−ax(t)+bmaxxt , t ≥ t0

with a≥ b≥ 0. Then, there exists γ ≥ 0 such that

∀t ≥ t0 , x(t)≤maxxt0e−γ(t−t0)

4 More precisely, in [11], this result is stated for a > b > 0.
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Straightforward extensions of this lemma are stated below.

Corollary 1. Consider a positive-valued continuous function such that
{

ẋ(t) ≤ −ax(t)+bh(t,xt) , t ≥ t0
xt0 = ψ ∈ C 0([−D,0],R+) ,

(18)

where h is a continuous functional satisfying the sup-norm relation

h(t,xt)≤max|xt | , for max|xt |< ω , (19)

for a given ω > 0. If the initial condition is such that maxψ < ω and if a ≥ b ≥ 0,
then there exists γ ≥ 0 (where γ = 0 if a = b and γ > 0 otherwise) such that

∀t ≥ t0 , x(t)≤maxxt0e−γ(t−t0) . (20)

Proof. Consider ψ such that x is a non-trivial continuous solution5 of (18) which,
using (19), does satisfy the inequality

ẋ(t)≤−ax(t)+bmaxxt if maxxt < ω .

Following the seminal proof of [11], define y(t) = ke−γ(t−t0), with k > 0 and γ cho-
sen such that y satisfies the corresponding differential equation6

ẏ(t) =−ay(t)+bmaxyt , t ≥ t0 and yt0 = k .

Now, we define the difference z = y−x, which is a continuous function, and we are
interested in its sign change. We choose k ∈ (maxxt0 ,ω), which is a not empty set as
maxxt0 = maxψ < ω . This guarantees that z(t)> 0 for t ∈ [t0−D, t0]. The function
z being continuous, we define

t1 = inf{t > t0|z(t) = 0} ∈ R∪{∞} .

Assume that t1 < ∞. From the definition of t1, z(t) > 0 for t ∈ [t0, t1] and, from the
analytical expression of y and as both x and y are continuous, x(t) < y(t) < k < ω

for t ∈ [t0, t1). Therefore, the following inequality holds

∀t ≤ t1 , ż(t)≥−az(t)+b(maxyt −maxxt) .

Then, ż(t1)≥maxyt1 −maxxt1 > 0, by definition of t1. Yet, one has

ż(t1) = lim
t→t−1

z(t)− z(t1)
t− t1

= lim
t→t−1

z(t)
t− t1

≤ 0 as z(t)≥ 0 on [t0, t1] .

5 The case when x is identically 0 is trivial. The continuity (and even more) is obtained by assuming
ψ is smooth enough.
6 γ ≥ 0 is the unique solution on [0,∞[ of a− γ = bexp(γD).
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We finally conclude that t1 = ∞. Then, for t ≥ t0 and all z(t) > 0 and, for any
ε = k−maxxt0 > 0, we get

∀t ≥ t0 x(t)< (maxxt0 + ε)e−γ(t−t0) ,

which gives the result.

Lemma 2. [stability of a nth order DDE] Let x be a solution of the nth order DDE
{

x(n)(t)+αn−1x(n−1)(t)+ . . .+α0x(t) = c`(t,xt , . . .x
(n−1)
t ) , t ≥ t0

Xt0 = ψ ∈ C 0([−D,0],R) with max|ψ|< ω ,
(21)

where the left-hand side of the differential equation defines a polynomial whose
roots have only strictly negative real parts, c > 0, ω > 0 and ` is a continuous
functional. Then, there exist c∗ > 0 and r∗ > 0 (r∗ = 1 and c∗ = α0 if n = 1) such
that, if

• c≤ c∗;
• ` satisfies the following sup norm relation, with X = [x ẋ . . . x(n−1)]T ,

|`(t,xt , . . . ,x
(n−1)
t )| ≤max|Xt | , for t ≥ t0 , max|Xt |< rω with r ≥ r∗ ,

then, there exists γ ≥ 0 such that |X(t)| ≤ r∗max|Xt0 |e−γ(t−t0) holds for all t ≥ 0.

Proof. Using the scalar result of Corollary 1, define the scalar positive valued func-
tion m(t) = X(t)T PX(t) where P is, as defined in the statement of the Lemma, the
symmetric positive definite matrix solution of the Lyapunov equation AT

0 P+PA0 =
−Q, for some given symmetric positive definite matrix Q and

A0 =




0 1
...

. . .

0 1
−α0 −α1 . . . −αn−1.




is the companion matrix. Taking a time-derivative of m, we obtain

ṁ(t) =−X(t)T QX(t)+2X(t)T P




0
...
0

c`(t,xt , . . . ,x
(n−1)
t )

.




Therefore, defining a ∆
= λ (Q)

λ (P)
and b ∆

= 2c λ (P)
λ (P) , one obtains

ṁ(t)≤−am(t)+bh(t), where (22)
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h(t) = λ (P)
λ (P)

X(t)T P




0
...

0

`(t,xt , . . . ,x
(n−1)
t )




≤ λ (P)|X(t)||`(t,xt , . . . ,x
(n−1)
t )| ≤

√
λ (P)

√
m(t)|`(t,xt , . . . ,x

(n−1)
t )|,

(23)

which satisfies the following for max|Xt | < rω (and therefore, in particular, for
maxmt < r2ω2λ (P)): |h(t)| ≤

√
m(t)max

√
mt ≤maxmt . Define the condition

maxmt0 < r2
ω

2
λ (P) (24)

If (24) holds then we conclude by applying Corollary 1 to (22), that, if a > b, then
there exists γ > 0 such that

∀t ≥ t0 , m(t)≤maxmt0e−2γ(t−t0).

A sufficient condition for maxmt0 < r2ω2λ (P) is that

max|Xt0 |
2 < r2

ω
2
λ (P)/λ (P). (25)

By assumption |maxXt0 | < ω . Hence, to guarantee that (24) holds, we simply have
to pick

r ≥ r∗ ,
√

λ (P)/λ (P). (26)

Finally, the condition a > b can be reformulated as

c < λ (P)λ (Q)

2λ (P)2 , c∗ (27)

and one obtains

∀t ≥ t0 , |X(t)| ≤
√

λ (P)
λ (P)max|Xt0 |e−γ(t−t0),

which concludes the proof.

4.2 Application to Dynamical Equation Defined through the
Predictor-Based Control Law

We now focus on the DDE governing ε , which is given in the following lemma,
the proof of which follows exactly the same lines as the one provided in [6]. This
lemma can be extended without difficulty to the case of a piecewise continuous
initial condition u0. However, we prefer to restrict our exposition for the sake of
simplicity.
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Lemma 3. Provided that u0 ∈ C n([−D,0],R), the error variable ε = u−ur with u
defined in (14) satisfies the following differential equation for t ≥ 0

ε
(n)(t)+(an−1 +b0kn−1)ε

(n−1)(t)+ . . .+(a0 +b0k0)ε(t)

= π1

(
Ḋ(t), . . . ,D(n)(t),εt , . . . ,ε

(n−1)
t ,

1
1+ Ḋ(t)

)
, (28)

where [−k0 . . .− kn−1]
∆
= K and π1 is a polynomial function which is at least

quadratic in the variables Ḋ, . . . ,D(n),εt , . . . ,ε
(n−1)
t .

Now that we are equipped with this last lemma, it is possible to use Lemma 2 to
guarantee that the stability condition (17) holds.

Lemma 4. Consider the functional Θ defined in (15). Then, there exists a function
θ : Rn 7→ R∗+ such that, if Θ(0)< θ(K), then (17) is fulfilled, which implies that (11)
holds.

Proof. The input error ε satisfies dynamics (28), which is compliant with the as-
sumptions of Lemma 2. In detail, first, the left-hand side of (28) is stable, as it rep-
resents the last line of the Hurwitz companion matrix A+BK. Second, by observing
that ϕ and hence its derivatives are polynomial functions and that

Ḋ(t) = ϕ(ε(t−D(t))+ur)−ϕ(ε(t)+ur)
ϕ(ε(t−D(t))+ur)

D̈(t) = 1
ϕ(ε(t−D(t))+ur)3

[
ε̇(t−D(t))ϕ̇(ε(t−D(t))+ur)ϕ(ε(t)+ur)

−ε̇(t)ϕ̇(ε(t)+ur)ϕ(ε(t−D(t))+ur)
]

D(3)(t) = . . . ,

we obtain by induction that, for m≥ 1, D(m) is a polynomial function in

εt , . . . ,ε
(m−1)
t ,

1
ϕ(ε(t−D)+ur)

(29)

without terms of order 0 or 1. Therefore, π1 is directly a polynomial function of the
variables

εt , . . . ,ε
(n−1)
t ,

1
1+ Ḋ

,
1

ϕ(ε(t−D)+ur)
, (30)

which is at least quadratic in the variables εt , . . . ,ε
(n−1)
t . Observing that

1
1+ Ḋ(t)

=
ϕ(ε(t−D)+ur)

2ϕ(ε(t−D)+ur)−ϕ(ε(t)+ur)
,

we conclude that this term is continuous and therefore bounded on a given neigh-
borhood of the origin. Hence, as π1 is at least quadratic, it is possible to properly
define a scalar ω∗ > 0 such that

∣∣∣π1

(
εt , . . . ,ε

(n−1)
t

)∣∣∣≤ c∗max|Et | , max|Et |< ω
∗,
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in which c∗ is introduced in Lemma 2. This neighborhood depends on the functional
` and on the constant c∗ and therefore on the feedback gain K. Finally, define

c`(t,εt , . . . ,ε
(n−1)
t ) =π1

(
Ḋ, . . . ,D(n),εt , . . . ,ε

(n−1)
t ,

1
1+ Ḋ

)
.

Then, for max|Et([−D,0])|< ω∗(K), we obtain
∣∣∣c`(t,εt , . . . ,ε

(n−1)
t )

∣∣∣≤ c∗max|Et |.

Therefore, Lemma 2 guarantees the existence of r∗(K)> 0 and γ ≥ 0 such that

∀t ≥ 0 , |E(t)| ≤ r∗(K)max|E0|e−γt .

Hence, by choosing

max|E0| ≤
1

r∗(K)
min

{
u∆ ∗(K)

2M(κ)
,κ,ω∗(K)

}
∆
= θ(K) (31)

we ensure that this condition is fulfilled for any t ≥ 0, that the initial condition lies
in the neighborhood Ω and that

|E(t)| ≤min
{

u∆ ∗(|K|)
2M(κ)

,κ

}
, t ≥ 0. (32)

In particular, condition (17) is also fulfilled. Finally, the choice max|E0| ≤ θ(K) can
be expressed in terms of Θ . This gives the conclusion.

The proof of Theorem 2 directly follows from Lemma 4.

5 Conclusion

In this study we have extended some of our recent work to the compensation of
input-dependent delay input defined through an integral equation and considered
a wide class of kernels (positive polynomial functions of the input). This class of
systems is representative of a large number of processes involving transport of ma-
terial, such as the low-cost rocket design presented above. We prove that robust
compensation is achieved by using the current value of the delay as prediction hori-
zon, provided that the initial conditions are in accordance with the magnitude of the
feedback gain. The proposed approach is based on a two-step methodology which,
first, requires the delay variations to be bounded and, second, relates these variations
to input fluctuations. Quantitative comparison of the practical performances of the
proposed approach with those of a prediction-based controller using the (constant)
final reference delay D = 1/ϕ(ur) is the natural next step in this approach. Exten-
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sion to explicitly time-dependent delay-integral kernels is also a direction of future
work.
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