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Summary
This article explores the impact of regular perturbations (ie, small terms) in
input constrained optimal control problems for nonlinear systems. In detail, it
is shown that perturbation terms of magnitude 𝜀 appearing in the dynamics or
the cost function lead to a variation of magnitude K𝜀2 in the optimal cost. The
scale factor K can be estimated from the nominal (𝜀 = 0) solution and the ana-
lytic expressions of the perturbations. This result extends existing results that
have been established in the absence of input constraints. Technically, the result
is proven by means of interior penalties which allow constructing a sequence of
suboptimal feasible solutions. Two numerical examples serve as illustration.
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1 INTRODUCTION

In optimal control, one wishes to determine control laws for a given dynamic system optimizing a criterion.1-3 From
theoretical and numerical viewpoints, the number of state variables and the presence of constraints greatly affect the
resolution of optimal control problems (OCPs) by increasing its theoretic and numerical complexity. This observation
holds for all methods, from dynamic programming,4 Pontryagin minimum principle (PMP) based methods,5,6 or direct
formulations (eg, collocation methods).7 Therefore, it is tempting to simplify the equations defining the OCP to ease the
difficulty. The simplifications hopefully enable easier and faster determination of the solution, but this comes at the price
of suboptimality with respect to the original problem as neither the true dynamics nor the true cost function are accurately
accounted for when the simplifications are employed. In this perspective, a central question is to quantitatively evaluate
the cost of dealing with simplified equations.

Formally, consider that the equations defining the OCP under consideration are dependent on some parameter 𝜀. In
system theory, such small additive terms are called regular perturbations.8-10 In the absence of any constraints, it has been
studied in References 11 and 12 (and references therein) how such perturbations affect the optimality of the solution and
the state trajectories. Precisely, see References 11 and 12, if the error in the right-hand side of the dynamics and the cost
function between the simplified model and the perturbed model are of magnitude 𝜀, then the error in the optimal state
trajectories and the control is bounded in the sense of L2 norm by a function linear in 𝜀. As a consequence, the induced
suboptimality in any Lipschitz cost is bounded by a quadratic function of the form K𝜀2.

In real situations, however, OCPs have to include constraints in their formulation.13-18 These are the cases under con-
sideration in this article. Interestingly, it is possible to connect constrained OCPs to unconstrained ones. Several recent
works have proposed to deal with constraints by means of unconstrained representation of the variables, for example,
by saturation functions19-22 or by using a method based on interior penalties.23,24 The latter method allows one to solve
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constrained OCPs by generating a convergent sequence of OCPs. By introducing penalties with a weight factor in the cost
function, a new unconstrained problem can be defined for which the solution is determined from the usual stationarity
conditions. Under some mild assumptions, this solution is then shown to converge to the solution of the initial con-
strained problem when the weight on the penalty tends to zero. The result is built around the classic ideas of penalty in
finite-dimensional optimization.25

In this article, we employ this connection and extend the perturbation results to the cases of input constrained OCP.
The proposed methodology is grounded on the results of Reference 11 about the robustness of cost, control and state
with respect to model errors and the result of Reference 26, which we use to generate a sequence of problems without
constraints. By studying the limits of the sequence, we show that, here also, the error in the cost function is bounded by
K𝜀2 where K is a fixed parameter.

Rather than simply stating the existence of K, we propose a way to estimate K. Importantly, the estimation method
solely uses the 𝜀 = 0 solution and the perturbed equations. It produces an upper bound on K. This estimate is not sharp, but
it is sufficient in many situations to establish that some model details are not worth consideration as the added complexity
they induce is not creating sufficient cost improvement.

For illustration, we present a problem of energy management system for a parallel hybrid electric vehicle (HEV). In
this problem, it is shown that the benefit of considering the engine temperature dynamics in the minimization of the fuel
consumption, as has been considered in References 27-30 is actually very limited.

The article is organized as follows. Section 2 contains the problem statement and sketches the contribution. Section 3
presents preliminary results instrumental in proving the main result in Section 4. For convenience, a practical guide
or “cookbook” is proposed in Section 5 summarizing the equations needed for the estimation of the parameter K.
Section 6 gives numerical applications of the previous algorithm. A toy example and the HEV application are presented.
In Section 7, the use of K as a tool of model design is discussed. Finally, Section 8 gives conclusions and perspectives and
it is followed by appendices containing several proofs that have been omitted from the main stream of the article.

2 PROBLEM FORMULATION AND MAIN RESULT

Consider the following OCP, which we refer to as OCP𝜀,

min
u∈Uad

[
J𝜀(u) = ∫

T

0
[L0(x,u) + 𝜀L1(x,u)] dt

]
, (1)

where L0 and L1 are C2 functions, and their first and second derivatives are assumed to be bounded, T is a fixed parameter,
𝜀 ∈ [0, 1] is a parameter scaling error terms (perturbations) in the cost function and the state dynamics defined below in
(2), and x ∈ Rn and u ∈ Rm are the state and the control variables of the following nonlinear dynamics with given initial
conditions X0

dx
dt

= f0(x,u) + 𝜀f1(x,u), x(0) = X0, (2)

where f0 and f1 are C2 functions with bounded first and second derivatives. We note Γ a Lipschitz constant for f0. The
control function u is constrained to belong to the set Uad defined by

Uad = {u ∈ L∞[0,T] ∶ umin ≤ ui(t) ≤ umax, a.e. t ∈ [0,T],∀i ∈ {1,… ,m}}.

As exposed in Reference 26, Uad can be generalized to be the set of integrable functions with values in a compact
convex set with a non empty interior, without adding complexity (except for notations) in the computations that follow.

For convenience, we note 𝜎 ≜ [x,u]. Furthermore, the following assumptions are considered:

Assumption 1 (Existence and uniqueness). For any 𝜀 ≥ 0, the OCP (1) possesses a unique solution. u∗
𝜀 denotes the

corresponding optimal control and x∗𝜀 is the corresponding solution of the differential equation (2) (for u = u∗
𝜀).

The Hamiltonian associated with the problem for 𝜀 = 0 is

H0(𝜎, p) = L0(𝜎) + pTf0(𝜎).
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The perturbating Hamiltonian is

H1(𝜎, p) = L1(𝜎) + pTf1(𝜎).

For any 𝜀 ≥ 0, p∗
𝜀 is the adjoint state associated with x∗𝜀 . For establishing the main result of this article, we formulate two

additional assumptions.

Assumption 2 (Convexity condition on H0). There exists 𝛽 > 0 such that{
𝜕uuH0(𝜎, p∗

0) ≥ 𝛽I uniformly in 𝜎,

(𝜕xxH0 − 𝜕xuH0[𝜕uuH0]−1𝜕uxH0)(𝜎, p∗
0) ≥ 0 uniformly in 𝜎.

These inequalities are known in the calculus of variations as convexity conditions or strengthened Legendre-Clebsch
conditions.2 Furthermore, an assumption is formulated on the perturbating Hamiltonian. Let us first define some
quantities that depend only on the unperturbed problem. We define

𝛾1 = 1
𝛽
sup
𝜎

‖‖𝜕uxH0(𝜎, p∗
0)‖‖ 𝛼1(t) = 2Γe2Γ(1+𝛾1)t − 1

1 + 𝛾1

d1 = ∫
T

0
𝛼1(t)dt 𝛼3 = 2

[
2 + 𝛾2

1 d1
]
. (3)

Assumption 3 (Boundedness of H1). The perturbating Hamiltonian satisfies

inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, p∗
0)‖‖ ≤ 𝛽

2(𝛼3 + d1)
. (4)

Theorem 1 (Main result). There exists a positive constant K such that the suboptimality of u∗
0 is upper bounded under the

form

ΔJ ≜ J𝜀(u∗
0) − J𝜀(u∗

𝜀) ≤ K𝜀2 ∀𝜀 ∈ [0, 1]. (5)

Remark 1. The quantity K is a linear combination of the squares of bounds on the perturbating terms f1 and L1 evaluated
along the unperturbed optimal trajectory, and of the squares bounds on the derivatives of these perturbating terms. Also,
K tends to the infinity when the convexity constant 𝛽 tends to 0 like 1

𝛽
, and K depends on the bounds of the second

derivatives of f1 and L1, and of the nominal costate p0, but not linearly. The bound K increases as the bounded-output
(BIBO) behavior of the nominal system increases.

3 PRELIMINARY RESULTS

To prove Theorem 1, we establish some preliminary technical results. A sequence of unconstrained problems can be
considered, which converges to OCP𝜀. For this, following Reference 26, a penalty function P(u) is introduced into the cost.
This penalty function is used to define the penalized OCP,

min
u∈Uad

[
Jr
𝜀(u) = ∫

T

0
[L0(𝜎) + 𝜀L1(𝜎) + rP(u)]dt

]
, r > 0. (6)

This approach is very general, see Reference 31 and references therein. For each value of r > 0, the solution of OCP
(6) is determined from simple stationarity conditions on the Hamiltonian since the optimum is interior. To exploit this
technique, we formulate the following assumption:

Assumption 4 (Penalty properties). The penalty P(.) ∶ ]umin,umax[→ R+ satisfies the following conditions:26

• the function P(.) is C1, strictly convex, and non-decreasing,
• the penalty P(.) and its derivative P′(.) grow unbounded as u reaches either umin or umax.
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As was shown in Reference 24, when r goes to zero, under Assumption 4, the optimal value of the modified cost (6)
converges to the optimal cost of (1) under input constraints and the penalty term rP(u) goes to zero. Because P(.) takes
infinite value outside the domain defining Uad and on its boundary, the solutions lie inside this open domain.

Using the PMP, the two-point boundary value problem (TPBVP) associated with the nominal problem (for 𝜀 = 0) is
given by (2) and

−ṗrT
0 = 𝜕xL0(𝜎r

0) + prT
0 𝜕xf0(𝜎r

0), prT
0 (T) = 0, (7)

𝜕uL0(𝜎r
0) + r𝜕uP(ur

0) + prT
0 𝜕uf0(𝜎r

0) = 0. (8)

Here 𝜎r
0 denotes the optimal state and control for (6) with 𝜖 = 0, and pr

0 is the related costate. From theorem 4 of
Reference 26, one has that as the r parameter approaches 0, then ur

0 and xr
0 approach u∗

0 and x∗0 in the L2 and L∞ norms,
respectively. From (7), it follows that pr

0 approaches p∗
0 in the L∞ norm.

The Hamiltonian associated with the problem (for 𝜀 = 0) is

Hr
0(𝜎, p) = H0(𝜎, p) + rP(u).

In the case 𝜀 > 0, the Hamiltonian associated with this problem is

Hr
𝜀(𝜎, p) = L0(𝜎) + 𝜀L1(𝜎) + pT [

f0(𝜎) + 𝜀f1(𝜎)
]
+ rP(u) = Hr

0(𝜎, p) + 𝜀H1(𝜎, p), (9)

where H1(𝜎, p) ≜ L1(𝜎) + pTf1(𝜎) is independent of the penalty function. For any r, we note pr
𝜀 the adjoint state associated

with the state xr
𝜀 and ur

𝜀 the optimal control solution of the OCP (6) for 𝜀 ≥ 0. Denote for any x, u, xr
𝜀, and ur

𝜀

w ≜ [𝜎 p], 𝛿xr ≜ x − xr
0, 𝛿ur ≜ u − ur

0, 𝛿𝜎r ≜ 𝜎 − 𝜎r
0,

𝛿xr
𝜀 ≜ xr

𝜀 − xr
0, 𝛿ur

𝜀 ≜ ur
𝜀 − ur

0, 𝛿𝜎r
𝜀 ≜ 𝜎r

𝜀 − 𝜎r
0.

To estimate an upper bound on ΔJ, the two following Propositions 1 and 2 are used. These two general results are
based on Taylor expansion and differential calculus.

Proposition 1 (Second-order expansion). For any control u, Jr
𝜀(u) can be written as

Jr
𝜀(u) = ∫

T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt + 𝜀∫
T

0

[
N0(t) ⋅ 𝛿ur + N1(t) ⋅ 𝛿xr] dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r, pr

0)(𝛿𝜎
r)2d𝜆d𝜇dt, (10)

where

N0(t) ≜ 𝜕uH1(𝜎r
0, pr

0), N1(t) ≜ 𝜕xH1(𝜎r
0, pr

0).

As the term ∫ T
0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt depends only on the nominal trajectories, it can be seen as a constant term.
The second term ∫ T

0
[
N0(t)𝛿ur + N1(t)𝛿xr] dt represents the first-order variation of the cost due to the state and control

trajectories variations.

Proof. The proof is based on Taylor expansion and is given in Appendix A. This expansion uses the stationarity condition
(8); interiorness is instrumental in the proof. ▪

For any given r, xr
0 is the solution of the differential equation (2) for the control ur

0:

dXr
0

dt
= f0(Xr

0,ur
0) + 𝜀f1(Xr

0,ur
0), Xr

0(0) = x0(0), (11)
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while xr
0 satisfies

dxr
0

dt
= f0(xr

0,ur
0), xr

0(0) = x0(0). (12)

The two trajectories of Xr
0(t) and Xr

0(t) have the same control input ur
0 and the same initial conditions. The following

proposition gives an upper bound on ‖‖Xr
0(t) − xr

0(t)‖‖.

Proposition 2. Consider (11) and (12), the error ‖‖Xr
0(t) − xr

0(t)‖‖ satisfies

‖‖Xr
0(t) − xr

0(t)‖‖ ≤ F1q(t)𝜀, (13)

where

F1 = sup
t∈[0,T]

‖‖f1(𝜎r
0(t))‖‖ , q(t) = 1

Γ
(eΓt − 1). (14)

and Γ is the Lipschitz constant of f𝜀.

Proof. The proof is given in Appendix B. ▪

Remark 2. Observe that evaluating the upper bounds given in (14) does not require to solve the perturbed OCP. The first
quantity F1 evaluates the perturbation term on the dynamics along the non perturbed trajectory, and q(t) quantitatively
expresses the BIBO behavior of f0.

4 PROOF OF THE MAIN RESULT

To prove Theorem 1, we need the following intermediate upper bounds on xr
𝜀(t) − xr

0(t) and ur
𝜀(s) − ur

0(s).

Lemma 1. There exist positive constants cx and cu such that, for all r > 0 and all penalty functions P(.)

||xr
𝜀(t) − xr

0(t)||2 ≤ c2
x𝜀

2, (15)

∫
T

0

||ur
𝜀(s) − ur

0(s)||2ds ≤ c2
u𝜀

2. (16)

The proof of this lemma is divided into two parts, each of which is summarized in a proposition.

1. First, an upper bound is derived for the quantity

M0 ≜ Jr
𝜀(ur

0) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt. (17)

This upper bound is given in Proposition 3.
2. Then, using Assumption 2, we define a new variable

z(𝜆, 𝜇, t) ≜ 𝛿ur
𝜀 + [𝜕uuHr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r, pr

0)]
−1𝜕uxHr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r, pr

0)𝛿xr
𝜀. (18)

An upper bound on

R ≜ ∫
T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt, (19)

is given in Proposition 4 where the inequalities (15), (16) are derived.
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4.1 Upper bound on M0 defined in (17)

An upper bound on M0 is calculated in the following proposition.

Proposition 3. There exist positive constants c0 and c1 such that, for all r > 0, for all P,

|M0| ≤ (c0F2
1 + c1)𝜀2. (20)

These are

c0 = 1
2

(
sup

t∈[0,T]
𝜕xxHr

0(𝜎
r
0, pr

0) + m
)
∫

T

0
q2(t)dt + 1

2
sup

t∈[0,T]
𝜕xxH1(𝜎r

0, pr
0)∫

T

0
q2(t)dt, (21)

c1 = 1
2m ∫

T

0
k2

1(t)dt, (22)

where m is a (free) positive constant, q is given in (14), and k1 is an upper bound on N1(t). In particular, c0, c1, and the upper
bound in (20) are independent of rP(.).

Proof. The proof is based on the second-order expansion given by (10). From Proposition 1, the penalized cost function
Jr
𝜀(ur

0) can be rewritten in the form

Jr
𝜀(ur

0) = ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt + 𝜀∫
T

0
N1(t) ⋅ (Xr

0 − xr
0)dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕xxHr

𝜀(xr
0 + 𝜆𝜇(Xr

0 − xr
0),ur

0, pr
0)(X

r
0 − xr

0)
2d𝜆d𝜇dt, (23)

where xr
0 and xr

0 are defined in (11) and (12). The quantity M0, defined in (17) can be written from (23) as

M0 = 𝜀∫
T

0
N1(t) ⋅ (Xr

0 − xr
0)dt + ∫

T

0 ∫
1

0 ∫
1

0
𝜆𝜕xxHr

𝜀(xr
0 + 𝜆𝜇(Xr

0 − xr
0),ur

0, pr
0)(X

r
0 − xr

0)
2d𝜆d𝜇dt. (24)

In this expression, the penalty on the control disappears from the calculation because the two state trajectories xr
0

and xr
0 share the same control input (the error in the state trajectories is induced by the perturbation terms in the state

dynamics). Since the first derivatives of L1 and f1 are bounded by assumption, N0 and N1 are bounded:

||N1(t)|| ≤ k1(t), ||N0(t)|| ≤ k2(t). (25)

Indeed, the terms N1(t) and N0(t) depend only on the nominal trajectories and they can be bounded by functions of
time. The upper bound on N1(t) ⋅ (Xr

0 − xr
0) can be written as

𝜀∫
T

0
N1(t) ⋅ (Xr

0 − xr
0)dt ≤ 𝜀2

2m ∫
T

0
(N1(t))2dt + m

2 ∫
T

0
(Xr

0 − xr
0)

2dt,

using the following inequality, for any a, b and m > 0: 2ab ≤ 1
m

a2 + mb2. Inserting Equation (13) to bound Xr
0 − xr

0 yields

𝜀∫
T

0
N1(t) ⋅ (Xr

0 − xr
0)dt ≤ 𝜀2

2m ∫
T

0
k2

1(t)dt + 𝜀2m
2

F2
1 ∫

T

0
q2(t)dt,

≤ 𝜀2

2

(
1
m ∫

T

0
k2

1(t)dt + mF2
1 ∫

T

0
q2(t)dt

)
.

From the decomposition in Equation (9), we have

𝜕xxHr
𝜀(.) = 𝜕xxHr

0(.) + 𝜀𝜕xxH1(.).
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As the second derivatives of L0 and f0 are assumed to be bounded and the term 𝜕xxHr
0 is independent of the penalty

P(.), we can define

𝛾0 = sup
t∈[0,T]

𝜕xxHr
0(.).

By using the relation (13), we derive that

|||||∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕xxHr

0(x
r
0 + 𝜆𝜇(Xr

0 − xr
0),ur

0, pr
0)(X

r
0 − xr

0)
2d𝜆d𝜇dt

||||| ≤ 𝜀2

2
𝛾0F2

1 ∫
T

0
q2(t)dt.

As 𝜀 is in [0, 1], 𝜀3 ≤ 𝜀2 and we can write the following upper bound

|||||∫
T

0 ∫
1

0 ∫
1

0
𝜀𝜆𝜕xxHr

1(x
r
0 + 𝜆𝜇(Xr

0 − xr
0),ur

0, pr
0)(X

r
0 − xr

0)
2d𝜆d𝜇dt

||||| ≤ 𝜀2

2
sup

t∈[0,T]
𝜕xxH1(.)F2

1 ∫
T

0
q2(t)dt.

From Equation (24), M0 is thus bounded by

|||||Jr
𝜀(ur

0) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt
||||| ≤ (c0F2

1 + c1)𝜀2,

where c0 and c1 are given in (21) and (22). They are independent of rP(.). This concludes the proof. ▪

Remark 3. Observe that the bound given in (20) involves the square of F1, and that c1 is a bound on the
square of the perturbed cost and dynamics, following (22)-(25). Their evaluation does not require to solve the
perturbed OCP.

4.2 Upper bound on R defined in (19)

Proposition 4. There exists a constant c2, such that, for all r > 0, for all P,

R ≤ c2𝜀
2,

where c2 is proportional to the inverse of the convexity parameter 𝛽 defined in Assumption 2 and proportional to the square
of the perturbating terms and their derivatives.

Proof. Essentially, the proof is based on the decomposition suggested in Proposition 1 and the convexity conditions
given in Assumption 2. The variable z defined in (18) will be helpful as it allows to deal with diagonal quadratic
forms.

Since ur
𝜀 is the optimal control of the perturbed problem, it satisfies

Jr
𝜀(ur

𝜀) ≤ Jr
𝜀(ur

0),

which gives

Jr
𝜀(ur

𝜀) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt ≤ Jr
𝜀(ur

0) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt ≤ (c0F2
1 + c1)𝜀2,

that leads to

Jr
𝜀(ur

𝜀) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt ≤ (c0F2
1 + c1)𝜀2. (26)
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By using Proposition 1, Jr
𝜀(ur

𝜀) can be written under the form

Jr
𝜀(ur

𝜀) = ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt + 𝜀∫
T

0

[
N0(t)𝛿ur

𝜀 + N1(t)𝛿xr
𝜀

]
dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt,

and, we have

Jr
𝜀(ur

𝜀) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt = 𝜀∫
T

0

[
N0(t)𝛿ur

𝜀 + N1(t)𝛿xr
𝜀

]
dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt.

By combining this expression with (26), we obtain

(c0F2
1 + c1)𝜀2 ≥ 𝜀∫

T

0

[
N0𝛿ur

𝜀 + N1𝛿xr
𝜀

]
dt + ∫

T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2d𝜆d𝜇dt. (27)

From the expression of Hr
𝜀 in (9), we have

𝜕𝜎𝜎Hr
𝜀(.) = 𝜕𝜎𝜎Hr

0(.) + 𝜀𝜕𝜎𝜎H1(.).

To find a bound on 𝜕𝜎𝜎Hr
0(𝜎

r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2, every factor of 𝛿ur

𝜀 in the second-order variation of the cost Jr
𝜀(ur

𝜀) is
substituted by terms in 𝛿xr

𝜀 and z defined by (18). This allows us to handle a diagonal quadratic form in terms of z and
𝛿xr

𝜀. The following expression of 𝜕𝜎𝜎Hr
0(𝜎

r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2 holds

𝜕𝜎𝜎Hr
0(𝜎

r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2 = 𝛿xrT

𝜀 𝜕xxHr
0(𝜎

r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)𝛿xr

𝜀

+ 𝛿urT
𝜀 𝜕uuHr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)𝛿ur

𝜀 + 2𝛿urT
𝜀 𝜕uxHr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)𝛿xr

𝜀,

which can be written using the variable z as

𝜕𝜎𝜎Hr
0(.)(𝛿𝜎

r
𝜀)2 = zT𝜕uuHr

0(.)z + 𝛿xrT
𝜀

[
𝜕xxHr

0 − 𝜕xuHr
0[𝜕uuHr

0]
−1𝜕uxHr

0
]
(.)𝛿xr

𝜀.

The term 𝜕𝜎𝜎Hr
0(𝜎

r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2 is written as the sum of terms whose signs are known from the second-order

optimality conditions given in Assumption 2,

𝜕𝜎𝜎Hr
0(.)(𝛿𝜎

r
𝜀)2 ≥ 𝛽‖z(𝜆, 𝜇, t)‖2.

Thus, Equation (27) implies

(c0F2
1 + c1)𝜀2 ≥ 𝜀∫

T

0

[
N0𝛿ur

𝜀 + N1𝛿xr
𝜀

]
dt + 𝛽R

+ 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt. (28)

We now estimate the error in the state trajectories due to the control input variation and perturbations in the dynamics.

Proof. There exist positive constants (𝛼3, 𝛼4) and bounded time functions (𝛼1, 𝛼2) such that

‖𝛿xr
𝜀(t)‖2 ≤ 𝛼1(t)∫

T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt + 𝛼2(t)F2

1𝜀
2, (29)
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∫
T

0
‖𝛿ur

𝜀(t)‖2dt ≤ 𝛼3 ∫
T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt + 𝛼4F2

1𝜀
2, (30)

where F1 is given by

F1 = sup
t∈[0,T]

‖‖f1(𝜎r
0(t))‖‖ ,

and the variable z is defined in (18). The expression of (𝛼1, 𝛼2, 𝛼3, 𝛼4) is given in Equations (C4) and (C6). ▪

The proof of this lemma is given in Appendix C.
We now proceed with establishing a bound for R defined in (19), which appears in (29) and (30). Consider (3) and

(C6). By using Young inequality (holding for any a, b and m > 0)

2ab ≥ − 1
m

a2 − mb2,

the term 𝜀 ∫ T
0

[
N0𝛿ur

𝜀(t) + N1𝛿xr
𝜀(t)

]
dt is lower bounded as follows

𝜀∫
T

0

[
N0𝛿ur

𝜀 + N1𝛿xr
𝜀

]
dt ≥ −∫

T

0

[
𝜀2

2m
{
(N0(t))2 + (N1(t))2} + m

2

{‖𝛿xr
𝜀‖2 + ‖𝛿ur

𝜀‖2
}]

dt,

≥ − 𝜀2

2m ∫
T

0
(k2

2(t) + k2
1(t))dt − F2

1
𝜀2m

2

(
𝛼4 + ∫

T

0
𝛼2(s)ds

)
− m

2

[
𝛼3 + ∫

T

0
𝛼1(s)ds

]
R. (31)

Inserting (31) into (28) yields, using (3),

(c0F2
1 + c1)𝜀2 ≥ −𝜀2

[
1

2m ∫
T

0
(k2

2(t) + k2
1(t))dt + m

2
F2

1 (𝛼4 + d2)
]
− m

2
[
𝛼3 + d1

]
R

+ 𝛽R + 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt. (32)

The term 𝜀 ∫ T
0 ∫ 1

0 ∫ 1
0 𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt gives rise to a term in 𝜀3 (which can be bounded 𝜀2 as 𝜀 ≤ 1).

We obtain for this last term:

𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(.)(𝛿𝜎r

𝜀)2d𝜆d𝜇dt ≥ −1
2
inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, pr
0)‖‖ [

F2
1 (𝛼4 + d2)𝜀2 + 𝜀(𝛼3 + d1)R

]
. (33)

Inequalities (32) and (33) imply that[
𝛽 − m

2
(𝛼3 + d1) −

𝜀

2
inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, pr
0)‖‖ (𝛼3 + d1)

]
R

≤ [
c0 +

m
2
(𝛼4 + d2) +

1
2
inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, pr
0)‖‖ (𝛼4 + d2)

]
F2

1𝜀
2 +

[
c1 +

1
2m ∫

T

0
(k2

2(t) + k2
1(t))dt

]
𝜀2, (34)

where (d1, d2, 𝛼3, 𝛼4) are defined in (C6). We wish that the factor of R in the left-hand side of (34) be positive. Define 𝛾 by

𝛾 = 𝛽 − m
2
(𝛼3 + d1) −

𝜀

2
inf ‖‖𝜕𝜎𝜎H1(𝜎, pr

0)‖‖ (𝛼3 + d1). (35)

We want 𝛾 > 0. To start with, we take

m = 𝛽

𝛼3 + d1
. (36)
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We then have

𝛾 = 𝛽

2
− 𝜀

2
inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, pr
0)‖‖ (𝛼3 + d1). (37)

Assumption 3 ensures that 𝛾 ≥ 𝛽

8
for any 𝜀 ∈ [0, 1] and r close to 0, by convergence of the costate discussed in Section 3.

To pursue our analysis of (34), we define

s2a = c0 +
m
2
(𝛼4 + d2) +

1
2
inf
𝜎

‖‖𝜕𝜎𝜎H1(𝜎, pr
0)‖‖ (𝛼4 + d2),

s2b = c1 +
1

2m ∫
T

0
(k2

2(t) + k2
1(t))dt.

Remark 4. Observe that s2b is equal to the sum of c1, which is, as we observed it before, proportional to the square of the
perturbating terms, and of the squares of k1 and k2 which, as shown in (25), are proportional to a bound on the derivatives
of the perturbating terms. Overall, s2b is bound by the square of bounds on the perturbation terms. Also, it tends to the
infinity when 𝛽 tends to zero like 1

𝛽
.

Inequality (34) can be written as

𝛽

8
R ≤ (s2aF2

1 + s2b)𝜀2.

This gives

R ≤ 8
s2aF2

1 + s2b

𝛽
𝜀2. (38)

This concludes the proof. ▪

Remark 5. This relation shows that the upper bound on R is proportional to the square of the inverse of the convexity
parameter 𝛽 (see the remark on s2b). It is also proportional to the square of bounds of the perturbation terms since we
have seen that F2

1 and s2b are proportional to the square of bounds on the perturbating terms.

From the two inequalities (29), (30), the upper bounds on 𝛿xr
𝜀 and 𝛿ur

𝜀 are of the form

‖𝛿xr
𝜀(t)‖2 ≤ [

𝛼1(t)c2 + 𝛼2(t)F2
1
]
𝜀2 ≜ c2

x(t)𝜀2,

∫
T

0
‖𝛿ur

𝜀(t)‖2dt ≤ [
𝛼3c2 + 𝛼4F2

1
]
𝜀2 ≜ c2

u𝜀
2,

and the inequalities (15) and (16) of Lemma 1 are proven.

Remark 6. Observe that the bounds on the state and control errors are a linear combination of the square of F1, which is
proportional to a bound on the amplitude of the perturbed dynamics, and of c2, which is proportional to the square of the
bounds on the derivatives of the perturbating terms, and tends to the infinity when 𝛽 tends to 0.

4.3 Upper bound on 𝚫J

The final step is to establish the upper bound on ΔJ.

Proof. The upper bound on ΔJ is a consequence of the upper bounds on 𝛿xr
𝜀, 𝛿ur

𝜀 and R given in (15), (16), and (38),
respectively. The term Jr

𝜀(ur
𝜀) − Jr

𝜀(ur
0) can be written as

Jr
𝜀(ur

𝜀) − Jr
𝜀(ur

0) = Jr
𝜀(ur

𝜀) − ∫
T

0

[
Hr

𝜀(wr
0) − prT

0 ẋr
0
]

dt − Jr
𝜀(ur

0) + ∫
T

0

[
Hr

𝜀(wr
0) − prT

0 ẋr
0
]

dt,
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which implies

Jr
𝜀(ur

0) − Jr
𝜀(ur

𝜀) ≤
|||||Jr

𝜀(ur
𝜀) − ∫

T

0

[
Hr

𝜀(wr
0) − prT

0 ẋr
0
]

dt
||||| +

|||||Jr
𝜀(ur

0) − ∫
T

0

[
Hr

𝜀(wr
0) − prT

0 ẋr
0
]

dt
||||| ,

≤ |M1| + |M0| ,
where M0 is defined in (17) and M1 is given by

M1 = Jr
𝜀(ur

𝜀) − ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt. (39)

The upper bound on M0 is given in (20). This bound is a linear combination of the square of the perturbing dynamics
along the nominal trajectory, and on the square of the derivatives of the perturbation terms.

Using Proposition 1, the cost Jr
𝜀(ur

𝜀) can be rewritten as

Jr
𝜀(ur

𝜀) = ∫
T

0

[
Hr

𝜀(𝜎r
0, pr

0) − prT
0 ẋr

0
]

dt + 𝜀∫
T

0

[
N0𝛿ur

𝜀 + N1𝛿xr
𝜀

]
dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2d𝜆d𝜇dt

+ 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt,

and thus M1 defined in (39) can be written as follows

M1 = 𝜀∫
T

0

[
N0𝛿ur

𝜀 + N1𝛿xr
𝜀

]
dt + ∫

T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎Hr

0(𝜎
r
0 + 𝜆𝜇𝛿𝜎r

𝜀, pr
0)(𝛿𝜎

r
𝜀)2d𝜆d𝜇dt

+ 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt.

An upper bound on M1 can be written as

M1 ≤ ∫
T

0

[
𝜀2

2m
{
(N0(t))2 + (N1(t))2} + m

2

{‖𝛿xr
𝜀‖2 + ‖𝛿ur

𝜀‖2
}]

dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆
[
zT𝜕uuHr

0(.)z + 𝛿xrT
𝜀

[
𝜕xxHr

0 − 𝜕xuHr
0[𝜕uuHr

0]
−1𝜕uxHr

0
]
(.)𝛿xr

𝜀

]
d𝜆d𝜇dt

+ 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎H1(𝜎r

0 + 𝜆𝜇𝛿𝜎r
𝜀, pr

0)(𝛿𝜎
r
𝜀)2d𝜆d𝜇dt.

By using Equations (15), (16), and (38), an upper bound on M1 is given by

M1 ≤ c3(r)𝜀2,

where

c3(r) = ∫
T

0

[ 1
2m

(k2
1(t) + k2

1(t)) +
m
2

c2
x(t)

]
dt + m

2
c2

u

+ 1
2

sup
s∈[0,T]

‖𝜕𝜎𝜎H1(.)‖ [
F2

1 (𝛼4 + d2) + (𝛼3 + d1)c2
]
+ sup

s∈[0,T]
‖‖𝜕uuHr

0(.)‖‖ c2

+ sup
s∈[0,T]

‖‖𝜕xxHr
0 − 𝜕xuHr

0[𝜕uuHr
0]

−1𝜕uxHr
0
‖‖∫ T

0
c2

x(t)dt.
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detailing the previous bound, we see that k1 and k2 are proportional to the bounds of the derivatives of the perturbating
terms; that c2 is proportional to the square of the bounds on the perturbating terms and of their derivatives, and that
it tends to the infinity when 𝛽 tends to the infinity; that F1 is a bound of the perturbating dynamics along the nominal
trajectory; and that cx and cu are bounded by a linear combination of F1 and c2. Recalling (27), the upper bound on ΔJ is
of the form

Jr
𝜀(ur

0) − Jr
𝜀(ur

𝜀) ≤ (c0F2
1 + c1)𝜀2 + min

[
c3(r), (c0F2

1 + c1)
]
𝜀2 ≜ K𝜀2.

In this bound, we have estimated c3; F1 is proportional to the perturbating dynamics along the nominal trajectory; and
c1 is a bound on the derivatives of the perturbating terms. As (c0F2

1 + c1)𝜀2 is independent of rP(.) and the input constraints
are always satisfied when r goes to zero, the upper bound on Jr

𝜀(ur
0) − Jr

𝜀(ur
𝜀) is finite and its limit is bounded by K𝜀2. As

the penalized cost Jr
𝜀 converges to the optimal value of J𝜀 under input constraint when r goes to zero (see References 25

and 26), there exists a constant K such that

J𝜀(u0) − J𝜀(u𝜀) ≤ K𝜀2.

The perturbation does not affect the feasibility of the control constraint, the latter being independent of the state
trajectories. This remark would not be true in the presence of state constraints since the perturbations affect the state
trajectories and may jeopardize the state constraints. This concludes the proof. ▪

5 ESTIMATION OF K

5.1 Detailed estimate

The purpose of the main result, that is, Theorem 1, is to quantify the suboptimality induced by modeling errors in the
presence of control constraints. The value of K can be quantitatively estimated. This estimation is carried out in the five
steps of the “cookbook”:

1. Step 1: Calculate the nominal trajectories (state, adjoint state, and the nominal control) for 𝜀 = 0.
2. Step 2: Estimate the coefficients (𝛼1, 𝛼2, 𝛼3, 𝛼4) giving the upper bounds on the state and the control trajectories

‖𝛿xr
𝜀(t)‖2 ≤ 𝛼1(t)∫

T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt + 𝛼2(t)F2

1𝜀
2,

∫
T

0
‖𝛿ur

𝜀(t)‖2dt ≤ 𝛼3 ∫
T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt + 𝛼4F2

1𝜀
2,

where F1 is the maximum error in the state dynamics, z is defined in (18). This estimation can be achieved using the
Lipschitz property (in accordance with Appendix C) or the first-order expansion of the dynamics of 𝛿xr

𝜀(t).
3. Step 3: Estimate an upper bound on M0 given by

|M0| ≤ (c0F2
1 + c1)𝜀2 ≜ c𝜀2,

c0 = 1
2

(
sup

t∈[0,T]
𝜕xxH0(.) + m

)
∫

T

0
q2(t)dt + 1

2
sup

t∈[0,T]
𝜕xxH1(.)∫

T

0
q2(t)dt,

c1 = 1
2m ∫

T

0
k2

1(t)dt,

where m is a positive constant (whose value will be calculated below) and q is given in (14).
4. Step 4: Estimate the upper bound on R given by

R ≤ 2
𝛽

(
s2aF2

1 + s2b
)
𝜀2 = c2𝜀

2,
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where

s2a = c0 +
[

m
2

+ T
2

inf
s∈[0,T]

‖𝜕𝜎𝜎H1(.)‖](𝛼4 + ∫
T

0
𝛼2(s)ds

)
,

s2b = c1 +
1

2m ∫
T

0
(k2

2(t) + k2
1(t))dt,

and m is given by

m = 𝛽

𝛼3 + ∫ T
0 𝛼1(s)ds

.

The upper bounds on 𝛿x𝜀 and 𝛿u𝜀 become of the form

‖𝛿xr
𝜀(t)‖2 ≤

[
4
𝛽
𝛼1(t)

(
s2aF2

1 + s2b
)
+ 𝛼2(t)F2

1

]
𝜀2 = c2

x(t)𝜀2,

∫
T

0
‖𝛿ur

𝜀(t)‖2dt ≤
[

4
𝛽
𝛼3

(
s2aF2

1 + s2b
)
+ 𝛼4F2

1

]
𝜀2 = c2

u𝜀
2.

5. Step 5: Estimate the upper bound on ΔJ of the form K𝜀2 where

K = c0F2
1 + c1 + min

[
c3, c0F2

1 + c1
]
,

c3 = ∫
T

0

[ 1
2m

(k2
1(t) + k2

1(t)) +
m
2

c2
x(t)

]
dt + m

2
c2

u

+ 1
2

sup
s∈[0,T]

‖𝜕𝜎𝜎H1(.)‖ [
F2

1

(
𝛼4 + ∫

T

0
𝛼2(s)ds

)
+

(
𝛼3 + ∫

T

0
𝛼1(s)ds

)
c2

]
+ sup

s∈[0,T]
‖𝜕uuH0(.)‖ c2 + sup

s∈[0,T]
‖‖𝜕xxH0 − 𝜕xuH0[𝜕uuH0]−1𝜕uxH0‖‖∫ T

0
c2

x(t)dt. (40)

The upper bounds on the Hamiltonian H0 and H1 and their derivatives are calculated on the nominal trajectories (for
𝜀 = 0). The obtained upper bound on ΔJ will be conservative. Alternatively, the inequalities used in the calculation of K
can be improved and better results for K can be obtained on a case-by-case basis.

5.2 The big picture

The results established in this article hold for all 𝜖 ∈ [0, 1]. To (conservatively) estimate K, the first thing to do is to
solve the unperturbed OCP (with the nominal cost L0 and dynamics f0). Let K0 be a bound of the perturbating terms f1
and L1 along the trajectory driven by the optimal control of the unperturbed OCP. We need then global estimates of the
first and second derivatives of f1 and L1. Let K1 be a global bound on the derivatives of f1 and L1. Let K2 be a bound on
the second derivatives of the Hamiltonian, with the costate being the costate for the unperturbed problem. We denote
by B an estimate of the bounded-input, BIBO stability of the system ẋ = f0 around the nominal trajectory and control.
Then, there exists a numerical constant C, which may be conservative due to to our wish to not compute the solution
of the perturbed problems, essentially because it is more complicated or because f1 and L1 are not precisely known,
such that

K ≤ C(1 + K2)(1 + B)
K2

0 + K2
1

𝛽2 . (41)

The constant C depends only on the solution of the unperturbed OCP (𝜖 = 0) and does not depend on the perturbation
terms f1 and L1.
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6 ILLUSTRATIVE EXAMPLES

To illustrate the method presented in Section 5, two examples are considered: a linear quadratic (LQ) (toy) problem under
input constraints and an energy management system for HEVs described in more details in References 32 and 33. The
estimation of K is done for each example and its value is compared with the real value calculated from numerical solution
of the associated nominal and perturbed problems.

6.1 LQ problem

Consider the following LQ problem

J𝜀(u) =
1
2 ∫

T

0

((
1 + 𝜀

6

)
u2 + x2

1

)
dt,

where x1, x2 and u are the state and the control variables of the following linear system

ẋ1 = x2 −
𝜀

24
x1, x1(0) = 4,

ẋ2 = −
(

1 − 𝜀

20

)
x2 + u, x2(0) = 4.

The parameter 𝜀models the uncertainties (parameters variation) in the model (𝜀 ∈ [0, 1]). The control u is constrained
to belong to the set Uad defined by

umin ≤ u(t) ≤ umax.

The Hamiltonian H𝜀 associated with this OCP is given by

H𝜀(x1, x2,u, p1, p2) = H0(x1, x2,u, p1, p2) + 𝜀

(
−

p1

24
x1 +

p2

20
x2 +

u2

12

)
,

where H0 is the Hamiltonian associated with the nominal problem (𝜀 = 0) and it is given by

H0(x1, x2,u, p1, p2) =
1
2
(u2 + x2

1) + p1x2 + p2(−x2 + u).

The following notations are used:

• The nominal state and costate trajectories for 𝜀 = 0: (y1, y2, p1, p2).
• The solutions of the dynamics equations for the nominal control u = u0 and for 𝜀 > 0: (x1, x2).
• The optimal state and costate trajectories for 𝜀 > 0: (x∗1 , x∗2 , p∗

1, p∗
2).

• The error on the state and the control trajectories 𝛿𝜉1 ≜ x1 − y1, 𝛿𝜉2 ≜ x2 − y2, 𝛿x1 ≜ x∗1 − y1, 𝛿x2 ≜ x∗2 − y2, 𝛿u ≜
u𝜀 − u0.

6.1.1 Upper bounds on 𝜹𝝃i

The dynamics of 𝛿𝜉1 and 𝛿𝜉2 are given by

d(𝛿𝜉1)
dt

= 𝛿𝜉2 −
𝜀

24
𝛿𝜉1 −

𝜀

24
y1, 𝛿𝜉1(0) = 0, (42)

d(𝛿𝜉2)
dt

= −
(

1 − 𝜀

20

)
𝛿𝜉2 +

𝜀

20
y2, 𝛿𝜉2(0) = 0. (43)
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The transition matrix Φ of this linear time-invariant system is given by

Φ(t, 𝜏, 𝜀) =
[
Φ11(t, 𝜏, 𝜀) Φ12(t, 𝜏, 𝜀)
Φ21(t, 𝜏, 𝜀) Φ22(t, 𝜏, 𝜀)

]
=

[
e−

𝜀

24
(t−𝜏) 120e(

𝜀
20 −1)(t−𝜏)−120e−

𝜀
24 (t−𝜏)

11𝜀−120
0 e(

𝜀

20
−1)(t−𝜏)

]
. (44)

By using (44) and (42), (43), 𝛿𝜉1 and 𝛿𝜉2 can be bounded as follows

‖𝛿𝜉1(t)‖ ≤ 𝜀
|||||∫

t

0

[
− 1

24
y1(𝜏)Φ11(t, 𝜏, 0) +

1
20

y2(𝜏)Φ12(t, 𝜏, 0)
]

d𝜏
||||| ,

‖𝛿𝜉2(t)‖ ≤ 𝜀
|||||∫

t

0

1
20

y2(𝜏)Φ22(t, 𝜏, 1)d𝜏
||||| .

The two upper bounds on 𝛿𝜉1 and 𝛿𝜉2, which depend only on the nominal trajectories, are of the form

‖𝛿𝜉1(t)‖ ≤ 𝜀𝛼21(t), ‖𝛿𝜉2(t)‖ ≤ 𝜀𝛼22(t), (45)

where

𝛼21(t) =
|||||∫

t

0

[
−

y1(𝜏)
24

Φ11(t, 𝜏, 0) +
y2(𝜏)

20
Φ12(t, 𝜏, 0)

]
d𝜏

||||| , 𝛼22(t) =
|||||∫

t

0

y2(𝜏)
20

Φ22(t, 𝜏, 1)d𝜏
||||| .

Note that 𝛼21 and 𝛼22 depend only on the nominal trajectories. They are evaluated numerically.

6.1.2 Upper bounds on 𝜹xi

The dynamics of 𝛿x1 and 𝛿x2 are similar to (42), (43) but contain an input term 𝛿u

d(𝛿x1)
dt

= 𝛿x2 −
𝜀

24
𝛿x1 −

𝜀

24
y1, 𝛿x1(0) = 0,

d(𝛿x2)
dt

= −
(

1 − 𝜀

20

)
𝛿x2 +

𝜀

20
y2 + 𝛿u, 𝛿x2(0) = 0.

By using the transition matrix Φ(t, 𝜏, 𝜀) given in (44), this differential system is solved as

𝛿x1(t) = ∫
t

0
Φ12(t, 𝜏, 𝜀)𝛿u(𝜏)d𝜏 + 𝜀∫

t

0

[
− 1

24
y1(𝜏)Φ11(t, 𝜏, 𝜀) +

1
20

y2(𝜏)Φ12(t, 𝜏, 𝜀)
]

d𝜏,

𝛿x2(t) = ∫
t

0
Φ22(t, 𝜏, 𝜀)𝛿u(𝜏)d𝜏 + 𝜀∫

t

0

1
20

y2(𝜏)Φ22(t, 𝜏, 𝜀)d𝜏.

From Cauchy-Schwarz inequality, the upper bounds on 𝛿x1(t) and 𝛿x2(t) are of the form

|𝛿x1(t)| ≤
√

∫
t

0
Φ2

12(t, 𝜏, 0)d𝜏

√
∫

t

0
𝛿u2(𝜏)d𝜏 + 𝜀𝛼21(t) = 𝛼11(t)

√
∫

t

0
𝛿u2(𝜏)d𝜏 + 𝜀𝛼21(t),

|𝛿x2(t)| ≤
√

∫
t

0
Φ2

22(t, 𝜏, 1)d𝜏

√
∫

t

0
𝛿u2(𝜏)d𝜏 + 𝜀𝛼22(t) = 𝛼12(t)

√
∫

t

0
𝛿u2(𝜏)d𝜏 + 𝜀𝛼22(t).

In this example, the variable z defined in (18) is equal to 𝛿u because 𝜕uxH0 = 0. The upper bounds on 𝛿x1(t) and 𝛿x2(t) can
be written as

|𝛿x1(t)| ≤ 𝛼11(t)
√

R + 𝜀𝛼21(t),|𝛿x2(t)| ≤ 𝛼12(t)
√

R + 𝜀𝛼22(t),
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where

𝛼11(t) =

√
∫

t

0
Φ2

12(t, 𝜏, 0)d𝜏, 𝛼12(t) =

√
∫

t

0
Φ2

22(t, 𝜏, 1)d𝜏,

R = ∫
T

0
𝛿u2(𝜏)d𝜏.

In the expressions of 𝛼11 and 𝛼12, the asymptotic stability of the system is used to obtain upper bounds independent on 𝜀.
To make the connection with the notations used in Step 2 of Section 5, the coefficients 𝛼1 and 𝛼2 are given by

𝛼1(t) =
[
𝛼11(t)
𝛼12(t)

]
, 𝛼2(t) =

[
𝛼21(t)
𝛼22(t)

]
.

6.1.3 Upper bound on R

The quantity M0 defined by

M0 = J𝜀(u0) − ∫
T

0

[
H𝜀(y1, y2,u0, p1, p2) − p1ẏ1 − p2ẏ2

]
dt,

can be written from Proposition 1 under the form

M0 = 𝜀∫
T

0
[N11(t)𝛿𝜉1(t) + N12(t)𝛿𝜉2(t)] dt + 1

2 ∫
T

0
𝛿𝜉2

1 dt,

where N11(t) =
−p1(t)

24
, N12(t) =

p2(t)
20

. The numerical values of N11 and N12 are given by the adjoint state trajectories of the
nominal problem. By using the upper bounds in (45), an upper bound on M0 is

|M0| ≤ 𝜀2 ∫
T

0

[
𝛼2

21(t)
2

+
||||−p1(t)

24
𝛼21(t) +

p2(t)
20

𝛼22(t)
||||
]

dt ≜ c𝜀2. (46)

In this upper bound, c depends only on the nominal trajectories. The estimation of an upper bound on M0 represents
Step 3 in the methodology described in Section 5 to estimate the value of K.

In the same spirit, M1 defined by

M1 = J𝜀(u𝜀) − ∫
T

0

[
H𝜀(y1, y2,u0, p1, p2) − p1ẏ1 − p2ẏ2

]
dt,

can be written by using Proposition 1 under the form

M1 = 𝜀∫
T

0
[N11(t)𝛿x1(t) + N12(t)𝛿x2(t) + N0(t)𝛿u] dt + 1

2 ∫
T

0

(
𝛿x2

1 +
(

1 + 𝜀

6

)
𝛿u2

)
dt, (47)

where N0(t) =
u0(t)

6
. As u𝜀 is the optimal control, and from (46), (47), we derive

c𝜀2 ≥ 𝜀∫
T

0
[N11(t)𝛿x1(t) + N12(t)𝛿x2(t) + N0(t)𝛿u] dt + 1

2 ∫
T

0

(
𝛿x2

1 +
(

1 + 𝜀

6

)
𝛿u2

)
dt.

By using Young inequality (holding for any a, b and m > 0) 2ab ≥ − 1
m

a2 − mb2, we obtain

c𝜀2 ≥ − 𝜀2

2m ∫
T

0

[
N2

11(t) + N2
12(t) + N2

0 (t)
]

dt − m
2 ∫

T

0

[
𝛿x2

1(t) + 𝛿x2
2(t) + 𝛿u2(t)

]
dt + 1

2 ∫
T

0

(
𝛿x2

1 +
(

1 + 𝜀

6

)
𝛿u2

)
dt,
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yielding

1
2 ∫

T

0

((
1 + 𝜀

6

)
𝛿u2 + (1 − m)𝛿x2

1 − m𝛿x2
2 − m𝛿u2

)
dt ≤ c𝜀2 + 𝜀2

2m ∫
T

0

[
N2

11(t) + N2
12(t) + N2

0 (t)
]

dt.

By using the upper bounds on 𝛿x1 and 𝛿x2, this implies

1
2

(
1 + 𝜀

6
+ 2(1 − m)∫

T

0
𝛼2

11(t)dt − 2m∫
T

0
𝛼2

12(t)dt − m
)

R

≤ 𝜀2 ∫
T

0

[
(m − 1)𝛼2

21(t) + m𝛼2
22(t)

]
dt + c𝜀2 + 𝜀2

2m ∫
T

0

[
N2

11(t) + N2
12(t) + N2

0 (t)
]

dt,

where m is chosen such that

1 + 2(1 − m)∫
T

0
𝛼2

11(t)dt − 2m∫
T

0
𝛼2

12(t)dt − m =
1 + 2 ∫ T

0 𝛼2
11(t)dt

2
.

The upper bound on R is then of the form, for 𝜀 ≥ 0

R ≤ 2
c𝜀2 + 𝜀2

2m
∫ T

0
[
N2

11(t) + N2
12(t) + N2

0 (t)
]

dt + 𝜀2 ∫ T
0

[
(m − 1)𝛼2

21(t) + m𝛼2
22(t)

]
dt

1 + 2(1 − m) ∫ T
0 𝛼2

11(t)dt − 2m ∫ T
0 𝛼2

12(t)dt − m
≜ c2𝜀

2,

and the upper bounds on 𝛿x1(t) and 𝛿x2(t) are

|𝛿x1(t)| ≤ (
𝛼11(t) ⋅

√
c2 + 𝛼21(t)

)
𝜀 ≜ cx1(t)𝜀,

|𝛿x2(t)| ≤ (
𝛼12(t) ⋅

√
c2 + 𝛼22(t)

)
𝜀 ≜ cx2(t)𝜀.

The estimation of an upper bound on R represents Step 4 in the methodology described in Section 5.

6.1.4 Upper bound on 𝚫J

The last step is to find an upper bound on ΔJ = J𝜀(u0) − J𝜀(u𝜀) > 0. For this, ΔJ can be written as

ΔJ = J𝜀(u0) − J𝜀(u𝜀) ≤ |M0|
≤c𝜀2

+ |M1| .
From (47) and by using the preceding upper bounds, we obtain

|M1| = |||||𝜀∫
T

0
[N11(t)𝛿x1(t) + N12(t)𝛿x2(t) + N0(t)𝛿u(t)] dt + 1

2 ∫
T

0

(
𝛿x2

1 +
(

1 + 𝜀

6

)
𝛿u2

)
dt
||||| ,

≤ ∫
T

0

[
𝜀2N11(t)cx1(t) + 𝜀2N12(t)cx2(t) +

𝜀2

2m1
N2

0 (t)
]

dt + 𝜀2

2 ∫
T

0
c2

x1(t)dt

+ 1
2

(
m1 + 1 + 𝜀

6

)
c2𝜀

2,

where m1 is

m1 =

√
∫ T

0 N2
0 (t)dt

c2
.
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F I G U R E 1 K𝜀2 for LQ problem [Colour
figure can be viewed at wileyonlinelibrary.com]

Finally, the upper bound on ΔJ is K𝜀2 where K is given by

K = ∫
T

0

[
N11(t)cx1(t) + N12(t)cx2(t) +

1
2m1

N2
0 (t) +

1
2

c2
x1(t)

]
dt + 1

2

(
m1 +

7
6

)
c2 + c. (48)

The parameter K depends only on the nominal trajectories calculated for 𝜀 = 0. The expression of K is similar to the
expression given in (40). The difference is in the estimation of the error on the state trajectories: in the general expression,
we have used the Lipschitz constant and here we use the transition matrix of the system describing the dynamics of the
error on the state trajectories. The obtained value will be less conservative than the general expression in (40).

6.1.5 Numerical evaluation

The problem parameters are given in Table 1. The two TPBVPs associated with the nominal and the perturbed problems
are solved for 𝜀 ∈ [0, 1] using Matlab routine.34 The error in the cost function given by ΔJ = J𝜀(u0) − J𝜀(u𝜀) is evaluated
numerically.

The numerical comparison between ΔJ (calculated numerically) and K𝜀2∕15 (estimated using formula (48)) is shown
in Figure 1. The upper bound K𝜀2∕15 gives a good estimation of the error in the cost and shows the quadratic nature of
this error.

The ratio (approx 15) betweenΔJ and K𝜀2 is due to the conservatism of the calculation method: inequalities manipula-
tion and problem assumptions (global convexity condition in Assumption 2). Additionally, the error in the state (𝛿x1, 𝛿x2)
and the control variable 𝛿u are estimated only from the solution of the nominal problem and they are not exactly calcu-
lated. Their estimations are higher than their real values, which will lead to a higher value of K, compared to the real
error in the cost ΔJ.

The state trajectories calculated using u0 and u1 (for 𝜀 = 1) and the control trajectories are given in the plots of Figure 2.
These figures show that the perturbation affects the state and the control trajectories.

http://wileyonlinelibrary.com
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6.2 Thermal management problem for a parallel HEV

6.2.1 OCP formulation

The cost function under consideration is the fuel consumption over a fixed time window corresponding to a given driving
cycle of duration T

J(u) = ∫
T

0
c(u, t)e(𝜃e)dt,

where u is the control variable (the engine torque), 𝜃e is the engine temperature, and c(u, t) is the fuel consumption rate
when the engine is warm. The time variable accounts for the dependence of the consumption on the engine speed, which
is a varying set point assumed to be perfectly tracked.

In this model, e(.) is a correction factor of the fuel consumption with respect to the engine temperature 𝜃e. It is given
by the blue curve in Figure 3. The slope of e(.) is parametrized in an affine manner, as shown in Figure 3 according to

e(𝜃e, 𝜀) =

{
𝜀max

(
1 − 𝜃e

𝜃w

)
𝜀 + 1, 𝜃e ≤ 𝜃w,

1, 𝜃e > 𝜃w,

where 𝜀max = 0.59, 𝜀 ∈ [0, 1], and 𝜃w = 70◦C. When 𝜀 = 0 (red curve in Figure 3), the correction factor is constant and
equal to 1 (warm engine start) and the engine temperature does not impact the fuel consumption. When 𝜀 = 1 (blue curve
in Figure 3), the correction factor has maximum sensitivity with respect to 𝜃e (cold engine start). All the curves between
the lower (𝜀 = 0) and the upper (𝜀 = 1) boundaries are mathematical extrapolations with no physical interpretation.

Two (decoupled) dynamics are considered:

• The dynamics of the state of charge (SOC) of the battery, denoted by 𝜉, is given by

d𝜉
dt

= f (u, t), 𝜉(0) = 𝜉0, (49)

where f is a nonlinear function of its argument. The general expression is given in Reference 27. One operational
constraint requires that the final value of 𝜉 should be equal to its initial value

𝜉(T) = 𝜉(0).

http://wileyonlinelibrary.com
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• The engine temperature dynamics is given by

d𝜃e

dt
= g(u, t, 𝜃e), 𝜃e(0) = 𝜃0, (50)

where g is a nonlinear function described in Reference 32. The constraints on the control input are given by

umin(t) ≤ u(t) ≤ umax(t),

where umin(t) and umax(t) are determined from the driving conditions and physical limitations of the engine and the
electric motor. For more details on the model and the formulation of the optimization problem, one can refer to References
32, 35, and 36. Generally, the cost function to be minimized is

J𝜀(u) = 𝛽(𝜉(T) − 𝜉(0))2 + ∫
T

0
c(u, t)e(𝜃e, 𝜀)dt,

where 𝛽 is a parameter used here to penalize the final constraint on the SOC. The perturbed and the nominal OCPs,
denoted by (OCP𝜀) and (OCP0), respectively, are defined by:

(OCP𝜀)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
u

[
J𝜀(u) = 𝛽(𝜉(T) − 𝜉(0))2 + ∫ T

0 c(u, t)e(𝜃e, 𝜀)dt
]
,

d𝜉
dt

= f (u, t), 𝜉(0) = 𝜉0,

d𝜃e
dt

= g(u, t, 𝜃e), 𝜃e(0) = 𝜃0,

umin(t) ≤ u(t) ≤ umax(t),

(OCP0)
⎧⎪⎨⎪⎩
min

u

[
J0(u) = 𝛽(𝜉(T) − 𝜉(0))2 + ∫ T

0 c(u, t)dt
]
,

d𝜉
dt

= f (u, t), 𝜉(0) = 𝜉0,

umin(t) ≤ u(t) ≤ umax(t).

From an application viewpoint, the problem (OCP𝜀) for 𝜀 = 1, which is considered as the perturbed problem, is the
most desirable problem as it is more representative and more accurate than the problem (OCP0) considered as the nominal
problem. The problem (OCP𝜀) is also the most complex and has two states instead of one.

http://wileyonlinelibrary.com
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F I G U R E 4 Comparison between K𝜖2

11.9
and ΔJ for the

thermal management problem [Colour figure can be viewed at
wileyonlinelibrary.com]

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

ε

∆ J

Kε2
/11.9

6.2.2 Numerical evaluation

The details of the estimation of K are given in Appendix D. The two problems (OCP0) and (OCP𝜀) for 𝜀 ∈ [0, 1] are solved.
The induced suboptimality ΔJ is evaluated numerically.

The numerical evaluation of K𝜀2∕11.9 is shown in Figure 4 where ΔJ (calculated numerically) is compared with
K𝜀2∕11.9 and K is given by Equation (D7). The error is indeed of quadratic nature. For higher values of 𝜀, ΔJ remains
below the quadratic conservative estimation of K. The theorem indicates that the error in the optimal cost between the
solutions of the two problems (OCP0) and (OCP𝜀) can not be more than 11%. Numerical studies show that is less than 1%
of the total cost of approx 5 L/100km.

7 A PRIORI ESTIMATE OF THE ROBUSTNESS WITH RESPECT TO
MODELING SIMPLIFICATIONS IN AN OCP

In the previous section, the objective was to quantify the error in the optimal cost due to the presence of modeling errors
(represented by 𝜀 ∈ [0, 1]). This quantification is given by estimating K from the nominal trajectories. The numerical
results presented earlier show that the estimated K is always higher than its real value (the ratio is between 10 and 20 for
the considered examples).

Conversely, this value of K can be used to analyze the robustness of the nominal control strategy (calculated for 𝜀 = 0)
by finding an upper bound on 𝜀 such the error on the optimal cost is bounded by a predefined acceptable limit. The
obtained bound on 𝜀 will be conservative since the estimation of K is conservative. The robustness analysis of the nominal
control strategy is addressed by the following question:

What is the value of 𝜀 that would lead to a given maximum desired relative error (𝛿max) on the optimal cost?

To answer this question, a bound on the relative error is defined by

𝛿1(𝜀) = 100 K𝜀2

J𝜀(u0)

is used. This quantity can be estimated numerically, as it depends only on the nominal control u0 and 𝜀. Then, the max-
imum value of 𝜀 satisfying 𝛿1(𝜀) ≤ 𝛿max can be calculated. The obtained value will be conservative (less than its real
maximum value), since the estimated value of K is always higher than its real value. To illustrate this approach, we
consider the following question for the LQ problem of Section 6.1:

http://wileyonlinelibrary.com
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w = 1 w = 10 w = 20

𝜀 0.75 0.24 0.17

T A B L E 2 Maximum values of 𝜀 for 𝛿max = 2% (LQ example in Section 6.1)
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F I G U R E 5 Relative error in the optimal cost [Colour figure can be
viewed at wileyonlinelibrary.com]

Find the maximum value of 𝜀 leading to 𝛿max = 2% of the optimal cost.

The obtained values of 𝜀 are summarized in Table 2 (note that w is the ratio between the estimated and the real value
of K). A value of w = 10 is consistent with the conservatism observed in Section 6.1.

From the numerical results presented in Figure 5, the relative error in the optimal cost for 𝜀 = 0.18 is 0.13% and for
𝜀 = 0.55 is 1.45% (which are less than 2%). The results in Table 2 show that it is possible to estimate a conservative (safe)
upper bound on the modeling uncertainties leading to a desired maximum relative error on the optimal cost.

8 CONCLUSIONS

In this article, the impact of regular perturbation in input constrained OCP for nonlinear systems has been addressed.
We show that the error on the cost function value is bounded by a quadratic function of the form K𝜀2 for 𝜀 ∈ [0, 1].
The estimation of K from the solution of the simplified OCP allow induced sub-optimality to be quantified a priori. The
estimated values of K are conservative as demonstrated in the illustrative examples. The result can be used as follows:

1. Solve the simplified version (𝜀 = 0) of the OCP.
2. Estimate K from the previously obtained solution u0.
3. Compute 𝜀max such that

100
K𝜀2

max

J1(u0)
≤ 𝛿max [%]

where 𝛿max denotes an arbitrary performance index.
4. If 𝜀max seems reasonable (it scales the complex terms in the model), then a recommendation is to consider 𝜀 = 0 in all

cases.

A natural but more difficult extension of this work would be to study the impact of regular perturbation in the presence
of state constraints because the perturbation in the dynamics may lead to the violation of the state constraints. Some
perturbation sensitivity results have been addressed in Reference 37. The idea is to find a trade-off between the optimality
of the solution and the satisfaction of the state constraints.
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APPENDICES
For convenience, we use the following notations in the appendices:

L𝜀(𝜎) ≜ L0(𝜎) + 𝜀L1(𝜎), f𝜀(𝜎) ≜ f0(𝜎) + 𝜀f1(𝜎),

where 𝜀 is the scaling parameter for the perturbation term, as defined in (1).

APPENDIX A. PROOF OF PROPOSITION 1

The following proof can be found in Reference 11 and is briefly recalled here. It mainly uses the stationarity condition
on the control variables.

Proof. The proof is essentially the same as in Reference 11. For any smooth function F of a variable y, its Taylor expansion
can be written as

F(y) = F(y0) + 𝜕yF(y0)(y − y0) + ∫
1

0 ∫
1

0
𝜆𝜕yyF(y0 + 𝜆𝜇(y − y0))(y − y0)2d𝜆d𝜇. (A1)

Using this expansion, Jr
𝜀(u) can be written as

Jr
𝜀(u) = ∫

T

0
[L𝜀(𝜎r

0) + 𝜕xL𝜀(𝜎r
0)𝛿xr + 𝜕uL𝜀(𝜎r

0)𝛿ur]dt + r ∫
T

0
[P(ur

0) + 𝜕uP(ur
0)𝛿ur]dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎L𝜀(𝜎r

0 + 𝜆𝜇𝛿𝜎r)(𝛿𝜎r)2d𝜆d𝜇dt

+ r ∫
T

0 ∫
1

0 ∫
1

0
𝜆𝜕uuP(ur

0 + 𝜆𝜇𝛿ur)(𝛿ur)2d𝜆d𝜇dt. (A2)

Note

S ≜ 𝜕xL𝜀(𝜎r
0)𝛿xr + 𝜕uL𝜀(𝜎r

0)𝛿ur + r𝜕uP(ur
0)𝛿ur.

Using Equation (7) giving the adjoint state and the stationarity condition in (8), S may be rewritten as

S = [−ṗrT
0 − prT

0 𝜕xf𝜀(𝜎r
0) + 𝜀𝜕xL1(𝜎r

0) + 𝜀prT
0 𝜕xf1(𝜎r

0)]𝛿xr
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+ [−prT
0 𝜕uf𝜀(𝜎r

0) + 𝜀𝜕uL1(𝜎r
0) + 𝜀prT

0 𝜕uf1(𝜎r
0)]𝛿ur.

By integration, one gets

∫
T

0
S(t)dt = −∫

T

0
ṗrT

0 𝛿xrdt − ∫
T

0
prT

0 𝜕𝜎f𝜀(𝜎r
0)𝛿𝜎

rdt

+ 𝜀∫
T

0

[
(𝜕xL1(𝜎r

0) + prT
0 𝜕xf1(𝜎r

0))𝛿xr + (𝜕uL1(𝜎r
0) + prT

0 𝜕uf1(𝜎r
0))𝛿ur] dt,

which, using integration by parts, can be rewritten as

∫
T

0
S(t)dt = −

⎡⎢⎢⎢⎣prT
0 (T)

⏟⏟⏟
=0

𝛿xr(T) − pr
0 𝛿xr(0)
⏟⏟⏟

=0

− ∫
T

0
prT

0 (ẋr − ẋr
0)dt

⎤⎥⎥⎥⎦ − ∫
T

0
prT

0 𝜕𝜎f𝜀(𝜎r
0)𝛿𝜎

rdt

+ 𝜀∫
T

0

[
(𝜕xL1(𝜎r

0) + prT
0 𝜕xf1(𝜎r

0))𝛿xr + (𝜕uL1(𝜎r
0) + prT

0 𝜕uf1(𝜎r
0))𝛿ur] dt,

then

∫
T

0
S(t)dt = 𝜀∫

T

0
𝜕𝜎H1(𝜎r

0, pr
0)𝛿𝜎

rdt + ∫
T

0
prT

0 (ẋr − ẋr
0 − 𝜕𝜎f𝜀(𝜎r

0)𝛿𝜎
r)dt.

From (A1), the term ẋr − ẋr
0 − 𝜕𝜎f𝜀(𝜎r

0)𝛿𝜎
r can be written as

ẋr − ẋr
0 − 𝜕𝜎f𝜀(𝜎r

0)𝛿𝜎
r = 𝜀f1(𝜎r

0) + ∫
1

0 ∫
1

0
𝜆𝜕𝜎𝜎f𝜀(𝜎r

0 + 𝜆𝜇𝛿𝜎r)(𝛿𝜎r)2d𝜆d𝜇. (A3)

Using this last equation, the expression of S becomes of the form

∫
T

0
S(t)dt = 𝜀∫

T

0
𝜕𝜎H1(𝜎r

0, pr
0)𝛿𝜎

rdt + 𝜀∫
T

0
prT

0 f1(𝜎r
0(t))dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆prT

0 ⋅ 𝜕𝜎𝜎f𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r)(𝛿𝜎r)2d𝜆d𝜇dt. (A4)

Recalling that, from the definition of Hr
𝜀, the term L𝜀(𝜎r

0) + rP(ur
0) can be written

L𝜀(𝜎r
0) + rP(ur

0) = Hr
𝜀(𝜎r

0, pr
0) − prT

0
dxr

0

dt
− 𝜀prT

0 f1(𝜎r
0),

= Hr
𝜀(𝜎r

0, pr
0) − prT

0 f𝜀(𝜎r
0). (A5)

Replacing (A3), (A4), (A5) in the expansion (A2), one gets

Jr
𝜀(u) = ∫

T

0
[Hr

𝜀(𝜎r
0, pr

0) − prT
0

dxr
0

dt
− 𝜀prT

0 f1(𝜎r
0)]dt + 𝜀∫

T

0
𝜕𝜎H1(𝜎r

0, pr
0)𝛿𝜎

rdt

+ 𝜀∫
T

0
prT

0 f1(𝜎r
0(t))dt + ∫

T

0 ∫
1

0 ∫
1

0
𝜆prT

0 ⋅ 𝜕𝜎𝜎f𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r)(𝛿𝜎r)2d𝜆d𝜇dt

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜆
[
𝜕𝜎𝜎Hr

𝜀(𝜎r
0 + 𝜆𝜇𝛿𝜎r, pr

0) − prT
0 𝜕𝜎𝜎f𝜀(𝜎r

0 + 𝜆𝜇𝛿𝜎r)
]
(𝛿𝜎r)2d𝜆d𝜇dt.

The terms 𝜀prT
0 f1(𝜎r

0) and prT
0 𝜕𝜎𝜎f𝜀(.) appear in the expression of Jr

𝜀(u) with positive and negative signs and they cancel.
The formula (10) is proven. Interestingly, in formula (10), the penalty disappears from the first order variation. ▪
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APPENDIX B. PROOF OF PROPOSITION 2

The proof is based on Gronwall's lemma.38

Proof. The solutions Xr
0(t) and Xr

0(t), for the initial condition x(0), are given by

Xr
0(t) = x(0) + ∫

t

0
f𝜀(Xr

0(𝜏),ur
0(𝜏))d𝜏,

xr
0(t) = x(0) + ∫

t

0
f0(xr

0(𝜏),ur
0(𝜏))d𝜏.

Subtracting the two equations and taking norms yield

‖‖Xr
0(t) − xr

0(t)‖‖ ≤ ∫
t

0

‖‖f𝜀(Xr
0(𝜏),ur

0(𝜏)) − f𝜀(xr
0(𝜏),ur

0(𝜏))‖‖ d𝜏 + 𝜀∫
t

0

‖‖f1(xr
0(𝜏),ur

0(𝜏))‖‖ d𝜏.

Note that Xr
0(t) and Xr

0(t) have the same control input ur
0 and the same initial conditions. As f𝜀 is Γ-Lipschitz and f1 is

bounded, the upper bound on Xr
0 − xr

0 implies

‖‖Xr
0(t) − xr

0(t)‖‖ ≤ Γ∫
t

0

‖‖Xr
0(𝜏) − xr

0(𝜏)‖‖ + 𝜀F1t,

for some positive constant F1 defined by

F1 = sup
t∈[0,T]

‖‖f1(𝜎r
0(t))‖‖ .

Using Gronwall's lemma,38 the upper bound on ‖‖Xr
0(t) − xr

0(t)‖‖ is given by

‖‖Xr
0(t) − xr

0(t)‖‖ ≤ 𝜀F1 ∫
t

0
eΓ(t−𝜏)d𝜏.

This concludes the proof. ▪

APPENDIX C. PROOF OF LEMMA 2

A constructive proof of Lemma 2 is as follows.

Proof. The dynamic of the error on the state trajectories 𝛿xr
𝜀 can be written as

d(𝛿xr
𝜀)

dt
= f𝜀(𝜎r

𝜀) − f𝜀(𝜎r
0) + 𝜀f1(𝜎r

0).

As 𝛿xr
𝜀(0) = 0, we can write

𝛿xr
𝜀(t) = ∫

t

0

[
f𝜀(𝜎r

𝜀) − f𝜀(𝜎r
0)
]

dt + 𝜀∫
t

0
f1(𝜎r

0)dt.

Since f𝜀 is Γ-Lipschitz, this formula yields

‖𝛿xr
𝜀(t)‖ ≤ Γ∫

t

0

[‖𝛿xr
𝜀(t)‖ + ‖𝛿ur

𝜀(t)‖] dt + 𝜀
‖‖‖‖‖∫

t

0
f1(𝜎r

0)dt
‖‖‖‖‖ . (C1)
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From the expression of z in Equation (18), 𝛿ur
𝜀 can be written as

𝛿ur
𝜀 = z − [𝜕uuHr

0(.)]
−1𝜕uxHr

0(.)𝛿xr
𝜀,

≜ z − W(.)𝛿xr
𝜀.

As the term [𝜕uuHr
0(.)]

−1 is bounded by 1
𝛽

(from Assumption 2) and 𝜕uxHr
0(.)

1is bounded independently of rP(.), the bound
on W(.), denoted by 𝛾1, is independent of rP(.) and of the perturbations f1 and L1. We have

𝛾1 = sup
t∈[0,T]

‖W(.)‖ ,
and we can write the upper bound on 𝛿ur

𝜀 as follows

‖𝛿ur
𝜀‖ ≤ ‖z(𝜆, 𝜇, t)‖ + 𝛾1 ‖𝛿xr

𝜀‖ . (C2)

By replacing this inequality in Equation (C1) and using the fact that f1 is bounded, the upper bound on 𝛿xr
𝜀 implies

‖𝛿xr
𝜀(t)‖ ≤ Γ(1 + 𝛾1)∫

t

0
‖𝛿xr

𝜀(t)‖ dt + Γ∫
t

0
‖z(𝜆, 𝜇, s)‖ ds + 𝜀F1t.

Using Gronwall's lemma,38 the upper bound on 𝛿xr
𝜀(t) is of the form

‖𝛿xr
𝜀(t)‖ ≤ Γ∫

t

0
eΓ(1+𝛾1)(t−s) ‖z(𝜆, 𝜇, s)‖ ds + 𝜀F1 ∫

t

0
eΓ(1+𝛾1)(t−s)ds. (C3)

From Cauchy-Schwarz inequality applied to the first term of (C3), the upper bound on 𝛿xr
𝜀(t) can be written as

‖𝛿xr
𝜀(t)‖ ≤ Γ

√
∫

t

0
e2Γ(1+𝛾1)(t−s)ds

√
∫

t

0
‖z(𝜆, 𝜇, s)‖2ds + 𝜀F1

Γ(1 + 𝛾1)
(eΓ(1+𝛾1)t − 1).

As (x + y)2 ≤ 2x2 + 2y2 and ∫ t
0 ‖z(𝜆, 𝜇, 𝜏)‖2d𝜏 ≤ ∫ T

0 ‖z(𝜆, 𝜇, 𝜏)‖2d𝜏, we can write the following inequality

‖𝛿xr
𝜀(t)‖2 ≤

[
Γe2Γ(1+𝛾1)t − 1

1 + 𝛾1

]
∫

T

0
‖z(𝜆, 𝜇, s)‖2ds + 2𝜀2F2

1

[
eΓ(1+𝛾1)t − 1
Γ(1 + 𝛾1)

]2

.

To express the upper bound on 𝛿xr
𝜀(t) as a function of R, the two sides of this inequality are multiplied by 𝜆 and integrated

twice with respect to 𝜆 and 𝜇

∫
1

0 ∫
1

0
𝜆‖𝛿xr

𝜀(t)‖2d𝜆d𝜇 ≤
[
Γe2Γ(1+𝛾1)t − 1

1 + 𝛾1

]
R + 𝜀2F2

1

[
eΓ(1+𝛾1)t − 1
Γ(1 + 𝛾1)

]2

,

where R is given by

R = ∫
T

0 ∫
1

0 ∫
1

0
𝜆‖z(𝜆, 𝜇, t)‖2d𝜆d𝜇dt.

As 𝛿xr
𝜀 is independent of 𝜆 and 𝜇, the upper bound on 𝛿xr

𝜀(t) can be written as

‖𝛿xr
𝜀(t)‖2 ≤ 2

[
Γe2Γ(1+𝛾1)t − 1

1 + 𝛾1

]
R + 2𝜀2F2

1

[
eΓ(1+𝛾1)t − 1
Γ(1 + 𝛾1)

]2

.

1𝜕uxHr
0(𝜎) = 𝜕uxL0(𝜎) + pT𝜕uxf0(𝜎) as 𝜕uxP(u) = 0.



1348 MAAMRIA et al.

By defining

𝛼1(t) ≜ 2Γe2Γ(1+𝛾1)t − 1
1 + 𝛾1

, 𝛼2(t) ≜ 2
[

eΓ(1+𝛾1)t − 1
Γ(1 + 𝛾1)

]2

, (C4)

the upper bound on 𝛿xr
𝜀(t) in (29) is proven.

Using (x + y)2 ≤ 2x2 + 2y2, (C2) gives

‖𝛿ur
𝜀‖2 ≤ 2‖z(𝜆, 𝜇, t)‖2 + 2𝛾2

1‖𝛿xr
𝜀‖2

,

yielding

∫
T

0
‖𝛿ur

𝜀‖2dt ≤ 2∫
T

0
‖z(𝜆, 𝜇, t)‖2dt + 2𝛾2

1 ∫
T

0
‖𝛿xr

𝜀‖2dt. (C5)

Multiplying by 𝜆 and integrating twice with respect to 𝜆 and 𝜇, Equation (C5) implies

1
2 ∫

T

0
‖𝛿ur

𝜀‖2dt ≤ 2R + 𝛾2
1 ∫

T

0
‖𝛿xr

𝜀‖2dt.

By replacing the upper bound on ‖𝛿xr
𝜀‖2 given by (29) in this equation, the relationship (30) is proven with (3) and

d2 ≜ ∫
T

0
𝛼2(s)ds, 𝛼4 ≜ 2𝛾2

1 d2, (C6)

which are numbers independent from the perturbation terms f1 and L1. This concludes the proof. ▪

APPENDIX D. THERMAL MANAGEMENT PROBLEM FOR HEV

The Hamiltonian associated with the perturbed problem (OCP𝜀) is

H𝜀(𝜃e,u, 𝜆, 𝜇, t) = e(𝜃e, 𝜀)c(u, t) + 𝜆f (u, t) + 𝜇g(𝜃e,u, t),

where 𝜆 and 𝜇 are the adjoint states associated, respectively, with the SOC and 𝜃e. From the optimality conditions, the
associated TPBVP to the perturbed problem is

⎧⎪⎨⎪⎩
e(𝜃1, 𝜀)𝜕uc(u∗

1, t) + p1𝜕uf (u∗
1, t) + 𝜇1𝜕ug(𝜃1,u∗

1, t) = 0,
𝜆̇1 = 0, p1(T) = 2𝛽(𝜉1(T) − 𝜉1(0)),
−𝜇̇1 = c(u∗

1, t)𝜕𝜃e(𝜃1, 𝜀) + 𝜇1𝜕𝜃g(𝜃1,u∗
1, t), 𝜇1(T) = 0,

where (𝜉1, 𝜃1) are solutions of (49), (50) for the control input u∗
1. For the nominal problem, the associated TPBVP is of the

form {
𝜕uc(u∗

0, t) + 𝜆0𝜕uf (u∗
0, t) = 0,

𝜆̇0 = 0, 𝜆0(T) = 2𝛽(𝜉0(T) − 𝜉0(0)),

where (𝜉0, 𝜃0) are solutions of (49), (50) for the control input u∗
0. The following notations will be used

𝛿𝜉 = 𝜉1 − 𝜉0, 𝛿𝜃 = 𝜃1 − 𝜃0, 𝛿u = u∗
1 − u∗

0.
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As the perturbation terms are only present in the cost function, the errors on the state trajectories depend only on the
error on the control variable 𝛿u and they can be written in the form

|𝛿𝜉(t)|2 ≤ c2
𝜉
(t)∫

T

0
|𝛿u(𝜏)|2d𝜏, |𝛿𝜃(t)|2 ≤ c2

𝜃
(t)∫

T

0
|𝛿u(𝜏)|2d𝜏,

where c𝜉 and c𝜃 are functions of time and the nominal control u∗
0 (the function f1 in the general case is null). In this

example, the variable z defined in (18) is equal to 𝛿u as 𝜕uxH0 = 0.
Using Proposition 1, the optimal cost J𝜀(u∗

1) can be written as

J𝜀(u∗
1) = J𝜀(u∗

0) + 𝜀∫
T

0

[(
1 − 𝜃0

𝜃w

)
𝜕uc(u∗

0, t) ⋅ 𝛿u(t) −
c(u∗

0, t)
𝜃w

⋅ 𝛿𝜃
]

dt + 𝛽 ⋅ 𝛿𝜉(T)2

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜌𝜕𝜎𝜎H1(𝜎0 + 𝜌k(𝜎1 − 𝜎0), 𝜆0, 0, t)(𝜎1 − 𝜎0)2d𝜌dkdt, (D1)

where 𝜎 = [𝜃,u]. As u∗
1 is the optimal control for the perturbed problem, it satisfies

J𝜀(u∗
1) ≤ J𝜀(u∗

0).

From Equation (D1), we can write

𝜀∫
T

0

[(
1 − 𝜃0

𝜃w

)
𝜕uc(u∗

0, t) ⋅ 𝛿u(t) −
c(u∗

0, t)
𝜃w

⋅ 𝛿𝜃
]

dt + 𝛽 ⋅ 𝛿𝜉(T)2

+ ∫
T

0 ∫
1

0 ∫
1

0
𝜌𝜕𝜎𝜎H1(𝜎0 + 𝜌k(𝜎1 − 𝜎0), 𝜆0, 0, t)(𝜎1 − 𝜎0)2d𝜌dkdt ≤ 0. (D2)

Consider the notations

S1(t) =
(

1 − 𝜃0

𝜃w

)
𝜕uc(u∗

0, t), S2(t) =
c(u∗

0, t)
𝜃w

, S3(𝜃e,u, t) =
(

1 − 𝜃e

𝜃w

)
c(u, t).

The quantities S1 and S2 are calculated numerically from the nominal trajectories. From the definition of H𝜀, we can
write

H𝜀(𝜃e,u, 𝜆0, 0, t) = H0(u, 𝜆0, t) + 𝜀

(
1 − 𝜃e

𝜃w

)
c(u, t),

where H0 is the Hamiltonian associated with the nominal problem. Equation (D2) becomes of the form

𝜀∫
T

0
S1(t)𝛿u(t)dt + 𝛽𝛿𝜉2(T) + ∫

T

0 ∫
1

0 ∫
1

0
𝜌𝜕uuH0(u0 + 𝜌k𝛿u, 𝜆0, t)𝛿u2(t)d𝜌dkdt

+ 𝜀∫
T

0 ∫
1

0 ∫
1

0
𝜌𝜕𝜎𝜎S3(𝜎0 + 𝜌k(𝜎1 − 𝜎0), t)(𝜎1 − 𝜎0)2d𝜌dkdt ≤ 𝜀∫

T

0
S2(t)𝛿𝜃(t)dt.

The part 𝜀 ∫ T
0 ∫ 1

0 ∫ 1
0 𝜌𝜕𝜎𝜎S3(𝜎0 + 𝜌k(𝜎1 − 𝜎0), t)(𝜎1 − 𝜎0)2d𝜌dkdt leads to a term in 𝜀3 (as 𝜀 is less than 1, we have 𝜀3 ≤

𝜀2). We can write from the previous equation that

𝜀∫
T

0
S1(t)𝛿u(t)dt + 𝛽𝛿𝜉2(T) + ∫

T

0 ∫
1

0 ∫
1

0
𝜌𝜕uuH0(u0 + 𝜌k𝛿u, 𝜆0, t)𝛿u2(t)d𝜌dkdt

≤ 𝜀∫
T

0
S2(t)𝛿𝜃(t)dt. (D3)

Assume that there exists a positive constant 𝛾 such that

𝜕uuH0(u, 𝜆0, t) ≥ 𝛾I, uniformly in u. (D4)
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From the condition (D4), we derive

∫
T

0 ∫
1

0 ∫
1

0
𝜌𝜕uuH0(u0 + 𝜌k𝛿u, 𝜆0, t)𝛿u(t)2d𝜌dkdt ≥ 𝛾

2 ∫
T

0
𝛿u(t)2dt.

Using the inequalities holding for any x, y and 𝛼 > 0

− x2

2𝛼2 −
𝛼2y2

2
≤ xy ≤ x2

2𝛼2 +
𝛼2y2

2
,

Equation (D3) can be written as

− 𝜀2

2𝛼2 ∫
T

0
S2

1(t)dt − 𝛼2

2 ∫
T

0
𝛿u2(t)dt + 𝛽𝛿𝜉2(T) + 𝛾

2 ∫
T

0
𝛿u2(t)dt

≤ 𝜀2

2𝛼2 ∫
T

0
S2

2(t)dt + 𝛼2

2 ∫
T

0
𝛿𝜃2(t)dt. (D5)

Using the upper bounds on 𝛿𝜉(t) and 𝛿𝜃(t), Equation (D5) becomes of the form[
𝛾

2
+ 𝛽c2

𝜉
(T) − 𝛼2

2

[
1 + ∫

T

0
c2
𝜃
(t)dt

]]
∫

T

0
𝛿u2(t)dt ≤ 𝜀2

2𝛼2 ∫
T

0
(S2

1(t) + S2
2(t))dt. (D6)

The parameter 𝛼 is chosen such that

𝛾

2
+ 𝛽c2

𝜉
(T) − 𝛼2

2

[
1 + ∫

T

0
c2
𝜃
(t)dt

]
= 𝛾

4
+ 1

2
𝛽c2

𝜉
(T) ≜ q,

and we get

𝛼 =

√√√√ 𝛾

2
+ 𝛽c2

𝜉
(T)

1 + ∫ T
0 c2

𝜃
(t)dt

.

The parameter 𝛼 is well defined. From Equation (D6), one derives that

∫
T

0
𝛿u2(t)dt ≤ 𝜀2

2q𝛼2 ∫
T

0
(S2

1(t) + S2
2(t))dt ≜ c2

u𝜀
2,

and the upper bounds on the state trajectories error become of the form

𝛿𝜉2(T) ≤ c2
𝜉
c2

u𝜀
2, 𝛿𝜃2(t) ≤ c2

𝜃
(t)c2

u𝜀
2.

The final step is to find an upper bound of ΔJ. From the expression of J𝜀(u∗
1) given in (D1), we can write

ΔJ =
|||||𝜀∫

T

0
[S1(t)𝛿u − S2(t)𝛿𝜃]dt + ∫

T

0 ∫
1

0 ∫
1

0
𝜌𝜕uuH0(., 𝜆0, t)𝛿u2d𝜌dkdt + 𝛽𝛿𝜉(T)2

||||| ,
≤

[
1

2𝛼1 ∫
T

0
(S2

1(t) + S2
2(t))dt + 𝛼1

2
c2

u

(
1 + ∫

T

0
c2
𝜃
(t)dt

)
+ 1

2
sup
[0T]

𝜕uuH0c2
u + 𝛽c2

𝜉
c2

u

]
𝜀2,

where 𝛼1 is determined to minimize the term

1
2𝛼1 ∫

T

0
(S2

1(t) + S2
2(t))dt + 𝛼1

2
c2

u(1 + ∫
T

0
c2
𝜃
(t)dt),
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and it is given by

𝛼1 =

√√√√∫ T
0 (S2

1(t) + S2
2(t))dt

c2
u + c2

u ∫ T
0 c2

𝜃
(t)dt

.

The upper bound on ΔJ is K𝜀2 where the formula of K is

K = 1
2𝛼1 ∫

T

0
(S2

1(t) + S2
2(t))dt + 𝛼1

2
c2

u +
𝛼1

2
c2

u ∫
T

0
c2
𝜃
(t)dt + 1

2
sup 𝜕uuH0(.)c2

u + 𝛽c2
𝜉
c2

u. (D7)

This expression of K is similar to the expression given in (40). The difference is in the estimation of the error on the state
trajectories where we use the transition matrix of the system describing the dynamics of the error on the state trajectories.


