
INVERSION BASED CONSTRAINED
TRAJECTORY OPTIMIZATION

Nicolas Petit, Mark B. Milam, Richard M. Murray

Control and Dynamical Systems
Mail Code 107-81

California Institute of Technology
Pasadena, CA 91125.

{npetit,milam,murray}@cds.caltech.edu

Abstract: A computationally efficient technique for the numerical solution of optimal
control problems is discussed. This method utilizes tools from nonlinear control
theory to transform the optimal control problem to a new, lower dimensional
set of coordinates. It is hypothesized that maximizing the relative degree in this
transformation is directly related to minimizing the computation time. Firm evidence
of this hypothesis is given by numerical experiments. Results are presented using the
Nonlinear Trajectory Generation (NTG) software package. Copyright IFAC 2001.

Keywords: Real-time optimization, optimal control, inversion, nonlinear optimization

1. INTRODUCTION

Computationally efficient trajectory optimization is an
enabling technology for many new facets of engineering.
Formation flying of satellites, see (TechSat 21 n.d.),
and trajectory generation of unmanned aerial vehicles,
see (Sweetman 1997), are two examples where the tools
of real-time trajectory optimization would be extremely
useful. In (Milam et al. 2000), a new technique is pre-
sented to solve such problems. The technique is based
on mapping the system dynamics, objective, and con-
straints to a lower dimensional space. An optimization
problem is solved in the lower dimensional space, and
then the optimal states and inputs are recovered from
the inverse mapping. However, no concrete criterion
was provided to determine the appropriate coordinate
change. In this paper, we address the case of single-
input single-output systems and show how the role of the
relative degree of the system affects real-time trajectory
generation optimization problems. The relative degree of
the system will directly relate to the amount of inversion
used in the optimization problem. The computational
implications of inversion are investigated. By example,
we conclude that more inversion significantly increases
the speed of execution with no loss in the rate of con-
vergence.

For either open-loop reference trajectory design or re-
ceding horizon techniques, this example illustrates that

1 Work supported in part by the Institut National de Recherche
en Informatique et en Automatique (INRIA), AFOSR grant
F49620-99-1-0190 and DARPA contract F33615-98-C-3613.

the choice of adequate variables for representing a sys-
tem and its dynamics is crucial in the context of imple-
mentation of real-time trajectory generation.

Section 2 describes the class of optimization problems
under consideration. Two classical methods for solving
optimization problems are presented and compared to
the new technique. Section 3 provides numerical in-
vestigations for an example that exhibits the explicit
relation between relative degree and computation time
for a single-input single-output system. A summary and
future directions for multi-input multi-output systems
are provided in the final section.

2. PROBLEM FORMULATION AND PROPOSED
METHOD OF SOLUTION

2.1 Optimal Control Problem

Consider the nonlinear control system

ẋ = f(x) + g(x)u, (1)
R � t �→ x ∈ R

n,R � t �→ u ∈ R

where all vector fields and functions are real-analytic. It
is desired to find a trajectory of (1), i.e. [t0, tf] � t �→
(x, u)(t) ∈ R

n+1, that minimizes the performance index

J(x, u) =φf (x(tf), u(tf)) + φ0(x(t0), u(t0))

+
∫ tf

t0

L(x(t), u(t))dt,

where L is a nonlinear function, subject to a vector of
initial, final, and trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,
lbf ≤ ψf (x(tf), u(tf)) ≤ ubf ,
lbt ≤ S(x, u) ≤ ubt,

(2)

respectively. For conciseness, we will refer to this optimal
control problem as



min
(x,u)

J(x, u)

subject to
ẋ = f(x) + g(x)u,
lb ≤ c(x, u) ≤ ub.

(3)

2.2 Solution Technique

2.2.1. Classical collocation A numerical approach to
solving this optimal control problem is to use the direct
collocation method outlined in (Hargraves and Paris
1987). The idea behind this approach is to transform the
optimal control problem into a nonlinear programming
problem. This is accomplished by discretizing time into
a grid of N − 1 intervals

t0 = t1 < t2 < . . . < tN = tf (4)

and approximating the state x and the control input
u as piecewise polynomials x̂ and û, respectively. Typ-
ically a cubic polynomial is chosen for the states and
a linear polynomial for the control on each interval.
Collocation is then used at the midpoint of each in-
terval to satisfy Eq. (1). Let x̂(x(t1)T , ..., x(tN)T) and
û(u(t1), ..., u(tN)) denote the approximations to x and
u, respectively, depending on (x(t1)T , ..., x(tN)T) ∈ R

nN

and (u(t1), ..., u(tN)) ∈ R
N corresponding to the value of

x and u at the grid points. Then one solves the following
finite dimension approximation of the original control
problem (3)



min
y∈RM

F (y) = J(x̂(y), û(y))

subject to
˙̂x− f(x̂(y), û(y)) = 0, lb ≤ c(x̂(y), û(y)) ≤ ub,

∀t = tj + tj+1

2
j = 1, . . . , N − 1

(5)

where y = (x(t1)T , u(t1), . . . , x(tN)T , u(tN)), and M =
dim y = (n+ 1)N .

2.2.2. Inverse dynamic optimization (Seywald 1994)
suggested an improvement to the previous method (see
also (Bryson 1999) page 362). Following this work, one
first solves a subset of system dynamics in (3) for the
the control in terms of combinations of the state and
its time derivative. Then one substitutes for the control
in the remaining system dynamics and constraints. Next
all the time derivatives ẋi are approximated by the finite
difference approximations

˙̄x(ti) =
x(ti+1)− x(ti)
ti+1 − ti

to get

p(˙̄x(ti), x(ti)) = 0
q(˙̄x(ti), x(ti)) ≤ 0

}
i = 0, ..., N − 1.

The optimal control problem is turned into


min
y∈RM

F (y)

subject to
p(˙̄x(ti), x(ti)) = 0
q(˙̄x(ti), x(ti)) ≤ 0

(6)

where y = (x(t1)T , . . . , x(tN)T), and M = dim y =
nN . As with the Hargraves and Paris method, this
parameterization of the optimal control problem (3) can
be solved using nonlinear programming.

The dimensionality of this discretized problem is lower
than the dimensionality of the Hargraves and Paris
method, where both the states and the input are the
unknowns. This induces substantial improvement in
numerical implementation.

2.2.3. New Numerical Approach In fact, it is usually
possible to reduce the dimension of the problem further.
Given an output, it is generally possible to parameterize
the control and a part of the state in terms of this output
and its time derivatives. In contrast to the previous
approach, one must use more than one derivative of this
output for this purpose.

When the whole state and the input can be parameter-
ized with one output, one says that the system is flat; see
the work of (Fliess et al. 1995, Fliess et al. 1999). When
the parameterization is only partial, the dimension of
the subspace spanned by the output and its derivatives
is given by r the relative degree of this output.

Definition 1. ((Isidori 1989)). A single input single out-
put system {

ẋ = f(x) + g(x)u
y = h(x)

(7)

is said to have relative degree r at point x0 if LgL
k
fh(x) =

0, in a neighborhood of x0, and for all k < r −
1 LgL

r−1
f h(x0)
= 0 where Lfh(x) =

∑n
i=1

∂h
∂xi
fi(x)

is the derivative of h along f .

Roughly speaking, r is the number of times one has to
differentiate y before u appears.

Result 1. ((Isidori 1989)). Suppose the system (7) has
relative degree r at x0. Then r ≤ n. Set

φ1(x) = h(x)
φ2(x) = Lfh(x)

...

φr(x) = Lr−1
f h(x).

If r is strictly less than n, it is always possible to find
n − r more functions φr+1(x), ..., φn(x) such that the
mapping

φ(x) =



φ1(x)
...

φn(x)




has a Jacobian matrix which is nonsingular at x0 and
therefore qualifies as a local coordinates transformation
in a neighborhood of x0. The value at x0 of these
additional functions can be fixed arbitrarily. Moreover,
it is always possible to choose φr+1(x), ..., φn(x) in such
a way that Lgφi(x) = 0, for all r + 1 ≤ i ≤ n and all x
around x0.

The implication of this result is that there exists a
change of coordinates x �→ z = (z1, z2, ..., zn) such that
the systems equations may be written as



ż1 = z2
ż2 = z3
...

żr−1 = zr
żr = b(z) + a(z)u

żr+1 = qr+1(z)
...

żn = qn(z)

where a(z) is nonzero for all z in a neighborhood of
z0 = φ(x0). In these new coordinates, any optimal
control problem can be solved by a partial collocation,
i.e. collocating only (z1, zr+1, ..., zn) instead of a full col-
location (z1, ..., zr, zr+1, ..., zn, u). Inverting the change
of coordinates, the state and the input (x1, ..., xn, u) can
be expressed in terms of (z1, ..., z

(r)
1 , zr+1, ..., zn). This

means that once translated into these new coordinates,
the original control problem (3) will involve r successive
derivatives of z1.

It is not realistic to use finite difference approximations
as soon as r > 2. In this context, it is convenient to
represent (z1, zr+1, ...zn) as B-splines. B-splines are cho-
sen as basis functions because of their ease of enforcing
continuity across knot points and ease of computing
their derivatives. A pictorial representation of such an
approximation is given in Figure 1. Doing so we get

z1 =
p1∑

i=1

Bi,k1(t)C
1
i

zr+1 =
pr+1∑
i=1

Bi,kr+1(t)C
r+1
i

...

zn =
pn∑
i=1

Bi,kn
(t)Cn

i

with pj = lj(kj −mj) +mj

where Bi,kj
(t) is the B-spline basis function defined in

(de Boor 1978) for the output zj with order kj , C
j
i are

the coefficients of the B-spline, lj is the number of knot
intervals, and mj is number of smoothness conditions at
the knots. The set (z1, zr+1, ..., zn) is thus represented
by M =

∑
i∈{1,r+1,...,n} pi coefficients.

In general, w collocation points are chosen uniformly
over the time interval [to, tf], (though optimal knots
placements or Gaussian points may also be considered).
Both dynamics and constraints will be enforced at the
collocation points. The problem can be stated as the
following nonlinear programming form:



min
y∈RM

F (y)

subject to
żr+1(y)− qr+1(z)(y) = 0

...
żn(y)− qn(z)(y) = 0 for every w
lb ≤ c(y) ≤ ub

(8)

where

y = (C1
1 , . . . , C

1
p1
, Cr+1

1 , . . . , Cr+1
pr+1

, . . . , Cn
1 , . . . , C

n
pn
),

and M =
∑

i∈{1,r+1,...,n} pi . The coefficients of the
B-spline basis functions can be found using nonlinear
programming.

2.2.4. Comparisons Our approach is a generalization
of inverse dynamic optimization. Let us summarize the
different ways we can write the optimal control problem:

• “Full collocation” solving problem (5) by collocat-
ing (x, u) = (x1, ..., xn, u) without any attempt of
variable elimination. After collocation the dimen-
sion of the unknowns space is O(n+ 1).

• “Inverse dynamic optimization” solving problem (6)
by collocating x = (x1, ..., xn). Here the input is
eliminated from the equation using one derivative
of the state. After collocation the dimension of the
unknowns space is O(n).

• “Flatness parametrization” (Maximal inversion),
our approach, solving problem (8) in the new co-
ordinates collocating only (z1, zr+1, ..., zn). Here
we eliminate as many variables as possible and
replace them using the first r derivatives of z1. After
collocation, the dimension of the unknowns space
is O(n− r + 1).

3. NUMERICAL INVESTIGATIONS

3.1 The software package NTG

The software package called Nonlinear Trajectory Gen-
eration (NTG) is designed to solve optimal control prob-
lems using the new approach presented in this paper,
see (Milam et al. 2000).

zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj − 1 degree polynomial between knotpoints

zj(t)

zj(tf)

Fig. 1. Spline representation of a variable.

NTG has been developed using the C programming lan-
guage. The sequential quadratic programming package
NPSOL by (Gill et al. n.d.) is used as the nonlinear
programming solver in NTG. When specifying a prob-
lem to NTG, the user is required to state the problem
in terms of some choice of outputs and its derivatives.
The user is also required to specify the regularity of
the variables, the placement of the knot points, the
order and regularity of the B-splines, and the collocation
points for each output.

3.2 Example

The example presented quantitatively illustrates the im-
plications of transforming the optimization problem to
the lowest space possible. The system under consider-
ation is an academic example, without any particular
physical meaning, chosen to contain various nonlinear-
ities. Without loss of generality, its triangular form is
chosen for the purpose of simplicity of the presentation.
By considering different outputs with increasing relative
degrees we will write different formulations of the opti-
mal control problem. Starting from full collocation, we
will end with the flatness parameterization. Finally, runs
done with these different approaches will be compared.

3.2.1. Presentation of the system We consider the
following fifth order single input dynamics




ẋ1 = 5x2

ẋ2 = sinx1 + x2
2 + 5x3

ẋ3 = −x1x2 + x3 + 5x4

ẋ4 = x1x2x3 + x2x3 + x4 + 5x5

ẋ5 = −x5 + u

and the following optimal control problem: find [0, 1] �
t �→ (x, u)(t) that minimizes

J =
∫ 1

0

(
x2

1(s) +
1
100

u2(s)
)
ds (9)

subject to the constraints

(x1, x2, x3, x4, x5, u)(0) = (0, 0, 0, 0, 0, 0)
(x1, x2, x3, x4, x5, u)(1) = (π, 0, 0, 0, 0, 0)

∀i =∈ {1, 2, 3, 4, 5}, |xi|≤ 100
|u|≤ 100.

To solve this problem by collocation, it is possible to use
the three different approaches presented in the previous
section

• “Full collocation”. One must consider (x1, x2, x3,
x4, x5, u) as unknowns.

• “Inverse dynamic optimization”. For this example,
we can solve for u by the following

u = ẋ5 + x5.

Thus the whole system variables are parameterized
by (x1, x2, x3, x4, x5).

• “Flatness parameterization” (Maximal Inversion).
Consider the variable x4. Two differentiations give

ẋ4 =x1x2x3 + x2x3 + x4 + 5x5

ẍ4 =5x2
2x3 + (x1 + 1)(sinx1 + x2

2 + 5x3)x3

+ (x1 + 1)x2(−x1x2 + x3 + 5x4)
+ x1x2x3 + x2x3 + x4 + 5x5 − 5x5 + 5u.

(10)

The system where x4 is the output has relative de-
gree 2. By Result 1, it is possible to parameterize all
the system by x4 and 3 more variables. Here we can
choose (x1, x2, x3, x4) for this parameterization.
It is easy to check that when x3 is the output the

system has relative degree 3. The whole system can
be parameterized by (x1, x2, x3).
Similarly, when x2 is chosen as the output, the

system has relative degree 4 and it is possible to
parameterize all its variables by (x1, x2).
At last the system with x1 as output has relative

degree 5. The system is flat, i.e. it is possible to
parameterize all its variables by x1 only. In the op-
timal control problem one can replace x2, x3, x4, x5

and u by combinations of x1, ẋ1, ẍ1, x
(3)
1 , x

(4)
1 , x

(5)
1 .

As a summary the different formulations of the optimal
control problem are represented in Figure 2.

Choice of Relative Variables for Differential equation
output degree complete parameterization to be satisfied
u 0 (x1, x2, x3, x4, x5, u) 5
x5 1 (x1, x2, x3, x4, x5) 4
x4 2 (x1, x2, x3, x4) 3
x3 3 (x1, x2, x3) 2
x2 4 (x1, x2) 1
x1 5 (x1) 0

Fig. 2. The different formulations of the optimal control problem for the example. Top: full collocation. Bottom:
flatness parametrization.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
-2

-1

0

1

2

3

4

5

log(Number of Variables)

lo
g(

cp
ut

im
e)

y=2.80*x-8.51

Full collocation

Inverse dynamic optimization

Flatness parametrization

Fig. 4. log(Number of variables) versus log(cpu-time).
In each case 200 runs were done with random initial
guesses. The variance of the results is represented
by the error bar. The slope of the linear regression
of the mean values of cpu-time is 2.80 .

3.2.2. Experiments and results All these formulations
of the optimal control problem were coded in C. Sym-
bolic gradients were provided. These problems were
solved using the presented NTG package. Every solu-
tion was double checked by a numerical integration of
the dynamics of the system. We only considered as
valid solutions providing the following absolute precision
3.10 ≤ x1(1) ≤ 3.20. This requirement combined with a
search for speed of execution induced the choices of the
NTG parameters. To perform as fair as possible compar-
isons we also give in each case the convergence rate, i.e.
the percentage of runs ending with an optimal solution
satisfying the constraints. This is to prove that the use
of inversion does not induce any particular degradation
in terms of numerical sensibility.

In each case we did 200 runs with random initial con-
ditions. All tests were conducted on a PC under Linux
(Red Hat 6.2) with a Pentium III 733MHz processor.

The results detailed in figure 3 show that the cpu-time
is exponentially decreasing with the relative degree. The
slowest problem to solve is the one fully collocated and
the fastest is the “fully inverted” (flat) one.

Interpretation NTG relies on NPSOL, the Fortran
nonlinear programming package developed by (Gill et
al. n.d.) NPSOL solves nonlinear programming prob-
lems using a sequential programming (SQP) algorithm,
involving major and minor iterations. At each major
iteration a new quadratic programming (QP) problem
is defined that approximates both the nonlinear cost
function and the nonlinear constraints. This QP problem
is solved during the minor iterations. The overall cpu-
time required is highly related to the sum of all the
minor iterations.

Inspecting the runs, we concluded that the successive
QP subproblems are generally well conditioned in all
cases.

In this example, each variable is represented by ap-
proximatively 15 coefficients. Therefore the number of
variables is a decreasing function of the relative degree,
see Figure 3.

It is known, see (Gill et al. 1994), that the cost of
solving a well-conditioned QP problem grows as a cubic
function of the number of variables. In Figure 4 one can
see that this is a good explanation of the differences in
experimental cpu-time, the slope of the linear regression
of the mean values of cpu-time versus the number of
variables being 2.80 .

4. CONCLUSION AND PERSPECTIVES

In this paper we explained the advantage of inversion in
constrained trajectory optimization.

The chosen example illustrates a general methodology.
The role of the relative degree was clearly visible for the
fifth order single input nonlinear dynamics considered
here, both from a theoretical and a computational point
of view.

This problem is quite an extreme situation, and is not
the most frequent case in engineering.

In mechanical problems for instance, we are more likely
to meet two or three of degrees of freedom systems. In
the case of fully actuated systems, a known fact is known
that these systems are flat, i.e. full inversion is possible
and given by the Euler-Lagrange equations

d

dt

∂L(q, q̇)
∂q̇

− ∂L(q, q̇)
∂q

= u.

Relative Cpu-time (s.) Number of Variables Rate of
degree (average) (after collocation) convergence (%)
0 70.0 90 79.5
1 52.2 76 92.5
2 25.7 65 85.0
3 5.1 43 99.5
4 1.7 29 91.5
5 0.50 14 92.0

Fig. 3. Main results. The cpu-time is an exponential decreasing function of the relative degree. Top: full collocation.
Bottom: flatness parametrization.

In the under actuated case, things are more complicated.

Consider a simplified model of a Uninhabited Combat
Air Vehicle (UCAV), commonly referred to as the planar
ducted fan

mẍ cos θ − (mz̈ −mg) sin θ = FXb

mẍ sin θ + (mz̈ −mg) cos θ = FZb

(J/r)θ̈ = FZb

where the 6-dimensional state is (x, ẋ, z, ż, θ, θ̇) and the
inputs are FXb and FZb.

With (x, z) as output, the system has relative degree
(2, 2) because

ẍ =
1
m
(FXb cos θ + FZb sin θ)

z̈ = g +
1
m
(−FXb sin θ + FZb cos θ)

and the Jacobian JFXb,FZb
= 1

m2
= 0, i.e. two indepen-
dent combinations of the inputs appear in the second
derivatives of the outputs. Following our methodology
it is possible to parameterize the whole system by (x, z)
and 6− 2− 2 = 2 other quantities, namely θ, θ̇. This is
a straightforward extension of the approach presented
here. Any optimal control problem for this system can
be solved by a partial collocation, i.e. collocating only
(x, z, θ, θ̇). The new formulation involves first and sec-
ond derivatives of x and z because the relative degree
is (2, 2).

Further this system is flat as shown in (Martin et
al. 1996). Choosing z1 = x + J

rm cos θ and z2 = x −
J

rm sin θ gives a full parameterization of all the vari-
ables of the system. Yet this parameterization involves
(z1, ż1, ..., z

(4)
1 , z2, ż2, ..., z

(4)
2). The notion of relative de-

gree is not defined in this example. Though the total
number of derivatives required, 4+ 4 = 8 which exceeds
the dimension of the state, can be deduced from another
argument i.e. the dynamic extension algorithm. For a
general multi-input multi-output system the question of
the number of derivatives required is still open.

We are currently working on this multi-input multi-
output question from a theoretical point of view and in-
vestigating the computational consequences of inversion
in this case. It is possible that the best parameterization
may not be the flat one. The parameterization is highly
dependent on the constraints imposed on the problem.
These issues are of interest in our next area of appli-

cation, real-time trajectory generation for the Caltech
ducted fan experiment, see (Milam and Murray 1999).

5. REFERENCES

Bryson, A. E. (1999). Dynamic optimization. Addison
Wesley.

de Boor, C. (1978). A Practical Guide to Splines.
Springer-Verlag.

Fliess, M., J. Lévine, P. Martin and P. Rouchon (1995).
Flatness and defect of non-linear systems: introduc-
tory theory and examples. International Journal of
Control 61(6), 1327–1360.

Fliess, M., J. Lévine, P. Martin and P. Rouchon (1999).
A Lie-Bäcklund approach to equivalence and flat-
ness of nonlinear systems. IEEE Trans. Auto. Cont.
44(5), 928–937.

Gill, P. E., W. Murray and M. A. Saunders (1994).
Large-scale SQP Methods and their Application in
Trajectory Optimization. Chap. 1. Birkhäuser Ver-
lag.

Gill, P. E., W. Murray, M. A. Saunders and M. Wright
(n.d.). User’s Guide for NPSOL 5.0: A Fortran
Package for Nonlinear Programming. Systems Opti-
mization Laboratory. Stanford University, Stanford,
CA 94305.

Hargraves, C. and S. Paris (1987). Direct trajectory op-
timization using nonlinear programming and collo-
cation. AIAA J. Guidance and Control 10, 338–342.

Isidori, A. (1989). Nonlinear Control Systems. Springer-
Verlag.

Martin, P., S. Devasia and B. Paden (1996). A different
look at output tracking: control of a VTOL aircraft.
Automatica 32(1), 101–107.

Milam, M. B. and R. M. Murray (1999). A testbed for
nonlinear control techniques: The Caltech Ducted
Fan. In: 1999 IEEE Conference on Control Appli-
cations.

Milam, M. B., K. Mushambi and R. M. Murray (2000).
A new computational approach to real-time trajec-
tory generation for constrained mechanical systems.
In: IEEE Conference on Decision and Control.

Seywald, H. (1994). Trajectory optimization based on
differential inclusion. J. Guidance, Control and Dy-
namics 17(3), 480–487.

Sweetman, B. (1997). Fighters without pilots. Popular
Science pp. 97–101.

TechSat 21 //www.vs.afrl.af.mil/vsd/techsat21/

