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A B S T R A C T

The paper considers the problem of optimally filling a Hele-Shaw cell. The system is subject to viscous fingering
effect. It is shown that, despite the threshold terms appearing on the right-hand side of the governing equations,
the dynamics can be rewritten using several prime integrals. This allows reforming optimal control problems
for the Fourier modes describing the fluid interface into smooth optimization problems, in the sense of Gâteaux
derivative. Some numerical experiments illustrate the advantages of using the optimal solutions obtained using
this reformulation instead of the currently known time-dependent injection rates.
1. Introduction

The viscous fingering effect occurs in numerous fields of science and
engineering ranging from microfluidics, chromatographic separation,
adhesion [1], to geological processes for enhanced oil recovery [2],
or CO2 sequestration in porous media [3,4], among others. This effect
is observed at the interface between fluids having different viscosities.
In general, when a less viscous fluid displaces a more viscous fluid,
the boundary between the two fluids gradually deforms and acquires a
visually remarkable geometry, described as “fingers”.

At a laboratory scale, the phenomenon is easily observed in a Hele-
Shaw cell using air and water as fluids. A Stokes flow is created between
two parallel flat plates separated by a very small gap. The gap is
initially filled with a viscous fluid (water). In the center of the cell,
a less viscous fluid (air) is injected through a tiny hole in the top plate.
While the injected fluid initially retains a circular shape, it soon de-
velops into radial fingers, sometimes fractal patterns [5], as the radius
of the interface increases, see illustration in Fig. 1. The difference of
viscosities is the root cause for the phenomenon described as Saffman–
Taylor hydrodynamic instability at the fluid–fluid interface [6]. In
the pioneering works of [7,8], a linear stability analysis explains how
surface tension fails to suppress the growth of small perturbations at
the fluid–fluid interface as the interface radius increases.

In addition to laboratory experiments, numerous numerical studies
of the governing partial differential equations have allowed the repro-
duction of the nonlinear evolution of the fingering shapes. A problem of
practical and theoretical interest is to control the shape of the interface.
Mitigating instability would have strong potential applications, such
as the efficient loading and unloading of underground porous media
and reservoirs in the energy industry. So far, several attempts of active
control of the interface have been made, considering various actuation
possibilities. For example, in [9] a force is exerted on the top plate.

E-mail address: nicolas.petit@minesparis.psl.eu.

In [10], a position controller on the bottom plate is used to control the
gap thickness as a function of time. This paper explores another strategy
employing time-varying flowrates. This path has been identified by
many researchers and investigated experimentally with success [10–12]
and references therein. It is quite straightforward to implement using
pressure-based flow controllers, as is common practice in microfluidics.

The governing equations of the viscous fingering effect under time-
varying flowrates are well known but not so easy to handle from a
control theory perspective. The shape of interface is described using
a (truncated) Fourier series. Because of the geometric expansion of the
boundary, the modes equations are in fact time-varying. While all the
modes have contracting behaviors at first, they eventually all become
unstable as the boundary grows. When a mode becomes unstable, its
random initial condition leads to the development of a number of
“fingers”, see [13]. The transient between the contracting behavior to
the expansion is modeled using max functions used as thresholds terms
in the right hand-side of the governing differential equations. The single
control variable has to be used to control many (typically 10 to 30)
variables. It appears in the equation of every mode. Each jump occurs
at an instant that is influenced by the history of the control variable.

Among the various control problems one could study, the literature
has considered the formulation of an optimal control problem (OCP)
over a finite time-horizon, a mathematical transcription of the follow-
ing practical problem “if one wishes to inject a certain amount of fluid in
a given time, what would be the optimal time-dependent injection rate for
which the perturbation amplitudes could be truly minimized?” [14]. Many
heuristic have been tested, e.g. sinusoids [15], piece-wise constant
flowrates [16] or inversely proportional to the average radius [11].

Interestingly, at the expense of several drastic simplifications, the
OCP can be solved analytically. Following [13], it is possible to identify
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Fig. 1. Hele-Shaw cell. A less viscous fluid is radially injected into a more viscous
fluid contained into two parallel plates. Illustration inspired by [10].

at each instant the fastest growing (or most unstable) mode. Consider-
ing only this mode over the whole time horizon, [14] has been able to
formulate a single-input single-output (SISO) dynamics with an integral
cost to be minimized. Surprisingly, the associated Euler–Lagrange equa-
tion boils to a (very) simple differential equation, having a closed-form
solution, stating that the average radius should simply grow linearly
with time. In turn, the flowrate should follow a time-affine law, which
expression is readily solved. This remarkable result has spurred a large
interest in the community, and numerous numerical and experimental
validation have shown the robustness of the approach [12,17].

The present article wishes to show that the simplifications of [14]
are not necessary and that some performance improvement can be
obtained by solving the OCP in its original formulation, i.e. with all
the modes at once.

Mathematically, the OCP has some apparent singularities in its
formulation. Because of the threshold effects, the trajectories of the
modes are defined over nested intervals. Each starting time depends
on the control history, in an implicit manner described by an integral
equation. In the article it is shown that, despite these singularity terms,
the problem is in fact smooth. The jumps can be simply recast as input-
dependent delays, which are ordered. Then, several calculus stress that
the differential equations have some prime integrals. This allows one
to propose a compact reformulation of OCPs with a general L2-norm
functional. Following [18], the Gâteaux differentiability of the cost
functional is established. A necessary condition for any local extremal is
that the Gâteaux derivative should be zero in all admissible directions,
making it a critical point. This allows one to use any descent method to
determine an optimal solution. The feasibility of the optimization pro-
cedure and the performance improvement are numerically illustrated
on a test-case from the literature.

The paper is organized as follows. Section 2 recalls the model of the
Hele-Shaw cell, and formulates a L2-norm OCP of practical interest.
Prime integrals are introduced to reformulate the OCP into a multi-
ple stage continuous time problem. Smoothness of this formulation is
established in Section 3. Numerical results are reported in Section 4.
Conclusions and perspectives are given in Section 5.

Notations

Let 𝑇 > 0, we note 1([0, 𝑇 ],R) the class of 𝐶1 functions from [0, 𝑇 ]
to R.
2

2. Model of the Hele-Shaw cell

Viscous fingering in Hele-Shaw cells has been the subject of strong
focus among the applied mathematics, physics and biology communi-
ties for many years [12]. A Hele-Shaw cell is an experimental device
consisting of two parallel plates separated by a small gap filled with
viscous fluid.1 At the center of the device, an inviscid (or less viscous)
fluid is injected through a hole in one the plates. At the interface
between the two fluids, some patterns gradually develop as the injec-
tion continues. Because of their appearance, the patterns are named
“fingers”. The root cause of the viscous fingering effect is the Saffman–
Taylor instability [6]. In the early stage of the development, the fingers
are relatively wide and not very numerous. Later on, if nothing is done,
branching and tip-splitting occur, rendering the shape of the interface
fractal.2

This paper focuses on the early mitigation of viscous fingering by
controlling or limiting the pattern formation. As control mean, the
injection rate is considered. The interface is described by a harmonic
deposition. The metric under consideration is a L2-norm in the har-
monic space, which measures how close to a circle the interface is. This
formulation is in accordance with the recent works on the subject [12].

The model assumes that the two fluids are incompressible and
immiscible. The viscous fluid is infinite in its extent. Polar coordinates
(𝑅, 𝜃) are employed. The classical notations from the literature are
used [13]. The interface has a perturbed shape described as

 = 𝑅(𝑡) + 𝜉(𝜃, 𝑡)

where 𝑅 is the time dependent unperturbed radius. It is an increasing
function with a non zero initial condition 𝑅(0) = 𝑅0 > 0 which
guarantees that the system stays away from the singularity of the polar
coordinates.

2.1. Model from the literature

2.1.1. Physical description
The interface perturbation amplitude is described in terms of its 𝑁

first complex Fourier modes

𝜉(𝜃, 𝑡) =
𝑛=𝑁
∑

𝑛=−𝑁
𝜉𝑛(𝑡) exp(𝑖𝑛𝜃), 𝜉𝑛(𝑡) =

1
2𝜋 ∫

2𝜋

0
𝜉(𝜃, 𝑡) exp(−𝑖𝑛𝜃)𝑑𝜃

To guarantee mass conservation, one defines 𝜉0 = − 1
2𝑅

∑∞
𝑛=1|𝜉𝑛(𝑡)|

2 +
|𝜉−𝑛(𝑡)|2. Noting 𝑎𝑛 = 𝜉𝑛 + 𝜉−𝑛, 𝑏𝑛 = 𝑖(𝜉𝑛 − 𝜉−𝑛), one has

𝜉(𝜃, 𝑡) = 𝜉0 +
𝑛=𝑁
∑

𝑛=1
𝑎𝑛(𝑡) cos(𝑛𝜃) + 𝑏𝑛(𝑡) sin(𝑛𝜃)

The viscosities of the two fluids are noted 𝜂1 ≪ 𝜂2. The viscosity
contrast is defined as

𝐴 =
𝜂2 − 𝜂1
𝜂1 + 𝜂2

The surface tension 𝜎 and the distance between the two plates 𝑏 serve
to define the constant parameter

𝛼 = 𝑏2𝜎
12(𝜂1 + 𝜂2)

Note 𝑄 ≥ 0 the injection rate (area covered per unit time). The
unperturbed radius is governed, using a volume balance principle, by
𝑑
𝑑𝑡

𝑅2(𝑡) = 1
𝜋
𝑄(𝑡)

1 The gap is much smaller than the scale of variation of the velocity field
in a plane parallel to the plates so that the flow is assumed to operate at very
low Reynolds numbers [19].

2 The presence of these fingering is usually considered as undesirable, in
all the applications where the purpose of the injection of an inviscid fluid is
to put the viscous fluid into motion, usually to recover it, such as in industrial
applications in underground porous reservoirs [2].
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The Fourier modes are governed by the following equations, stemming
from equating modes on each side of Darcy’s law [13] which describes
that the velocity field is derived from a potential proportional to the
pressure (and that the vorticity is null) [19,20],

𝜉̇𝑛(𝑡) = 𝜆𝑛(𝑡) 𝜉𝑛(𝑡) (1)

where the linear growth rate is

𝜆𝑛(𝑡) =
1

2𝜋𝑅2(𝑡)
(𝐴|𝑛| − 1)

(

𝑄(𝑡) −
2𝜋𝛼|𝑛|(|𝑛| + 1)

𝑅(𝑡)

)

.1.2. Noise model
From Eq. (1), one directly has the general expression

𝑛(𝑡) = 𝜉𝑛(0) exp
(

∫

𝑡

0
𝜆𝑛(𝑠)𝑑𝑠

)

his stresses that if ∫ 𝑡
0 𝜆𝑛(𝑠)𝑑𝑠 > 0 the disturbance grows, and otherwise

he disturbance is damped. This simple consideration leads to the
eminal “Model B” by [21] which represents the solution using

̇𝑛(𝑡) = max(0, 𝜆𝑛(𝑡)), 𝑓𝑛(0) = 0

nd notes

𝑛(𝑡) = 𝜉𝑛(0) exp
(

𝑓𝑛(𝑡)
)

(2)

n this model, the process is supposed to be excited by some random
oise, represented as a random initial condition 𝜉𝑛(0), in accordance
ith [13] where the randomness lies in the phase of the complex
umber which is uniformly distributed over [0, 2𝜋] while the modulus
s set to a constant value. Due to this choice, there is a bijective
elationship between the two variables 𝑎𝑛(𝑡)2 + 𝑏𝑛(𝑡)2 and 𝑓𝑛(𝑡).

2.1.3. Normalization and summary of the model
Note 𝑃 (𝑡) = 𝑅(𝑡)2, 𝑢(𝑡) = 𝑄(𝑡)

𝜋 , and consider the system with 𝐴 = 1
without loss of generality3), then the system is governed by, for 𝑛 =
, ..., 𝑁

𝑛(𝑡) =
𝑛 − 1
2𝑃 (𝑡)

𝑢(𝑡) −
𝛼 𝑛(𝑛2 − 1)
𝑃 3∕2(𝑡)

(4)

̇𝑛(𝑡) = max(0, 𝜆𝑛(𝑡)), 𝑓𝑛(0) = 0 (5)
̇ = 𝑢, 𝑃 (0) = 𝑅2

0 (6)

his representation is minimal, as 𝑓0 = 0, 𝑓1 = 0, 𝑓−𝑛 = 𝑓𝑛, 𝑛 = 1, ..., 𝑁 .

.2. A problem of interest

In Eq. (2), the mode appears as a linear function of its random
nitial condition. A natural OCP formulation favoring roundness is thus
xpressed in terms of the growth factors 𝑓𝑛, 𝑛 = 2, ..., 𝑁 . We employ
L2-norm.4 This formulation is independent from the random initial

ondition. The constraint maintaining the total amount of injected fluid
ver a given time horizon 𝑇 is simply a terminal constraint on the
nperturbed radius 𝑅(𝑇 ) = 𝑅𝑇 where 𝑅𝑇 is a given parameter. At all
imes the flowrate must be non negative. This leads to the following
CP.

3 This assumption is common in the literature. Relaxing it is not
roublesome. Eq. (11) will simply be replaced by

𝑛(𝑡) −
𝐽𝑛
𝐽2

𝑓2(𝑡) +
(

2𝐴 − 1
2𝐽2

𝐽𝑛 −
𝐴𝑛 − 1

2

)

log𝑃 (𝑡) (3)

ith 𝐽𝑛 = 𝑛(𝐴𝑛 − 1)(𝑛 + 1), 𝑛 = 2, ..., 𝑁 . The Eqs. (11) and (3) match for 𝐴 = 1
iving 𝐽𝑛 = 𝐼𝑛 in this case.

4 A possibility, without loss of generality, would be to consider a weighted
2-norm, to account for difference in the probability distributions of the initial
onditions of the modes.
3

roblem 1. Note the L2-norm cost function

=
𝑁
∑

𝑛=2

(

𝑓𝑛(𝑇 )
)2 (7)

minimize
𝑢(𝑡) ≥ 0,∀𝑡 ∈ [0, 𝑇 ]

𝐽

subject to (5), (6),∀𝑡 ∈ [0, 𝑇 ],

𝑃 (𝑇 ) = 𝑅2
𝑇

(8)

Problem 1 is mathematically unusual, due to the “max” function
appearing in the right hand-side of Eq. (5). The non differentiability
prevents one from applying the classic calculus of variations techniques
which assume smooth right-hand sides of differential equations [22].
Fortunately, some calculations allow one to reformulate Problem 1,
without the “max” function, using a multiple stage continuous time
formulation described next. A first step in the derivation of this new
formulation is to compute prime integrals of the dynamics.

2.3. Prime integrals

For each 𝑛 = 2, ..., 𝑁 , we note

𝑡𝑛𝑢 = sup{𝑡, s.t. 𝑓𝑛(𝑡) = 0} (9)

In the sequel, each of these variables is referred to as “growth starting
time of mode 𝑛”. The subscript stresses the (implicit) dependence on
the control input.

Once all Eq. (5) evolve in their unsaturated regimes (past the growth
starting times), they share some prime integrals. Indeed Eq. (5) gives
̇𝑓𝑛(𝑡) =

𝑛−1
2𝑃 (𝑡) 𝑃̇ (𝑡) − 𝛼 𝐼𝑛

𝑃 3∕2 which can be rewritten under the form

𝑑
𝑑𝑡

(𝑓𝑛 −
𝑛 − 1
2

log𝑃 ) = −𝛼
𝐼𝑛

𝑃 3∕2
(10)

ith 𝐼𝑛 = 𝑛(𝑛2−1). This shows that the system (10) of (𝑁 −1) variables
as (𝑁 − 2) invariants. For 𝑛 = 3,… , 𝑁 the following variables are

constant

𝑓𝑛(𝑡) −
𝐼𝑛
6
𝑓2(𝑡) +

(

𝐼𝑛
12

− 𝑛 − 1
2

)

log𝑃 (𝑡) (11)

sing Eq. (11) on each interval [𝑡𝑛𝑢 , 𝑇 ] allows one to rewrite the cost
unction 𝐽 in Eq. (7) as

=
𝑁
∑

𝑛=2

(

𝐼𝑛
6

(

𝑓2(𝑇 ) − 𝑓2(𝑡𝑛𝑢)
)

+ 𝐿𝑛 log𝑃 (𝑡𝑛𝑢) − 2𝐿𝑛 log𝑅(𝑇 )
)2

ith 𝐿𝑛 = 𝐼𝑛
12 − 𝑛−1

2 . In this expression, 𝑅(𝑇 ) = 𝑅𝑇 is constant, which
allows one to write

𝐽 =
𝑁
∑

𝑛=2

(

𝐹𝑛
(

𝑓2(𝑇 ) − 𝑓2(𝑡𝑛𝑢), 𝑃 (𝑡
𝑛
𝑢)
))2 (12)

with

(𝑥, 𝑦) ↦ 𝐹𝑛(𝑥, 𝑦) ≜
𝐼𝑛
6
𝑥 + 𝐿𝑛 log 𝑦 − 2𝐿𝑛 log𝑅(𝑇 ) (13)

2.4. Reformulation as a multiple stage continuous time OCP

Under the form (12), it appears that the OCP can be rewritten with
only two state variables, 𝑥(𝑡) = 𝑓2(𝑡) and 𝑃 (𝑡), so that the problem to
olve is

roblem 2 (Multiple Stage Optimal Control at Times Dependent on the
ontrol).

minimize
(𝑡) ≥ 0,∀𝑡 ∈ [0, 𝑇 ]

𝐽 =
𝑁
∑

𝑛=2

(

𝐹𝑛
(

𝑥(𝑇 ) − 𝑥(𝑡𝑛𝑢), 𝑃 (𝑡
𝑛
𝑢)
))2

subject to 𝑥̇(𝑡) = 1
2𝑃 (𝑡)

𝑢(𝑡) − 6𝛼
𝑃 3∕2(𝑡)

, 𝑥(𝑡2𝑢) = 0,

𝑃̇ (𝑡) = 𝑢(𝑡), 𝑃 (0) = 𝑅2
0,

2

(14)
𝑃 (𝑇 ) = 𝑅𝑇
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where, for 𝑛 = 2, ..., 𝑁 , 𝐹𝑛 is given in Eq. (13) and 𝑡𝑛𝑢 is defined by
Eq. (16).

3. Smoothness of the optimal control problem

Compared to Eq. (5), the form (14) does not involve any “max”
function. The smoothness can be more directly studied. A first step
of the study is to establish the uniqueness and smoothness of the
implicitly-defined growth starting times 𝑡𝑛𝑢, 𝑛 ∈ 2, ..., 𝑁 .

Lemma 1. Consider any input signal of the form [0, 𝑇 ] ∋ 𝑡 ↦ 𝑢(𝑡) =
𝑢0 + 𝑣(𝑡) where 𝑢0 > 0, |𝑣| ≤ 𝑀0, |𝑣̇| ≤ 𝑀1 satisfying the inequality
1
2
(𝑢0 −𝑀0)2 −𝑀1(𝑢0 +𝑀0𝑇 ) ≥ 𝓁 > 0 (15)

for some 𝓁. The growth starting times are uniquely defined, in ascending
order 𝑡2𝑢 < 𝑡3𝑢 ... < 𝑡𝑁𝑢 , and Gâteaux differentiable at 𝑢 in any direction
ℎ ∈ 1([0, 𝑇 ],R).

Proof. Each 𝑡𝑛𝑢 is implicitly defined by the condition 𝜆𝑛(𝑡𝑛𝑢) = 0 which,
equivalently, gives 𝑢(𝑡𝑛𝑢) =

2𝛼𝑛(𝑛+1)
𝑃 1∕2(𝑡𝑛𝑢 )

or, more conveniently

𝑢2(𝑡𝑛𝑢)∫

𝑡𝑛𝑢

0
𝑢(𝑠)𝑑𝑠 = 4𝛼2𝑛2(𝑛 + 1)2 (16)

or
𝑑
𝑑𝑡

𝑅3(𝑡𝑛𝑢) = 3𝛼 𝑛(𝑛 + 1)

Interestingly, the mapping 𝑡 ↦ 𝑑
𝑑𝑡𝑅

3(𝑡) ≜ 𝑊 (𝑡) can be shown to be
onotonic. Indeed, some line of calculus give 𝑑2

𝑑𝑡2
𝑅3(𝑡) = 3

2𝑅(𝑡)

(

𝑢2(𝑡)
2 +

∫ 𝑡
0 𝑢(𝑠)𝑑𝑠 𝑢̇(𝑡)

)

. By integration, under assumption (15), 𝑅 is strictly
positive for all 𝑡 and upper bounded. The conclusion stems from the
assumption (15), which allows to lower-bound 𝑑2

𝑑𝑡2
𝑅3 > 3

2(𝑢0+𝑀0𝑇 )
𝓁.

rom this strict monotonicity and the application of the global inversion
heorem, one obtains the uniqueness and smoothness of the 𝑡𝑛𝑢 =

−1(3𝛼 𝑛(𝑛 + 1)) sorted in ascending order.
Further, for any 𝑢, ℎ ∈ 1([0, 𝑇 ],R) the Gâteaux derivative can be

omputed analytically. It is noted [23]

ℎ𝑡
𝑛
𝑢 = lim

𝛿→0

1
𝛿
(𝑡𝑛𝑢+𝛿ℎ − 𝑡𝑛𝑢)

By definition, one has

(𝑢 + 𝛿ℎ)2(𝑡𝑛𝑢+𝛿ℎ)∫

𝑡𝑛𝑢+𝛿ℎ

0
(𝑢 + 𝛿ℎ)(𝑠)𝑑𝑠 = 𝑢2(𝑡𝑛𝑢)∫

𝑡𝑛𝑢

0
𝑢(𝑠)𝑑𝑠 (17)

From this equality, a few lines of calculus give the result, by letting
𝛿 → 0,

𝐷ℎ𝑡
𝑛
𝑢 = −

𝑢(𝑡𝑛𝑢) ∫
𝑡𝑛𝑢
0 ℎ(𝑠)𝑑𝑠 + 2ℎ(𝑡𝑛𝑢) ∫

𝑡𝑛𝑢
0 𝑢(𝑠)𝑑𝑠

𝑢2(𝑡𝑛𝑢) + 2𝑢̇(𝑡𝑛𝑢) ∫
𝑡𝑛𝑢
0 𝑢(𝑠)𝑑𝑠

his formulation is valid under the assumptions of the statement. □

emma 2. For any 𝑛 ∈ 2, ..., 𝑁 , the mappings 𝑢 ↦ 𝑃 (𝑡𝑛𝑢) and 𝑢 ↦
(𝑇 ) − 𝑥(𝑡𝑛𝑢) are Gâteaux differentiable at any 𝑢 satisfying the assumptions
f Lemma 1 in any direction ℎ ∈ 1([0, 𝑇 ],R).

roof. Concerning 𝑃 (𝑡𝑛𝑢), the result readily follows as it is the unique
olution of Eq. (6) from 𝑡 = 0 to 𝑡 = 𝑡𝑛𝑢, which, according to Lemma 1
s Gâteaux differentiable. The mapping 𝑥(𝑇 ) − 𝑥(𝑡𝑛𝑢) is also the result of
ntegration of Eq. (5) which, over the considered interval, boils down
o ̇𝑓𝑛(𝑡) = 𝜆𝑛(𝑡), because 𝑡𝑛𝑢 ≥ 𝑡2𝑢 from Lemma 1. The right-hand side
f this differential equation is smooth. As such, 𝑥(𝑇 ) − 𝑥(𝑡𝑛𝑢) is Gâteaux
ifferentiable. □

emma 3. The cost function ∋ 𝑢 ↦ 𝐽 (𝑢) is Gâteaux differentiable at any
1

4

𝑢 satisfying the assumptions of Lemma 1 in any direction ℎ ∈  ([0, 𝑇 ],R) m
roof. The cost is written under the form of Problem 2 using smooth
appings of the arguments 𝑃 (𝑡𝑛𝑢), 𝑥(𝑇 ) − 𝑥(𝑡𝑛𝑢), for 𝑛 = 2,… , 𝑁 . These

rguments are Gâteaux differentiable according to Lemma 2. This
ields the conclusion by the chain rule on Gâteaux derivatives, follow-
ng [24][p. 33]. □

. Numerical experiments

For illustration, two test-cases from the literature are considered. In
oth scenarios the noise amplitude is constant for every mode |𝜉𝑛(0)| =
0∕500. The initial phases of the modes are uniformly distributed over
0, 2𝜋]. The number of Fourier modes is 𝑁 = 30.

est case 1, from [13]. Here 𝑄 = 9.3 cm2 s−1, 𝜂1 ≈ 0, 𝜂2 = 5.21 g cm−1 s−1,
= 0.15 cm, 𝜎 = 63 dynes cm−1, (𝛼 = 0.0227 cm3 s−1), 𝑅0 = 0.05 cm. The

ime horizon is set to 𝑇 = 30 s.

est case 2, from [14]. In this scenario 𝑄 = 3.9859 cm2 s−1, 𝜂1 ≈ 0,
2 = 4.85 g cm−1 s−1, 𝑏 = 0.1 cm, 𝜎 = 25 dynes cm−1, (𝛼 = 0.0043 cm3 s−1),
0 = 0.45 cm. The time horizon is set to 𝑇 = 18 s.

In both cases, the OCP (14) is solved by searching a singular point
f the cost function 𝐽 . In practice, the cost function is optimized over
class of smoothed piecewise 𝐶1 functions from [0, 𝑇 ] to R. The

onstraint 𝑅(𝑇 ) = 𝑅𝑇 is automatically satisfied by imposing that every
lement in this class is such that ∫ 𝑇

0 𝑢(𝑠)𝑑𝑠 = 𝑢0 𝑇 with 𝑢0 = 𝑄
𝜋 is a

constant defined by the scenario. This is done by considering functions
of the type [0, 𝑇 ] ∋ 𝑡 ↦ 𝑢(𝑡) = 𝑢0 + 𝑣(𝑡) where 𝑣 is the smoothed version
of a piecewise 𝐶1 and has zero average. In order to guarantee that
Lemma 3 holds, 𝑣 is constrained so that it satisfies Eq. (15).

Dealing with such a class allows one to recast the functional opti-
mization problem into a finite dimensional space, which can be solved
using a general SQP technique [25]. In practice, one considers 0 = 𝑥1 ≤
⋯ ≤ 𝑥𝑚 = 𝑇 and solves

minimize
(𝑐1, ..., 𝑐𝑚)

𝐽

subject to 𝑤(𝑡) =
𝑚
∑

𝑘=2
𝑐𝑘−1 + (𝑐𝑘 − 𝑐𝑘−1)

𝑡 − 𝑥𝑘−1
𝑥𝑘 − 𝑥𝑘−1

1𝑘(𝑡),

𝑢(𝑡) = 𝑢0 + 𝜑 ∗ 𝑤(𝑡) − ∫

𝑇

0
𝜑 ∗ 𝑤(𝑡)𝑑𝑡,

|𝑐𝑘| ≤ 𝑐max, 𝑘 = 1, ..., 𝑚,

𝑐1 + ... + 𝑐𝑚 = 0

(18)

where 𝑚 > 1 (typically from 𝑚 = 10 to 𝑚 = 20), 1𝑘 is the indicator
function of the semi-open interval [𝑥𝑘−1, 𝑥𝑘) for 𝑘 = 2,… , 𝑚 − 1, and
1𝑚 is the indicator function of [𝑥𝑚−1, 𝑥𝑚], 𝜑 is a mollifier in the sense
f [26] and ∗ denotes the convolution operator, so that 𝜑 ∗ 𝑤 is a
moothed version of 𝑤.

First, test case 1 is treated. The results obtained with a constant
nput signal are given in Fig. 2-(top), with the single-mode optimiza-
ion model from [14] in Fig. 2-(middle), with the proposed all-modes
ptimized time varying signal in Fig. 2-(bottom). The magnitudes of
he modes are reported in Fig. 3.

Then, test case 2 is treated. The results obtained with a constant
nput signal are given in Fig. 4-(top), with the single-mode optimiza-
ion model from [14] in Fig. 4-(middle), with the proposed all-modes
ptimized time varying signal in Fig. 4-(bottom). The magnitudes of
he modes are reported in Fig. 5.

Several observations can be made. In both cases, the proposed
ptimization procedure produces “sigmoid”-shaped histories for the
lowrate 𝑄. Compared to the single-mode optimization model from
14], it suggests to start with stronger initial flowrates and tamed down
inal values for this variable. The magnitudes of the modes reported in
igs. 3 and 5 are clearly shifted towards the low-frequencies, as a result
f the minimization of the all-modes cost function. This phenomenon
ould be made more visible by using non-uniform weights on the
odes in the optimization problem. The cost function is reduced by
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Fig. 2. Behavior for a (top) constant input signal, (middle) time-varying input signal, (bottom) optimized input signal for test case 1 from [13]. The respective values of the cost
function are reported as titles on the left plots.
an extra 20% when employing the presented methodology compared
to the single-mode method (values are reported in the titles of the left
plots in Figs. 2 and 4).

From this, it is believed that the results can be generalized to various
other scenarios. How large is the optimality improvement is to be
established on a case-by-case basis. Further, it would be instructive to
identify the main governing factors. Among the possible culprits are
the parameters defining the parameters 𝛼, and the time horizon 𝑇 .
In particular it is expected that the larger 𝑇 is, the more the high
requency modes become important in the problem as they start later
nd eventually have the time to develop and have a large contribution
n the cost function. Thus, it becomes increasingly important to restrain
heir growth.

. Conclusion and perspectives

The optimal control problem of viscous fingering is a problem of
ractical importance. Hindering the formation of fingers is a way to
llow a smooth an efficient flow. The results of this article show that the
pparent non-smoothness in state-of-the art physical modeling is in fact
5

Fig. 3. Growth-rates of the 𝑁 = 30 modes for test case 1 from [13].
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Fig. 4. Behavior for a (top) constant input signal, (middle) time-varying input signal, (bottom) optimized input signal for test case 2 from [14]. The respective values of the cost
function are reported as titles on the left plots.
c
v
O

not as troublesome as one might fear from a mathematical viewpoint.
This is due to the ease with which the jumps can be mathematically
reformulated using prime integrals. Consequently, the inherent nature
of any generic optimal control problem for these systems is a multiple
stage trajectory optimization problem at times depending implicitly on
the control variable. This formulation, Problem 2, has been shown here
to be smooth in a mathematical sense and allows one to characterize
optimal solutions and to develop methods to numerically estimate
them.

In addition to the provided numerical findings, which emphasize
that a time-varying flow rate – more encompassing than previously
explored in the literature – effectively enhances the roundness of the
interface beyond current standards, several avenues for future research
are proposed.

Experiments could be conducted to explore the relevance of the
presented conclusions further. On the theory side, it would be worth
6

m

trying to study the controllability of this system. In particular, an open
question at this stage is to determine what are the actual shapes for
the interface that can be created using varying flowrates over a finite
horizon. Besides these open-loop considerations, one very interesting
point is to try to develop closed-loop controllers for these systems. A
question that one can formulate for future research is the following.
Consider the system after a time such that every mode has started to
grow, what is the best controller to reach a target shape over the rest
of the horizon? Another problem of importance is related to robustness
and adaptation to errors in the model. In its formulation, Problem 2
involves only 𝛼 (and 𝐴) as source of uncertainty. Its initial and final
onditions are fixed. Possible sources of error in these parameters in-
olves uncertainty in the gap value, the viscosities and surface tension.
ver a finite time-horizon it would be valuable to identify possible
ismatch in these values and promptly recompute a trajectory. This
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Fig. 5. Growth-rates of the 𝑁 = 30 modes for test case 2 from [14].

underscores the need for the development of rapid trajectory planning
methodologies.
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