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Abstract

Several control strategies are presented and studied for an industrial under-actuated tubular chemical reactor. This work presents
a case-study of the performance of a decentralized versus centralized control strategy. The tubular reactor under consideration is
characterized by nonlinear kinetic laws, and it has some structural constraints on the location of the heat exchangers and of the
sensors. For this system, a set of PI controllers is considered and a multivariable LQR controller is constructed to optimally choose
the gains. The performance of these control strategies is studied. Finally, a direct numerical treatment of optimal control of the par-
tial differential equations is presented. Industrial results are given for the linear controllers. Simulations emphasize the possible rel-
evance of a direct numerical treatment of the nonlinear partial differential equations.
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1. Introduction

The contribution of this paper is a study of different
control strategies for a class of tubular reactors. The
application underlying this study is a reactor in the
ATOFINA PS (polystyrene) plant in Carling, France.
We present a model of the tubular reactor used in this
plant, which is characterized by nonlinear kinetic laws
and by an under-actuated structure due to the choice
of heat exchangers and sensor locations.

Around a steady production state (corresponding to
an average of 120 kT/year), the grade of the polystyrene
produced in this plant critically depends on the temper-
ature profile along the reactor. In fact, the real control
objective is temperature control. Other controlled vari-
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ables such as molecular mass distribution are controlled
using other inputs such as dilution. This is different from
other reactors (see e.g. [1] for a survey of polymerization
reactor control) where monomer conversion is usually
considered as a critical value. In this plant, quality
constraints (in connection to further injection and
thermoforming applications) are tight and they directly
translate to temperature constraints.

The grade of the produced polymer is scheduled with
respect to economical considerations. This induces fre-
quent changes in the setpoints that have to be precisely
and quickly met to optimize profit and minimize off-spec
products.

This paper proposes several control schemes to im-
prove upon the results obtained with the existing PI
controllers used in the plant. In particular, for a decen-
tralized PI scheme, we show that the choice of the mea-
surement and setpoints affects both transient and
asymptotic performance. Then, a centralized PI scheme
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is proposed, where the proportional gains are designed
using an LQR design. This approach can be considered
as a weighting of the input of a PI controller based on
the model structure. Finally, a nonlinear centralized
controller is proposed and its performance compared
with the others. This work relies on the controller up-
grade project that was carried out at the ATOFINA
plant by a joint team of TOTAL engineers and research-
ers from Ecole des Mines de Paris, which is reported
in [2].

We propose three different control strategies ranging
from fully decentralized to fully centralized. This work
can be seen as an industrial scale case-study of the role
of a decentralized versus centralized control strategy.
This question was raised by several authors in various
fields of the process industry [3-5], and we found it par-
ticularly relevant in this problem. From our point of
view and from this particular study, we believe it needs
to be answered with two facts on mind: performance
requirements and availability of efficient numerical tools
and accurate models.

This paper considers the problems as they appeared
when trying to improve the existing PI controllers. In
Section 2, we give the model of the plant. In Section 3,
we underline the importance of the right choice of PI
structure for performance improvement. In Section 4,
we explain the design and tuning of an LQR controller
that has been successful since when it was installed in
2000 (overall load was increased by more than 10%).
Industrial results are given. Finally in Section 5, we pro-
pose an approach based on the direct treatment of the
nonlinear partial differential equations that govern the
system. This approach relies on the NTG optimal con-
trol software package designed for PDEs [6,7]. We
compare the results of different control strategies and
show that this last method, when a good knowledge
of the process dynamics is available, is efficient and
flexible.

2. Model of the reactor

The process under study is a polymerization tubular
exothermic reactor with heat exchangers on the sides
and with plug flow, see Fig. 1.

The styrene monomer enters the tubular reactor at a
constant temperature at point I (see Fig. 1) along with
the peroxide initiator. The monomer reacts inside the
tubular reactor as it travels to point O. The tubular reac-
tor is equipped with heat exchangers to evacuate the
reaction exothermicity.

This tubular reactor is frequently subject to strong
oscillations. These are usually interpreted as tempera-
ture perturbations propagating through the system
(these perturbations can arise from various phenomena:
in [8] it is shown that for such tubular reactors, jacket
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Fig. 1. Schematic of the tubular reactor.

temperature perturbations may lead to oscillatory dy-
namic responses').

2.1. Under-actuated structure

A close-up view of the reactor shows the heat
exchangers and the temperature sensors (see Fig. 2).
The reactor is divided in eight zones, each of which
has two sensors and one heat exchanger. One is located
at the middle of the zone, and one is located at its end.
More complicated sensor configurations (with variable
number of sensors and varying locations) could also
be considered but these are out of the scope of this paper
(optimal placement for such process is indeed an impor-
tant topic as underlined in [9]). In this study, the total
length of the tubular reactor is scaled to 1, and the veloc-
ity v of the flow inside the reactor is 0.01. This system
can be considered as under-actuated since the eight heat
exchangers can only produce piecewise constant control
along the reactor’s length. Classically, polymer viscosity
is very high and laminar flow is assumed for modelling.
The industrial tubular reactor underlying this study is
very thin due to the heat transfer constraints. These fac-
tors lead us to model the reactor dynamics as a set of
one-dimensional partial differential equations (PDE).
Measurements of the temperature T are available at a

! Interested readers can also find in the previous reference develop-
ments of a model predictive control that allows the successful control
of monomer conversion in a different context.
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Fig. 2. Close-up view of the reactor.

finite number of locations along the reactor. Online
measurement of monomer conversion x and peroxide
concentration G is currently out of reach.

2.2. Model

Let r € R* represent the time and z € [0, 1] the coor-
dinate along the reactor, then the dynamics of the tubu-
lar reactor can be described by a set of three partial
differential equations

Cy(T,x) (GT(t,z) + vaT(t’Z)) = AH(T)r(T,x,G) + u,

ot Oz
ox(t,z)  Ox(t,z)
o +v T r(T,x,G),
0log(G(¢,2)) n valog(G(t,z)) _ (D),
ot Oz
(1)
with boundary and initial conditions
T(t, 0) = T,yo7 x(t7 O) = X0, G(t, 0) = Gt,Ov (2)
T7(0,z) = Ti(z), x(0,z) =xi(2), G(0,2) = Gi.(2)
3)

where notation is defined in Table 1. The terms on the
right hand side of (1) are as follows. We have

AH(T) = ay + + a(T + 273),

_a
T+273

r(T,x, G) = kl(T7x7 G)k2(T7x)7

Table 1

Nomenclature

Symbols  Quantity Unit
1(t,z) Temperature in the reactor Celsius degrees
x(t,z) Monomer conversion -

G(t,z2) Peroxide concentration molm >
v Velocity of the particles along the reactor ms™!
Cy(T,x)  Heat capacitance of the fluid JK!
u(t,z) Heat exchange (control) Js!
r(T,x,G) Rate of reaction 5!
AH(T) Reaction enthalpy K

where ay, a; and a, are constant coefficients and k; is of
the form

kl(TvxﬂG):\/FI(T7X)+GF2(TJX)7 (4)

with F| and F, two smooth functions, while

f(T) = epexp (7’:373)’

where ey and e; are constant coefficients. A polynomial
fit is used for C,(T,x) (affine function in x with third
order polynomial in 7 as coefficients). This kinetic
model arises from the classic Hui and Hamielec
approach [10]. Typical values of the (7, x, G)AH term
are shown in Fig. 3 (where scales are omitted for con-
fidentiality reasons). One clearly sees that the reac-
tion mostly takes place in the middle of the tubular
reactor.

The first equation in (1) is a heat balance, the second
describes the conversion of monomer, and the third one
represents the organic peroxide initiator dynamics that
is thermally activated. Details about the kinetic scheme
of this polymerization reaction and the role of the per-
oxide initiator can be found in [11]. The velocity v is con-
sidered constant. We thus neglect the effect of density
variations.

2.3. Control objectives

Two control problems are considered. In the first
place, the problem of regulating the temperature profile
along the reactor to a given profile Ty, is considered,
which guarantees good product quality at the end of
the reactor. Then, we consider the problem of allowing
fast transitions between desired temperature profiles
corresponding to good product quality of different
materials.

rAH

0 z 1

Fig. 3. Exothermicity along the reactor at steady state. Exact scales
are omitted for confidentiality reasons.
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2.4. Simulation setup

In this section, the testbed we base all our study on is
considered. The three PDEs in Eq. (1) are discretized
along the z variable to obtain three systems of ordinary
differential equations (following the tanks-in-series
model [12]). This approach is alike other methods found
in the literature. Our model does not imply parabolic
PDEs (i.e. with spatial diffusion operators) and so is
not easily described by small finite-dimensional systems.
In [13], a discretization of the coupled temperature and
conversion PDEs similar to ours is used, but a different
control structure is considered (control of temperature
and concentration is achieved from the inlet side of
the reactor). Radial variations are not taken into
account either. Advanced methods could also be consi-
dered but are out of the scope of this study: e.g. in
[14] a very fine representation of the model reactor (con-
sidering radial variation of all variables) is solved by the
method of lines using either finite volume discretization
or global spline orthogonal collocation.

Spatial discretization. The partial derivatives with re-
spect to z are discretized using finite backward differ-
ences according to

oW (t,z) o Wi(tz,)— W(tzi1)
Oz (t21) 0,
for any variable of time and space W, where (zy,...,z,)

are the cells, equally distributed in space, in which we
discretize the reactor, and J. = (z; — z;_1). As a result,
lettlng T,([) = T([,Zl‘), X,‘(t) = X([, Z,‘), Gl(t) = G([,Z[), ri =
AH(T)r(T;,x;, G)), ki=HTyx;,G), fi=AT), C,;=
C,(T;, x;), we obtain the three systems of ordinary differ-
ential equations

T = AT + ber + C, ' (r + Bu),

X =Ax + be, + k, (5)
dlogG
i =Alog G+ bcg + f,

where T=(Ty,....,T)", x=(x1,...,x,)", G=(Gy,...,
Gn)Ta r=(ry.. -arn)Ta k= (ky, .. ~akn)Ta f= (fl: .- -sf;z)Ta
ber=(T:0,0,...,0)",  bcy=(x,0,0,...,0)",  beg=
(log(G,p), O,.. .,0)T, and C, is a diagonal matrix with
diagonal entries Cp;. 4 =3 (a; = (=1)8/ +6/_,) is the
nx n backward differences matrix, B is the n x 8 input
matrix, and u:(ul,...,ug)T. Each actuator i acts on
its zone of competence, which will be referred to as zone
i. In particular, if the ith zone has n; cells, with n; +
-+++ng=n, then in the ith column of B the first
ny +---+mn;_; clements are zeros, the elements from
nm+---+n_;+1 to ng+---+mn; are ones, and the
remaining elements are zeros.

Other possible choices for the spatial discretization
method include forward difference equations, centered

difference equations and second order methods such as
the Lax—Wendroff numerical scheme (see [15]). Forward
difference approximation results into an unstable A4
matrix when v > 0, which is our case. The centered dif-
ference approximation produces a matrix that has imag-
inary eigenvalues and therefore is not asymptotically
stable. The Lax—Wendroff second order method pro-
duces a A matrix with complex eigenvalues causing
unrealistic oscillations.

Simulation setup. The value of n is chosen to be 100.
The reason of this choice is a compromise between
the time needed for simulating the system and the
accuracy to which the spatial partial derivative is
approximated. The numerical damping induced on the
transport phenomena drops by only 2% (using a stan-
dard Runge-Kutta solver) when 7 is increased from
100 to 200, while the required computational effort rises
by 100%.

3. Basic PI control designs

Based on the model in (5), two PI schemes used in the
industrial setting were considered. These are diagonal
control structures. Classically, derivatives term (D) were
omitted to prevent temperature sensor noise from
being amplified. In these two schemes, only one mea-
surement in each zone is used. In the first scheme,
the measurement is taken at the center of the zone,
while in the second scheme the measurement is
taken at the end of the zone. From a theoretical
point of view, these choices induce strong constraints
on the controller structure and lead to performance
deterioration when compared to the system with a
full controller matrix (as pointed out in [16]). However,
this deterioration has to be weighted against design
simplicity and failure tolerance. In fact, each block con-
troller can be designed for the isolated subsystem, and
fewer controller parameters need to be chosen than for
the full system. Further, stability and performance are
preserved to some degree when individual sensors or
actuators fail. This failure tolerance is an attractive fea-
ture in the industrial framework. Part of such a control-
ler can be turned off without dramatically affecting the
system.

3.1. PI controller with measurement at the center
of the zone

In this context, only the eight sensors at the center of
the zone are used. Let n; be the number of cells in zone i,
and let T,,,...,T,, denote the measured temperatures,
then we have that m; = Z};ll nj+mn/2. Let Ty=
(Tsp1s- -5 Tspn) and tyer = (Uref 1, - - .,uref’g)T denote the
reference temperature profile and the corresponding
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constant reference input respectively. The closed loop
control laws are

U, = _KP,i(Tmi - Tsp‘i) - K]‘i/(Tm,ﬂ - Tsp‘i) + Urer s

ied{l,... 8} (6)

The gains Kp; and Kj; are tuned in descending cas-
cade (we tune first the PI of the first zone, and then
the PI of the following zones by leaving the already
tuned PI on) by means of the Ziegler—Nichols closed
loop PID tuning rule (see for example [17]). When a step
disturbance of amplitude 10% is applied at the entrance
of the reactor, the response of the closed loop system is
given in Fig. 4. The left plot of the same figure shows the
asymptotic temperature profile along the reactor. The
performance at locations different from the ones at
which the measurement occurs is not satisfactory: only
the measured temperatures are well tracked. The right
plot shows the control effort u; — uer ;.

T

sp
— asymptotic T profile

TEMPERATURE

Pl center zone control effort

775
3.2. PI controller with measurement at the end of the zone

In this setup, only the eight end of zone temperature
sensors T,,..., T, are used. With n; the number of
cells in zone i, we have m; = Z;Zlnj. The closed loop
control law u is given again by expression (6), where
the reference value T, ; and u,p ; are appropriately com-
puted. Proportional and integral gains are still tuned in
descending cascade using Ziegler—Nichols method.
Closed loop response are shown in Fig. 5.

By contrast with results in Fig. 4, this control design
produces an asymptotic temperature profile that is satis-
factory not only where the measurement is performed.
An analysis of such a performance difference is ex-
plained in the following section.

3.3. Comparisons of the two measurement schemes

Spatially distributed offsets in the asymptotic temper-
ature profile still persist when the integral part of the

80 100 120 140 160 180 200 220 240 260 280 300
time

Fig. 4. PI controller with measurement at the center of the zone. Performance of the closed loop system when a step of amplitude 10% of input
temperature is applied at the entrance of the reactor. Left: asymptotic temperature profile. Right: control effort.

— T
sp
asymptotic T profile

TEMPERATURE

Pl end of zone control effort

0.2

.80 100 120 140 160 180 200 220 240 260 280 300
time

Fig. 5. PI controller with measurement at the end of the zone. Performance of the closed loop system when a step of amplitude 10% of input
temperature is applied at the entrance of the reactor. Left: asymptotic temperature profile. Right: control effort.
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controller is turned off. Thus for the sake of simplicity,
we neglect the integral terms.

Perturbation analysis of disturbance rejection. Con-
sider two adjacent zones i — 1 and 7, we wish to estimate
the attenuation of a step disturbance of amplitude d
entering at the beginning of zone i — 1. One can ask
where the best location « € [0,1] for the temperature
measurement is for having the highest attenuation
onto the next zone. Having « =1 or o« =0 means that
the measurement is performed at the beginning or at
the end of the zone respectively. Once controlled by
one of the proposed controllers, the temperature PDE
is a transport equation in first order approximation.
Assuming that stability is achieved by the previous
control loops, perturbation in the control du affects the
temperature by the following integral formula for all
x€[0,1]

ST(i—x,0) = 8T(i — 1,1 — (1 —x))

t
+ / B(t — 5)du;(s) ds,
t—(1-x)

with B > 0. Now assume that du; is a closed loop signal
duft) = —K;T(i — o,t). Steady state values satisfy

_1+K, [ B(s)ds
1+K; fOF“INB(S) ds

T(i—1,00)

and in particular

1K, fllﬂl}(s)dsd
1+K; [, B(s)ds

T(i,00)

As K; increases (strong gains seem often a good
option, especially with the Ziegler—Nichols tuning
rules), the disturbance is attenuated from the entrance
of the zone to the exit by a factor asymptotically equal
to

- /1 :B(S) ds / /0 7 Bls)ds.

Since >0, this term is negative. The optimum is
to choose o =0, meaning the best measurement loca-
tion in terms of disturbance rejection is at the end of
the zone. With this choice, the disturbance does not
propagate to the next zone. If a different choice is made
(e.g. centre of the zone measurement), then the distur-
bance propagates with an opposite sign to the next zone.
This explains the steady state reached with the center of
the zone measurement in Fig. 4. On the contrary, one
can clearly see in Fig. 5 that the disturbance affects
mainly the first zone and then is strongly attenuated
by the end of the zone measurement controller. Simi-
larly, the control effort is focused on the first zone in
Fig. 5.

Temperature
Ciﬁi'gL
—

Time

Fig. 6. Industrial results with an end of the zone PI controller
(unsatisfactory).

3.4. Industrial results with a PI controller

In Fig. 6, the results of a grade transient are shown. Ac-
tual scales are omitted for confidentiality reasons. Yet, it is
possible to represent this transient as a non uniform shift
in temperature for the different zones ranging from +10%
to —5%. The measurement are all performed at the center
of the zone except one that is measured at the end. While
the regulation is satisfactory before the transient, some
oscillations persist. This is mostly due to the high value
of the gains chosen for the PI to get a strong hold on the
system during transients. The transient itself gives rise to
oscillations. In the first zone, the system is steered
smoothly by the controller but the next zone is harder to
control as the reaction is the strongest. Finally, the last
zones are suffering from the disturbances travelling from
the first zones. These industrial results are consistent with
the study presented in Section 3.1. This behavior was con-
sidered a serious bottleneck for the plant productivity and
was at the origin of our study on the control upgrade.

4. LQR controller design

In this section, a centralized PI controller is proposed
in which the proportional gains are optimally chosen
using LQR design. Weights of the input channels are
computed through this LQR design. In a future work,
we could investigate the use of higher order controller
(that may include some explicit or implicit observer for
instance). In the sequel, we will refer to this centralized
PI scheme as LQR to remind the way the proportional
gain was designed.

4.1. Control setup

The LQR is designed to regulate the temperature
about the desired profile Ty, To this end, the first
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equation of (5) is linearized about (Tp, Xgp, Gsp, tsp)- This
yields

T= <A+Clﬂ

»dT @)

) T + Bu.
(Tsp»xsp¢GSp)

The values of C, range from 0.4 to 1, and its variation
can be roughly seen as a multiplicative disturbance act-
ing on u. We therefore neglect C;l multiplying Bu in the
control design. As we will explain in a later section, this
does not cause a problem due to the robustness proper-
ties of the LQR. Define 4 = (4 + C," § |7 . c.))- The
LQR problem is solved in each one of the eight zones
separately, neglecting the propagation of perturbations
from zone i to zone i+ 1. Perturbations are very small
in zone i + 1 if the LQR in zone i is properly designed.
This choice is due to numerical issues that arise when
considering the problem of assigning the eigenvalues
of the relatively large dimensional entire system. Thus,
for the control design purpose we have 4 = block —
diag(4,,...,4s), with 4, € R"*" previously defined.
Then, we have eight identical LQR problems for the
pairs (4,,B;), with B; € R" a vector of ones. For each i
the functional

J(u) = Ocu,- 4T @) dz, 8
W= [ |wr+1g, @ ®)

j=1

is minimized, where Tzi (¢) is the temperature at the
1"

end of zone 7, and u(¢) is the control input of the same
zone. Let Kp; € R" denote the optimal vector of propor-

tional gains in zone i, we use
t
u; = —K};I(IPT — Tsp) — K]‘i/ (T,,l.(S) — Tsp,i) dS =+ U; ref
0

)
where the integral term (tuned a posteriori) guarantees
zero asymptotic error with respect to step disturbances

T
sp
— asymptotic T profile

TEMPERATURE

LQR control effort

771

at least at the end of the zone. Since we assume to
have at most three possible measurements in each
zone (i.e. at the beginning which corresponds to the
end of the previous zone, at the center, and at the
end), we linearly interpolate the measurements we have
in each zone in order to do the feedback from the inter-
polated temperature. The n; x n; matrix [, models the
interpolations, that is Tinerp = 1,7. Ideally, the larger
the number of measurements the closer 7, to the identity
matrix.

Fig. 7 reports the behavior of the closed loop system
when a step disturbance of 10% is applied at the en-
trance of the reactor. The left plot shows the asymptotic
temperature profile along the reactor. The right plot
shows the control effort. Comparisons with Fig. 5 stress
that the transients are smoother and the control signal
does not oscillate.

4.2. Industrial results with a LOR controller

Fig. 8 shows industrial results obtained with the LQR
design that has been in service since 2000 (see [2]).
Again, a grade transient is considered, which is different
from the one presented in the PI Section but is just as
difficult to achieve. Before the transient, the system is
well controlled. Residual oscillations are very small
compared to the PI results in Fig. 6. This is due to the
better suited choice of the gains. The transient itself is
satisfactory. It is fast with mostly monotonic trajectories
and no propagation of undesirable perturbations be-
tween the zones. After the transient, the system is well
controlled. This behavior has been considered successful
since this new controller was designed and installed.
Indirectly, it also allowed to increase the productivity
by an upgrade of the total amount of monomer that
can be processed (changing the velocity of the flow
and reference temperature profiles) without changing
any actuators or sensors.

0.2
0.1}

-0.1
0.2
-0.3
-0.4
-0.5
-0.6

-0.7

80 100 120 140 160 180 200 220 240 260 280 300
time

Fig. 7. LQR. Performance of the closed loop system when a step of 10% is applied at the entrance of the reactor.
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Temperature
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Fig. 8. Industrial results with a LQR controller.

4.3. Comparison between the LOR and the PI with
measurement at the end of the zone

The LQR controller is a natural evolution of the
decentralized PI control scheme in the case in which a
full measurement is possible. It simply provides a meth-
odology for optimally choosing the gains of the propor-
tional controller, and thus it leads to a centralized PI
controller structure. A better performance of the LQR
controller is to be expected because for designing the
proportional gains an optimization is run, and because
the number of measurements considered is larger than
the one in the decentralized PI scheme. The asymptotic
performance of the decentralized PI is comparable to
the one of the centralized scheme obtained with LQR
design. The transient performance of the LQR design
is instead better as expected. To investigate this feature
further on, the system was simulated starting from a

LQR closed loop performance

c ——— —
S
=
2 — — =
>
(0]
'_
5 18 2
© 10
£-20
5 -30
© _a0
_50 . . . . .
5 10 15 20 25 30
time

T evolution

control effort
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temperature profile 20% higher than the desired one.
The results with the decentralized PI and with the
LQR are shown in Fig. 9. The decentralized PI gives rise
to instability as its gains were designed around the de-
sired temperature profile. The LQR instead steers the
system to the desired profile. This robustness property
with respect to unmodelled dynamics is due to the cen-
tralized nature of this controller and to the number of
measurements. In Fig. 10 (right), the Nyquist plots of
det[l + H(jw)] and of det[/ + H(jw)], where H(s)=
K(sI — A)"'B and H(s) = K(sI — A)"'B, with 4 = A+
BK (I —1,) are depicted. The effect of a poor interpola-
tion is to reduce the robustness margins of the system
with respect to input perturbations. In particular, if
eight measurements are considered (e.g. only end of
the zone sensors are available) the LQR controller re-
sults in an unstable closed loop system.

In conclusion, the LQR design turns out to be easy
because the exact expression of the kinetics does not
need to be known (the x and G dynamics can be ne-
glected), and thus the design considers only the linear-
ized version of the T dynamics. It is more robust than
the PI with measurement at the end of the zone, this
being due to its centralized structure and to the quality
of the measurement interpolation.

5. Nonlinear trajectory generation control approach

In the latest years, optimal control problems with sys-
tems governed by partial differential equations subject
to control and state constraints have been extensively
studied. We refer for instance to [18] for necessary opti-
mality conditions for special cases of elliptic problems
and to [19,20] for numerical studies. One may think to
use these tools as a closed loop controller as in estab-

PI end zone closed loop performance

25

400 T T T T
300
200
100

-100
—200
-300

25

time

Fig. 9. Performance of the LQR controller with 17 uniformly distributed measurements (left plot) and of the decentralized PI with measurements at
the end of the zone (right plot), when the system is started at a temperature profile 20% higher that the desired one T,
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10}

12+

_14,

L

10 5

Fig. 10. Linearized temperature control loop (left). Nyquist plot of det[/ + H(jw)] (solid line), and of det[/ + H (jw)] for two different interpolations.
The dashed plot corresponds to a number of 24 uniformly distributed measurements along the reactor, while the dotted plot corresponds to a number

of 17 uniformly distributed measurements.

lished receding horizon control strategies for systems
governed by ordinary differential equations (see [21,22]
for instance).

A direct method to solve these problems is to use fi-
nite dimensional approximations for both the control
and the state and to enforce constraints at some pre-
scribed grid points (see [23] for an overview of this direct
collocation approach). This results in a nonlinear pro-
gram, see [24,25]. In [6], a different methodology is
proposed. For optimal control of nonlinear ordinary
differential equations of the form x = f(x)+ g(x)u,
where R> t—x e R" and R > t—u € R”, it is shown
[26] that it is possible and computationally efficient to
reduce the dimension of the nonlinear programming
problem by using inversion to reduce the number of dy-
namic constraints in the problem. In this approach, vari-
ables are eliminated through explicit substitutions. The
“inversion” concept can be extended to the field of
partial differential equations. For numerical implemen-
tation, the variables can be parameterized by tensor-
product B-splines (among other basis functions). Their
partial derivatives can be easily (analytically) computed,
combined, and substituted to as many components of
the states and the control as possible in both the cost
functions and the constraints.

After the variables have been parameterized in terms
of B-spline surfaces, the coefficients Cf ; of the B-spline
basis functions will be found using sequential quadratic
programming. This problem is stated as

min F(y) subject to [, < c(y) < up,
yeRNe

where y = (C}J,C{‘Z, .., ¢ ) and N.=p, *p xp.
(10)

F(y) is the discrete approximation of the chosen
objective function. We then use NPSOL [27] as the

sequential quadratic programming to solve this new
problem.

5.1. Optimal control problem formulation

We consider the variables x and T only, while we ne-
glect the variation of the G value that we assume fixed to
its reference G,p. Then we formulate the problem of
shifting the temperature profile from a starting profile
7(0,z) = T;(z) to the desired final profile 7(tz)=
Tsp(z) for a given transient time ¢ as a constrained min-
imization problem. In this setup we relax the under-
actuated model by assuming full actuation (we could
add constraints on u but this could be expensive in terms
of computation time). In particular we want to find the
(t,z) — (1(t,z2), x(t,x), u(t,z)) that minimizes the cost

)
J(T,x,u) = /:ro /:Oclu(r,s)2+cz(T(r,s)—Tsp(s))zdrds,
(11)

subject to the boundary constraints
T(0,z) = Ti(z), T(tr,z) =Tsp(z), T(t,0) = Tinet,

T(O,Z) = )C,'C(Z), x(t, O) = Xinlet (12)
and to the domain constraints

oT(t,z)  0OT(t,z2) r(T,x,G) u

= 13

( o ' Ty Tory 1Y
Ox(t,z)  x(¢,2)

o +v % =k(T,x,G), (14)
I, <u(t,z) < u (15)

We reduce the number of variables involved in the
constrained minimization problem to two, by rewriting
u as a function of x and 7 by means of equation (13).
Therefore, the cost in (11) becomes

J(T,x) /0/ ((aTTS)+uaTéZ’S))CP(T,x)

— (T,x,G)) + ¢,T(1,5)" dds,
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subject to the boundary constraints given in Eq. (12),
and to the domain constraints

0x(t,z) o 0x(t,z)

=k(T 1
o 2 k(T,x,G), (16)
0<x(t,2) <1 —cp, (17)
oT (¢ oT (¢
b (T2 D) ) - 76 <
z

(18)

where we added the domain constraint on the x values
to avoid any sign change for the argument of the square
root in the reaction expression given in (4). This term
would become negative if this constraint is violated
and thus the numerical solver would fail.

Once the optimal solution 7°PY(z, z), x°?(¢,z) has been
found, the optimal input is computed as

opt opt
MOPL(t,Z) _ (aT at(t7z) . U@T a(l,z)> Cp(Topt7xopt)
VA

— KT, X, G).

5.2. Optimal solutions

The NTG software package [26,6] is used to solve the
constrained optimization problem explained in the pre-
vious section. Typical problems that can be solved with

Monomer Conversion x

05 :
05
space 0 0 time

Temperature T

this package include the example given in Fig. 11 where
the parameters are set as ¢; = ¢, =1, [, = =20, u, = 20,
constraints are enforced on a 16 x 16 uniform grid, Eq.
(14) is satisfied with a tolerance of 10~°. The total num-
ber of spline coefficients is 144. In this problem the ini-
tial temperature offset is distributed along the reactor
with a peak at 25. The optimal control strategy saturates
the constraints.

5.3. Using NTG with a closed loop controller

The optimal control input computed by NTG is then
used in our simulator. In addition to the open loop opti-
mal control, we use also a closed loop controller to be
able to track the optimal temperature evolution 7°°'.
Let uP'(s) = (u°P(t,z1),...,uP(t,2,))", and TOPY(r) =
(T°PY(t,zy),...,T°"(,2,))", then the control input
u € R® used in model (5) is

u(t) = (B"B) VBT (u™(0) = K(I,T () = T (1)),

with K a scalar constant. This last expression takes into
account the under-actuated structure of our model by
doing a least square approximation of the optimal con-
trol value. This strategy addresses the problem of regu-
lation of distributed process with spatially-distributed
control actuators and measurement sensors. In NTG
the system is treated as a fully distributed system, the
feedback term takes care of the imperfections of this

space 00 time

Heat Exchange u

Fig. 11. Optimal solution found by the NTG software. We show the two dimensional plots of the optimal quantities on the grid where the

constraints were enforced and the cost was minimized.
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model. Further, this feedback term is needed for attenu-
ating numerical and initialization errors in addition to
errors due to the G unmodelled dynamics. The lineariza-
tion about points on the optimal trajectory of the overall
system, as this appears in equations (5), gives rise to
complex eigenvalues with negative real parts. Even if
the system is stable around the optimal trajectory, the
presence of a non zero imaginary part gives rise to oscil-
lations when a small error is present, due to the above
explained factors. The amplitude of such oscillations be-
come small after a time, which depends on the dynamics
of the system, that is larger than the target final time ¢.
The feedback term eliminates these oscillations within

NTG closed loop performance

TEMPERATURE

— T profile at final time

T profile at final time

Optimal control

Closed loop control

0.5 1 1.5
time

the final time #. As we can see from Fig. 12 the open
loop control and the close loop one are very similar,
meaning that only a small amount of error needs to be
corrected.

Numerical setup. In the cost given in (11), we chose
¢1 = ¢, = 1. The bounds on the input in (15) have been
chosen to be [, = —100, u;, = 100. The tolerance on the
satisfaction of the x PDE given in (14) was chosen to
be 1072, The two-dimensional 7, z plots of the quantities
T°P(t,z), x°P(t,z), u°®\(t,z) are reported in Fig. 11.

The computational time needed for computing the
solutions is 4 minutes when the number of spline

LQR performance

P —
L
o
o]
'_
<
o
L
o
=
L
'_
0 . 1 1.5
time
Tsp
— T profile at final time
©
£
©
E
®
2
©
S
'_

LQR control effort

0 0.5 1 1.5
time

Fig. 12. Performance of the NTG controller (left plots), and of the LQR controller (right plots).
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coefficients is 616. The x and T variables are approxi-
mated with 6th order B-splines using 6 and 4 knots for
the z and ¢ directions respectively. First partial deriva-
tives are continuous across the knots (multiplicity of
2). The constraints are enforced on a 20 x 10 (z,¢) mesh
grid. This computation time may seem high when com-
pared to results from the literature (see [28] where
SNOPT is used instead of NPSOL) but these refer to
systems of parabolic equations. Diffusion terms regular-
ize the solutions of these dynamics and make collocation
easier to run thanks to smoothness of the unknown vari-
ables. In the problem addressed here, the unknown vari-
ables are not very smooth, constraints are thus difficult
to enforce and the SQP requires many iterations.

The simulations were run with a fixed step equal to
1.5/300. We show the simulation results in Fig. 12 next
to the performance of the LQR designed in the previ-
ous section. The values of the cost given in (11) are
1.098 x 10* for the optimal solutions computed by the
NTG, it is 1.0978 x 10° for the closed loop quantities ob-
tained from the Simulink simulation, and it is 0.82 x 10°
for the LQR. Cost functions are not comparable in this
transient mode, but results are of the same order of mag-
nitude. The smaller cost of the LQR is due to a smaller
value of the controller, as it appears from Fig. 12, but
the behavior of the temperature with the NTG control-
ler is better since it has a faster transient, and it achieves
the desired final profile within the target time #. This
does not happen for the LQR controller whose transient
is slower.

5.4. Perspectives of receding horizon control

It is very tempting to use such a numerical tool in the
context of receding horizon control (RHC) as detailed in
[29,30]. Our control problem incorporates a zero termi-
nal constraint which is consistent with the RHC strategy
proposed in [31,32]. One may also use a terminal cost in-
stead, as proposed in [33]. This process has many of the
interesting features that make RHC attractive for indus-
trial applications (see [23]): frequent grade changes,
possibly large disturbances. Because computational effi-
ciency is vital to the success of such an online optimiza-
tion, it seems important to test whether our numerical
approach can be improved further. One way to achieve
shorter computations time is to use well chosen initial
guesses. As an example, we investigated the time re-
quired to solve the problem given in Fig. 11 with per-
turbed initial conditions. Results are as follow: the
reference solution is computed in 560 s, perturbation
of the initial condition offset of 25%, 50% and, 80%
are solved using the first run as initial guess in 40, 60
and 80 s respectively (on average). It thus possible to sig-
nificantly reduce the computational load provided a
large enough set of initial guesses is computed offline.
In this context, the use of an efficient tool is critical.

One could also save more information than just good
initial guess. We refer to [34] for a methodology that
uses precalculated reference trajectories along with Hes-
sians and gradients information in a real-time embed-
ding strategy. It can also be interesting to consider
alternative control configuration to propose a fault tol-
erant control strategy (as in [35]). This can be done by
computing relevant initial guesses for such configura-
tions. More work needs to be done though. A set of
costs and terminal constraints has to be well chosen to
provide stability in closed loop (see [32] for a discussion
on this topic in the case of ordinary differential equa-
tions). Robustness is also an issue since computation
time cannot be upper bounded (the number of SQP iter-
ations is not limited [23]). It might be interesting to use
feasible SQP to be able to exit in a prescribed time with a
(possibly suboptimal) feasible solution (see [29] for a dis-
cussion on this subject).

6. Conclusion

In this paper, we have shown the main differences be-
tween four control schemes for the example of an under-
actuated exothermic tubular reactor. In particular, we
considered a decentralized PI design with two different
measurement schemes, and a centralized PI design in
which the gains have been computed by means of an
LQR design for the problem of regulating the tempera-
ture about a desired profile along the reactor. We then
considered a nonlinear control scheme, the NTG con-
troller, for the purpose of shifting fast the temperature
between desired profiles along the reactor. Our study
confirms the industrial results obtained with PI and
LQR controllers and gives insight into the experimen-
tally obtained performance. The measurement at the
center of the zone scheme performs badly at locations
different from the measured ones, while the measure-
ment at the end of the zone scheme allows a good regu-
lation performance everywhere along the reactor.
Further, the LQR design allows faster transients than
the decentralized PI controller, and its robustness char-
acteristics allow to well reject uncertainties on the initial
conditions. This suggests that such a control scheme can
be successfully applied to the problem of shifting fast the
operating point between temperature profiles along the
reactor. This is confirmed by our simulation and indus-
trial results. Finally, we showed how a nonlinear control
scheme, the NTG, can be used to impose constraints on
the input values and to shift the operating point between
different temperature profiles along the reactor within an
established time.

In the industrial framework, the key issue we encoun-
tered is the compromise between the need for perfor-
mance and robustness and the model knowledge,
availability of measurements, and limited actuation
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available for control. This is according to the results of
[1] where the authors also highlight that actual imple-
mentation of advanced control theory in the polymeri-
zation area requires the improvement of measurement
and state estimation techniques. To the light of this
study, our recommendations are as follows. If only local
temperature measurements are available, and one lacks
knowledge of the kinetic law, we recommend using the
end of the zone measurement scheme. If interpolation
of the sensor values is accurate and the knowledge of
the kinetics law appears reliable, then we recommend
using the LQR for the sake of performance improve-
ment. Finally, if a distributed control system (DCS) is
available on site, and if the kinetics law are accurately
known, then we suggest that a numerical tool, such as
the one presented here, be used. The advantages of using
such an approach are: constraints handling, and optimi-
zation with respect to the true nonlinear dynamics.
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