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Newmethods are presented to address two issues in indirect optimal control: the calculation of a starting point for

the numerical solution and the consideration of mixed state-input constraints. In the first method, an auxiliary

optimal control problem is constructed from a given initial trajectory of the system. Its adjoint variables are simply

zero. This auxiliary problem is then used within a homotopy approach to eventually reach the original optimal

control problem and the desired optimal solution. The second method concerns the incorporation of mixed state-

input constraints into the dynamics of the considered optimal control problem. It uses saturation functions which

strictly satisfy the constraints. In this way, the original constrained optimal control problem is transformed into an

unconstrained one with an additional regularization term. The two approaches are derived within a general

framework. For sake of illustration, they are applied to the space shuttle reentry problem, which represents a

challenging benchmark due to its high numerical sensitivity and the presence of input and heating constraints. The

reentry problem is solvedwith a collocationmethod and demonstrates the applicability and accuracy of the proposed

constructive methods.

I. Introduction

T HE numerical solution of optimal control problems can be
divided into different classes with their own advantages and

characteristics. In the direct approach, the model equations of the
considered system are discretized and the control trajectories are
parametrized to obtain a finite-dimensional parameter optimization
problem, see, for example, [1–4]. The well-known advantage of the
direct approach is the good numerical robustness with respect to the
initial guess, as well as the convenient handling of constraints.

A different class ofmethods that gathered increasing interest in the
recent past is global optimization, which explores the solution space
of the optimization problem with the intention of finding all optimal
solutions or solutions in unexpected regions. Typical solution
techniques of global methods are genetic or evolutionary algorithms,
which have, for example, been applied to find orbital or transfer
trajectories [5,6].

Probably themost classical way to solve optimal control problems
is the indirect approach, which is based on the calculus of variations
and requires the solution of a two-point boundary value problem
stemming from the first-order optimality conditions, see, for
example, [7]. Indirect methods are known to show a fast numerical
convergence in the neighborhood of the optimal solution and to
deliver highly accurate solutions, which makes them particularly
attractive in aerospace industries. However, twomain drawbacks are
opposed to the advantages of the indirect method:

1) A good initial guess of the trajectories (especially of the adjoint
states) is required. This problem is of particular importance for highly
sensitive problems. Several approaches have been proposed to

overcome this problem by combining indirect optimal control either
with direct approaches [8–10] or with global methods, such as
genetic algorithms [11]. However, all these approaches still require
the direct method to obtain near-optimal initial guesses for the
indirect solution or involve global optimization techniques to extend
the region of convergence.

2) The analytical treatment of constraints within the indirect
method is often nontrivial and leads to interior boundary conditions
or case-dependent definitions of the control functions. In general, the
overall structure of the boundary value problem (BVP) depends on
the sequence between singular/nonsingular and unconstrained/
constrained arcs and requires a priori knowledge of the optimal
solution.

Motivated by the preceding problems, the scope of this paper is to
present two new methods for initial guess calculation and for
handling mixed state-input constraints in indirect optimal control:

1) The initial guess problem is addressed by presenting a new
homotopy approach, which is based on an auxiliary optimal control
problem (OCP) for which the adjoint states are simply zero. A
continuation method is then employed to convert the auxiliary OCP
to the original one. The auxiliary OCP can be derived for any given
initial (not necessarily near-optimal) trajectory of the system, for
example, obtained by forward integration. Hence, the homotopy
approach can be seen as “self-contained,” because it does not require
techniques from direct or global optimization.

2) A saturation function approach is presented to systematically
account formixed state-input constraints by adapting ideas originally
developed in [12]. The constraints are incorporated in the system
dynamics, which results in a new unconstrained OCP with an
additional regularization term. Interestingly, the approach can be
related to classical interior penalty function methods, whereby the
idea of saturation functions circumvents certain numerical problems
resulting in an enhanced numerical robustness.

The two methods are presented in a general framework and are
applied to the space shuttle reentry problem subject to input and
heating constraints. The reentry problem is a frequently used
benchmark in optimal control due to several challenging features,
such as highly nonlinear dynamics and a high numerical sensitivity,
see, for example, [4,13–18] for a collection of reentry problems and

Received 4 August 2007; revision received 1 March 2008; accepted for
publication 18 March 2008. Copyright © 2008 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code 0731-5090/08 $10.00 in
correspondence with the CCC.

∗SeniorResearcher, ComplexDynamical SystemsGroup,Automation and
Control Institute.

†Assistant Professor, Centre Automatique et Systèmes. Member AIAA.

JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 31, No. 5, September–October 2008

1334

http://dx.doi.org/10.2514/1.33870


their numerical solution. The simulations for the reentry problem are
conducted underMATLABwith amodified version of a collocation-
based BVP solver. The numerical results reveal the good
performance of the two presented methods and show the high
accuracy of the indirect approach in optimal control.

The paper is outlined as follows: The homotopy approach for the
initial guess calculation is presented in Sec. II for a general class of
unconstrained OCPs and is applied to the unconstrained reentry
problem in Sec. III. Section IV derives the saturation function
approach for general OCPs with mixed state-input constraints and
discusses the numerical advantages with respect to classical penalty
function methods. In Sec. V, the saturation function approach is
applied to the reentry problem with input and heating constraints.
The collocation code, which is used for the solution of the reentry
problem is described in the Appendix.

II. Homotopy Approach to Initial Guess Calculation

This section presents a newhomotopymethod to address the initial
guess problem in indirect optimal control. An auxiliary OCP is
derived with respect to a given initial trajectory of the system (e.g.,
obtained by integration) for which the adjoint states are simply zero.
A continuation scheme is then used to convert the auxiliary OCP to
the original one. For the sake of simplicity, the homotopy method is
described for unconstrainedOCPs.However, themethod can equally
be applied to the constrained case in Sec. IV, because the saturation
function approach (presented in Sec. IV) results again in an
unconstrained OCP.

A. Problem Statement

We consider the following OCP:

min J�u� :� ’�x�T�; T� �
Z
T

0

L�x; u; t� dt (1)

subject to

_x� f�x; u�; x�0� � x0 (2)

0 � ��x�T�; T� (3)

The nonlinear system (2) is described by f : Rn � Rm ! Rn with the
state x 2 Rn and input u 2 Rm. The final conditions �: Rn � R� !
Rq in Eq. (3) are of dimension q � n. The cost functions ’: Rn ! R
and L: Rn � R � �0; T� ! R, as well as f and �, are assumed to be
sufficiently smooth. The end time T is unspecified for the sake of
generality. However, the presented approach can also be applied to
problems with fixed final time T.

In the indirect approach to optimal control, the OCP in Eqs. (1–3)
is treated with the calculus of variations. With the Hamiltonian

H�x;�; u; t� � L�x; u; t� � �>f�x; u�

the first-order optimality conditions for the OCP in Eqs. (1–3) follow
to [7]
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with the adjoint states � 2 Rn and the multipliers � 2 Rq. The
unspecified end time T leads to the additional transversality
condition (7). The optimal solution has to satisfy Eqs. (2–7) and is
denoted by �x
�t�;�
�t�; u
�t�; �
; T
�, t 2 �0; T
�.

Themain obstruction in solving the BVP in Eqs. (2–7) is the initial
guess of the adjoint trajectories ��t�, t 2 �0; T� and the guess of the
free end time T. If ��t� and T are not sufficiently close to the optimal
solution �
�t� and T
, the numerical solution of the BVP may not
converge. Asmentioned in the Introduction, several approaches exist
in the literature to address this problem, see, for example, [8–10].
However, they typically require a near-optimal trajectory (usually by
involving direct optimization methods) to calculate an initial
trajectory for the adjoint state, which is sufficiently close to the
optimal one.

The focus of the next section is to construct an auxiliary OCP for a
given (not necessarily near-optimal) trajectory of the system (2) for
which the optimal solution of the adjoint state can easily be derived.
This auxiliary OCP is then used in a homotopy approach to recover
the original OCP in Eqs. (1–3).

B. Construction of Auxiliary Optimal Control Problem

In the first step, assume that an initial trajectory �x0�t�; u0�t��,
t 2 �0; T0� with a certain final time T0 is given, which satisfies the
system equations and initial conditions in Eq. (2):

_x 0 � f�x0; u0�; x0�0� � x0

In general, the final conditions of Eq. (3) for the end timeT � T0 will
not evaluate to zero but to a certain residual

� �x0�T0�; T0� � �0
T

One possibility to derive the trajectory �x0�t�; u0�t�� is, for instance,
a numerical integration of the system over the time interval
t 2 �0; T0�. On the one hand, T0 should be reasonably chosen within
the range of the expected optimal final time T
 of the original OCP in
Eqs. (1) and (2) and, on the other hand, with the objective to keep the
residual �0

T small.
Consider now the auxiliary OCP

min J0�u� :� ’0�T� �
Z
T

0

L0�u; t� dt (8)

subject to

_x� f�x; u�; x�0� � x0 (9)

0 � ��x�T�; T0� 	 �0
T (10)

where the cost of Eq. (8) is defined by the functions

’0�T� � 1

2
�T 	 T0�2; L0�u; t� � 1

2
ju�t� 	 u0�tT0=T�j2 (11)

with the Euclidean norm

ju 	 u0j2 �
Xm
i�1
�ui 	 u0i �2

Obviously, the optimal solution to the auxiliary OCP in Eqs. (8–10)
is the previous trajectory �x0�t�; u0�t��with the end time T � T0 and
the optimal cost J0�u0� � 0. Note that T0 is used in the final
conditions of Eq. (10) instead of the free end time T. This is of
importance to obtain the optimal free end time T � T0, see Eq. (17).
The time normalization �tT0=T� in Eq. (11) accounts for the fact that
u0�t� is only defined on �0; T0�.

The derivation of the corresponding adjoint state ��t� � �0�t�
requires a closer look at the optimality conditions. The Hamiltonian

H0�x;�; u; t� � L0�u; t� � �>f�x; u� (12)

yields
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whereby @L0=@u simplifies due to Eq. (11). The symbol Im denotes
the (m �m) unit matrix. The adjoint system is defined accordingly
by
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(15)

With x�t� � x0�t� and u�t� � u0�t� as the optimal solution to the
OCP in Eqs. (8–10), it directly follows that the trivial solution

� 0�t� � 0; t� �0; T0�; �0 � 0 (16)

satisfies the optimality conditions (13–15). In addition, the
transversality condition

H0�x;�; u; t�
����
T

�	 d’0

dt

����
T

	�> @�� 	 �
0
T�

@t

����
T

�T0 	 T (17)

must hold, due to the free end time T. As mentioned before, the
function ��x�T�; T0� of the final conditions in Eq. (10) does not
directly depend on T but on T0, which simplifies the right-hand side
of Eq. (17) to T0 	 T. For u�t� � u0�t� and the trivial optimal adjoint
state ��t� � �0�t� � 0, the Hamiltonian (12) evaluates to zero and
the transversality condition (17) yields T � T0 as the optimal end
time.

Note that the derivation of the auxiliary OCP also holds if the final
timeT of the originalOCP inEqs. (1–3) isfixed. In this case,T0 of the
initial trajectory �u0�t�; x0�t��, t 2 �0; T0�must be chosen to T0 � T
and the transversality condition (17) is omitted.

C. Continuation Toward Original Optimal Control Problem

The auxiliaryOCP inEqs. (8–10) can be used as a starting point for
a continuation scheme to eventually reach the original OCP in
Eqs. (1–3). Thereby, the trajectory �x0�t�; u0�t��, t 2 �0; T0�with the
trivial adjoint states �0�t� � 0 and �� 0 forms the initial guess for
the start of the continuation scheme. This leads to the followingOCP:

min J��u� :� ’��x�T�; T� �
Z
T

0

L��x; u; t� dt (18)

subject to

_x� f�x; u�; x�0� � x0 (19)

0 � �2��x�T�; T� � �1 	 �2�
h
��x�T�; T0� 	 �0

T

i
(20)

where the cost functions

’��x�T�; T� � �1’�x�T�; T� � �1 	 �1�’0�T�
L��x; u; t� � �1L�x; u; t� � �1 	 �1�L0�u; t�

(21)

are stated in dependence of a first continuation parameter �1 2 �0; 1�
which converts the auxiliary cost in Eq. (8) for �1 � 0 to the original
one in Eq. (1) for �1 � 1. The final conditions (20) couple Eqs. (3)
and (10) via a second continuation parameter �2 2 �0; 1�. Hence, both
parameters ��1; �2� can be used to separately affect the cost in
Eq. (18) and the final conditions (20). Starting at �� �0; 0�
corresponds to the auxiliary OCP in Eqs. (8–10), whereas �� �1; 1�
yields the original one in Eqs. (1–3).

The optimality conditions are derived with the Hamiltonian

H��x;�; u; t� � L��x; u; t� � �>f�x; u�

and read
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The simplification of Eqs. (24) and (25) is due to the particular
structure and dependencies of Eqs. (20) and (21). The Eqs. (19–25)
define a two-point BVP for the states x�t�,��t�, the multipliers �, the
optimal control u�t�, and the end time T in dependence of the
continuation parameters ��1; �2�.

The simplest way to solve the homotopy problem is to manually
increase ��1; �2� from (0, 0) to (1, 1) in N steps with N being
sufficiently large. The first run ��11; �12� of the homotopy is initialized
with the auxiliary trajectory �x0�t�; u0�t�;�0�t�; �0; T0� and
�0�t� � �0 � 0, whereas the subsequent steps ��i1; �i2�,
i� 2; . . . ; N use the solution of the previous run as initialization.
Finally, the optimal solution �x
�t�; u
�t�;�
�t�; �
; T
� of the
original OCP in Eqs. (1) and (2) is obtained for ��N1 ; �N2 � � �1; 1�.
Because ��1; �2� separately affects the cost in Eq. (18) and the
boundary conditions (20), some freedom exists concerning how �1
and �2 are increased. In general, the number of steps N depends on
the sensitivity of the problem and the length of the homotopy path. If
the initial trajectory �x0�t�; u0�t�� is close to the optimal solution, N
can usually be chosen smaller compared with the case in which the
initial and optimal trajectories are far away from each other.

A more sophisticated method than manually chosen N and the
sequence for ��1; �2� is differential homotopy, which dynamically
follows the homotopy path by means of predictor–corrector
schemes. A furthermethod is simplicial homotopy, which subdivides
the search space into cells by piecewise linear approximations. The
advantage of the simplicial method is that it puts low requirements on
the homotopy problem and involves no further derivatives as in the
case of differential homotopy. On the other hand, the differential
method generally converges faster due to the prediction behavior.
More details on this topic can, for example, be found in [19,20].

Although these systematic methods may find solutions where the
manual way of increasing ��1; �2� fails, they require substantially
more implementational effort. Moreover, these methods consider a
single homotopy parameter compared to ��1; �2� in OCP (18–21).
This problem can be taken into account, for instance, by using �1 and
�2 in a cascade of two single homotopies or by reducing them to a
single parameter �1 � �2. However, the separate consideration of
both parameters �1 and �2 provides an additional degree of freedom,
which can be used to find a suitable homotopy path.‡

III. Example 1: Unconstrained Reentry Problem

An ideal example for the homotopy approach is the space shuttle
reentry problem, due to its high numerical sensitivity and the
relatively large reentry time interval �0; T�. Several different versions
and problem formulations of the reentry OCP exist in the literature,
see, for example, [4,8,17]. The reentry problem used in this paper is
due to Betts [4]. The model equations and the optimal control
objective are recapitulated before the homotopy approach is used to

‡A special case occurs if the initial trajectory �x0�t�;u0�t��, t 2 �0; T0�
directly satisfies Eq. (3), that is, ��x0�T0�; T0� � 0, such that the boundary
conditions (20) reduce to the original ones in Eq. (3) and �2 is not required.
This is, for example, the case for flat systems, where �x0�t�; u0�t�� can be
constructed in terms of the flat output and its time derivatives [21].
Alternatively, the approach in [22] can be adapted to determine �x0�t�;u0�t��,
which satisfies the boundary conditions in Eqs. (2) and (3). Then, only �1
occurs and the differential or simplicial homotopy canmore easily be applied.
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solve the reentry problem. The numerical results are obtained with a
collocation solver under MATLAB (see Appendix).

A. Model Description

The equations of motion of the space shuttle, as stated in [4], are

_h� v sin � (26)

_v�	D�h; v; ��
m

	 g�h� sin � (27)

_� � L�h; v; ��
mv

cos�� cos �

�
v

Re � h
	 g�h�

v

�
(28)

_�� v

Re � h
cos � cos (29)

_ � L�h; v; ��
mv cos �

sin�� v

Re � h
cos � sin sin � (30)

_�� v

Re � h
cos � sin = cos � (31)

with altitude h, velocity v, flight-path angle �, latitude �, azimuth  ,
and longitude � as the states of the system. The controls of the space
shuttle are the angle of attack � and the bank angle �.

The gravity g�h� and atmospheric density ��h� are modeled by

g�h� � �=�Re � h�2; ��h� � �0 exp�	h=hr� (32)

and are used to determine the lift and drag functions

L�h; v; �� � 1

2
cL���S��h�v2; cL��� � a0 � a1�̂

�̂� 180�=	

(33)

D�h; v; �� � 1

2
cD���S��h�v2; cD��� � b0 � b1�̂� b2�̂2

(34)

which appear in the system model of Eqs. (26–31). The
corresponding parameters are listed in Table 1.

The shuttle reentry is defined to start at the initial conditions

h�0� � 260; 000 ft; ��0� � 0 deg; ��0� � 0 deg

v�0� � 25; 600 ft=s; ��0� � 	1 deg;  �0� � 90 deg

(35)

The final point of the reentry trajectory occurs at the unknown end
time T at the so-called terminal area energy management [4], which
is defined by the conditions

h�T� � 80; 000 ft; v�T� � 2500 ft=s; ��T� � 	5 deg

(36)

The objective of the reentry problem is to maximize the cross range,
which is equivalent to maximizing the latitude ��T�.

B. Adaption to Homotopy Formulation

The reentry model of Eqs. (26–31) can be put in the general form
of Eq. (2) with the state and control vectors

x � �h; v; �; �;  �>; u� ��; ��> (37)

The longitude � and the ordinary differential equation (ODE) (31)
are omitted because they are decoupled and do not affect the
remaining ODEs (26–30). The initial conditions in Eq. (2) follow
from Eq. (35). The final conditions (36) can be stated in terms of
Eq. (3):

� �x�T�� �
x1�T� 	 80; 000 ft

x2�T� 	 2500 ft=s
x3�T� � 5 deg

0
@

1
A� 0 (38)

The objective of the reentry problem is to maximize the cross range,
which corresponds to the final latitude x4�T� � ��T�. Hence, the cost
functions in Eq. (1) reduce to ’�x�T�� � 	x4�T� and L�x; u; t� � 0,
which yields the cost to be minimized

J�u� :� 	x4�T� (39)

Note that T is not explicitly occurring in ��x�T�� and ’�x�T��.
Moreover, the homotopy BVP formulation in Eqs. (19–25)
simplifies for the reentry problem due to the explicit final
conditions (24) and the simple final cost in Eq. (39). In particular, the
final conditions (24) for the adjoint state ��t� and the transversality
conditions (25) reduce to


i�T� � �i � free; i� 1; 2; 3 (40)


4�T� � 	�1; 
5�T� � 0

H��x;�; u; t�
����
T

�	 �1 	 �1��T 	 T0�
(41)

The explicit calculation of the Lagrange multipliers �1, �2, �3 is not
necessary, because they do not affect the transversality
condition (41). Instead, the boundary conditions 
i�T�, i� 1, 2, 3
are treated as being free and are not considered (together with the
multipliers �1, �2, �3) in the BVP formulation, see, for example, [7].

C. Numerical Results

The reentry problem is solved with the collocation method
described in the Appendix. The optimality conditions (22–25) and
the Jacobians are calculated with the computer algebra program
MATHEMATICA and are provided as C-mex functions to
MATLAB. The simulations are preformed on a PC equipped with an
Intel CPU of the type PentiumCoreDuo 1.6 GHz and 2GBmemory.

To start the homotopy solution of the reentry problem outlined in
Sec. II, an initial trajectory �x0�t�; u0�t�� is calculated by integrating
the system Eqs. (19) over the time interval t 2 �0; T0� with the
guessed end time T0 � 1000 s and the chosen constant input
u� ��; ��> � �30;	30�> deg. The trajectory �x0�t�; u0�t�� with
the trivial adjoint state ��t� � �0�t� � 0 is then used as an initial
guess for the homotopy approach.

Asmentioned before, some freedom exists concerning the number
of steps N and how the two homotopy parameters �� ��1; �2� are
increased to �N � �1; 1�. The best results for the reentry problem are
obtained by first increasing �1 to smoothly convert the cost

Table 1 Parameters of the shuttle model Eqs. (26–34) taken from [4,13]

Symbol Value Symbol Value Symbol Value

� 0:1407654 � 1017 ft=s2 �0 0:002378 lb=ft3 Re 20,902,900 ft
hr 23,800 ft S 2690 ft2 m 6309.44 lb
a0 	0:20704 a1 0.029244 b0 0.07854
b1 	0:61592 � 10	2 b2 0:621408 � 10	3 c0 1.06723181
c1 	0:19213774 � 10	1 c2 0:21286289 � 10	3 c3 	0:10117249 � 10	5
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function (18) to the desired one in Eq. (39). This is done in 10 steps
from �11 � 0:1 to �101 � 1, while keeping �2 � 0. Afterward, �2 is
increased similarly from �112 � 0:1 to �202 � 1 in 10 steps to force the
boundary conditions (20) to the original values in Eq. (38).

Figure 1 shows the reentry trajectories for several steps of the
homotopy method. Clearly visible is the homotopy path from the
initial trajectory for �0 � �0; 0� to the optimal solution for �20 �
�1; 1� in the 20th step. This is particularly interesting because the
initial trajectory �x0�t�; u0�t�� and the initial time T0 � 1000 s are
clearly far away from the optimal solution. An interesting
phenomenon in the final trajectories are the oscillations, which occur
due to the bumping of the space shuttle on the atmosphere during the
reentry maneuver. These oscillations lead to a complex shape of the
trajectories and illustrate the high sensitivity of the reentry problem.

The trajectories in Fig. 1 also show that increasing �1 before �2
seems to lead to the most natural homotopy path, and indicates that
the original cost [maximization of ��T�] is a more natural criterion in
combination with the final conditions than the artificial cost of the
auxiliary OCP. Compared with this homotopy path, other increasing
sequences for ��1; �2� led to significant gradients and oscillations in
the controls u� ��; ��> during the single steps.

Table 2 summarizes some details of the successive numerical
solutions by means of the collocation code (see Appendix). The
homotopy approach is startedwith the initial trajectory �x0�t�; u0�t��,

t 2 �0; T0�. The mesh refinement is turned off during the homotopy
solution and the single trajectories are computed on the fixed mesh
with 200 equidistant points. The reason for using a fixed mesh is that
the mesh refinement leads to an increase of mesh points during the
homotopy solution, where the shape of the trajectories strongly
changes.§ A final run with activated mesh refinement leads to the
optimal reentry trajectories (see Fig. 1) with 305 mesh points, the
final time T � 2008:59 s and the maximum cross range
��T� � 34:1412 deg. The overall required CPU time for the
numerical solution on the aforementioned PC is 46.2 s.

The final trajectories in Fig. 1 are practically identical with the
reference results [4], and the values of T and ��T� coincide with the
reference values up to the last digits given in [4]. Moreover, the
collocation solver converged during the single steps of the homotopy
approach within 2–4 iterations. These observations agree with the
common statement that the indirect method in optimal control shows
a high accuracy and a good convergence behavior.

In practice, the trajectories would have to be implemented in a
closed loop to achieve stability and robustness with respect to
perturbations. This can be done, for example, using the theory of
neighboring extremals [23]. An alternative is the well-known
2 degrees-of-freedom control concept [24], where the optimal
trajectory u
�t� is used as a feedforward control together with a
feedback part, which can be designed by linear methods.
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zoom on α
for κ 20 = ( 1, 1)

st art: κ 0 = ( 0, 0)
step 3: κ 3 = ( 0.3, 0)
step 7: κ 7 = ( 0.7, 0)
step 10: κ 10 = ( 1, 0)
step 13: κ 13 = ( 1, 0.3)
step 17: κ 17 = ( 1, 0.7)
step 20: κ 20 = ( 1, 1)

Fig. 1 Homotopy trajectories for the unconstrained reentry problem.

Table 2 Statistics for the solution of the unconstrained reentry problem

Steps �� ��1; �2� Mesh points T ��T� CPU time

1–10 �10 � �1; 0� 200 (fixed) 912.44 s 5.0148 deg 16.1 s
11–20 �20 � �1; 1� 200 (fixed) 1967.01 s 34.1421 deg 25.6 s
Mesh refinement 305 (auto) 2008.59 s 34.1412 deg 4.5 s

§With activated mesh refinement, the steps for increasing ��1; �2� have to
be chosen smaller to keep the number of grid points within reasonable limits.
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IV. Incorporation of Mixed State–Input Constraints

In this section, the unconstrainedOCP in Eqs. (1–3) is extended by
mixed state-input constraints of the form

di�x; ui� 2 �d	i ; d�i �; i� 1; . . . ; m (42)

which are assumed to bewell definedwith respect to the single inputs
ui of the control vector u� �u1; . . . ; um�>, that is, @di=@ui ≠ 0.
Although it is possible to analytically consider the constraints in
indirect optimal control, it generally requires a priori knowledge of
the switching structure of the optimal solution and leads to interior
boundary conditions, which complicate the BVP in Eqs. (2–7) of the
optimality conditions.

The saturation function approach presented in this section
circumvents this problem and incorporates the constraints within the
system dynamics by following the ideas in [12], originally developed
in the context of feedforward control design. This procedure results
in a new unconstrained OCP with an additional regularization term.
Interestingly, the approach can be related to classical penalty
function methods, while avoiding their numerical difficulties.

A. Incorporation of Constraints with Saturation Functions

Because it is assumed that the functions di�x; ui� are well defined
with respect to ui, that is, @di=@ui ≠ 0, the mixed state-input
constraints (42) can be written as input constraints

ui 2 �u	i �x�; u�i �x��; i� 1; . . . ; m (43)

with the state-dependent lower and upper limits u	i �x� and u�i �x�. In
the case of pure input constraints, the limits u�i �x� � u�i are
independent of x.

The reformulated constraints (43) are now represented by
saturation functions

ui �  i�x; ~ui�; i� 1; . . . ; m (44)

with the new unconstrained inputs ~u� � ~u1; . . . ; ~um�>. It is assumed
that the saturation functions  i�x; ~ui� reach their limits u�i �x� only
asymptotically for ~ui !�1, see Fig. 2. An appropriate choice for
 i�x; ~ui� is, for example,

 i�x; ~ui� � u�i �x� 	
u�i �x� 	 u	i �x�
1� exp�s ~ui�

; s� 4

u�i �x� 	 u	i �x�
(45)

where the parameter s normalizes the slope @ i=@ ~ui � 1 at ~ui � 0.
The inputs u of the original OCP in Eqs. (1–3) can be replaced by

u� �x; ~u�, where  � � 1; . . . ;  m�> denotes the vector over all
saturation functions (45). This leads to the following unconstrained
OCP

min ~J"� ~u� :� ~J� ~u� � "�
Z
T

0

j ~uj2 dt (46)

subject to

_x� ~f�x; ~u�; x�0� � x0 (47)

0 � ��x�T�; T� (48)

where the cost functional

~J� ~u� :� ’�x�T�; T� �
Z
T

0

~L�x; ~u; t� dt

with ~L� L�x; �x; ~u�; t� and the new system function ~f �
f�x; �x; ~u�� follow from Eqs. (1) and (2).

The additional regularization term in Eq. (46) with

j ~uj2 �
Xm
i�1

~u2i

and the parameter " > 0 is necessary to account for the influence of
the saturation close to the constraints in Eq. (43). This point can be
explained with the Hamiltonian

~H�x;�; ~u; t� � ~L�x; ~u; t� � "j ~uj2 � �> ~f�x; ~u�

and the optimality conditions @ ~H=@ ~u� 0 with respect to the new
input ~u� � ~u1; . . . ; ~um�>:

@ ~H

@ ~ui
� @

~L

@ ~ui
� 2" ~ui � �>

@ ~f

@ ~ui
� 0; i� 1; . . . ; m (49)

Because of the input substitution u� �x; ~u�, the partial derivatives
in Eq. (49) evaluate to¶

@ ~L

@ ~ui
� @L
@ui

����
�44�

@ i
@ ~ui

;
@ ~f

@ ~ui
� @f

@ui

����
�44�

@ i
@ ~ui

These relations show that if one of the original inputs ui approaches
the respective constraints (43), the corresponding  i�x; ~ui� will also
approach saturation with the gradient @ i=@ ~ui tending to zero
(cf. Fig. 2). Hence, the regularization terms 2" ~ui in Eq. (49) are used
to still be able to compute the new input ~u� � ~u1; . . . ; ~um�> from
Eq. (49) if one or several gradient terms are vanishing due to
saturation.

To complete the optimality conditions, the adjoint state � and the
free end time T are given by

_� > �	
@ ~H

@x
�	 @

~L

@x
	 �> @

~f

@x
(50)

� >�T� � @’
@x

����
T

��> @�
@x

����
T

(51)

~H�x;�; ~u; t�
����
T

�	 @’
@t

����
T

	�> @�
@t

����
T

(52)

with the partial derivatives

@ ~L

@x
� @L
@x

����
�44�
� @L
@u

����
�44�

@ 

@x
;

@ ~f

@x
� @f
@x

����
�44�
� @f
@u

����
�44�

@ 

@x

and the vector of saturation functions  � � 1; . . . ;  m�>.
The Eqs. (47–52) form a two-point BVP for the regularized OCP

in Eqs. (46–48) with the parameter ". The desired optimal solution
�x
�t�; u
�t��, t 2 �0; T
� of the OCP (1–3) subject to the
constraints (43) can be approached by using a continuation scheme
to successively decrease the regularization parameter ".

B. Comparison with Interior Penalty Functions

An interesting feature of the saturation function approach is that it
has some similarity to classical interior penalty methods, see, for
example, [25,26]. This relation can be used to give more insight into
the regularization term and to emphasize some numerical advantages
of the saturation function formulation.ui

ψi

u−
i (x )

u+
i (x )

0 ˜

Fig. 2 Saturation function ui � i�x; ~ui�.

¶The compact notation ���j�44� signifies the substitution of the original input
u� �u1; . . . ; um�> by the saturation functions (44).
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The new inputs ~ui in the regularization term of the cost in Eq. (46)
can be expressed by the inverse relations of the saturation
functions (44)

~u i �  	1i �x; ui�; i� 1; . . . ; m (53)

which allows one to rewrite the regularized cost of Eq. (46) in terms
of the original inputs u� �u1; . . . ; um�>:

J"�u� :� ’�x�T�; T� �
Z
T

0

L�x; u; t� � "j 	1�x; u�j2 dt (54)

with the vector  	1 � � 	11 ; . . . ;  	1m �>. Using the explicit
formula (45) for  i�x; ~ui�, the inverse relations  	1i �x; ui� read

 	1i �x; ui� �
1

4
�u�i �x� 	 u	i �x��flog�ui 	 u	i �x��

	 log�u�i �x� 	 ui�g (55)

Obviously, the term

j 	1j2 �
Xm
i�1

�
 	1i

�
2

shows a logarithmic barrier behavior, which penalizes the inputs ui if
they approach the constraints (43), see Fig. 3.

From this point of view, the saturation function approach has some
similarity with classical interior penalty methods, see, for example,
[25,26]. However, a well-known problem of interior penalty
methods is that special care has to be taken that iterates during the
numerical solution of the OCP do not violate the barriers u�i �x�.

The saturation function approach circumvents this problem of
interior penalty methods by incorporating the constraints (43)
directly within the unconstrained OCP (46–48) with the new inputs
~ui. Hence, the saturation functions (45) force the inputs ui to strictly
remain inside the constraints (43), which results in a truly
unconstrained problem. This formulation has numerical advantages,
because iterates during the numerical solution cannot violate the
constraints. For instance, the regularization parameter " can usually
be decreased in larger steps to converge more rapidly to the optimal
solution. A further advantage is that the constraints (43) can be
reduced from oneOCP solution to the next, for example, to start from
an unconstrained solution. This aspect is illustrated for the reentry
problem in the next section.

V. Example 2: Constrained Reentry Problem

In this section, the unconstrained reentry problem in Sec. III is
extended by additional input and heating constraints, which are
handled by means of the saturation functions. The unconstrained
optimal solution obtained by the homotopy approach (see Fig. 1) is
used as an initial guess for the constrained case. The numerical results

are obtained underMATLABwith the collocation method described
in the Appendix.

A. Input and Heating Constraints

In addition to the reentry model in Sec. III.A., the problem
formulation in [4] includes constraints on the controls � and �

� 2 �	90; 90� deg; � 2 �	89; 1� deg (56)

as well as an additional constraint on the aerodynamic heating on the
shuttle wing leading edge

q�h; v; �� � q� � 70 Btu=ft2=s (57)

where the heating q�h; v; �� is defined as a function of the states h, v,
and the control �:

q�h; v; �� � qa���qr�h; v�
qa��� � c0 � c1�̂� c2�̂2 � c3�̂3; �̂� 180�=	

qr�h; v� � 17; 700
����������
��h�

p
�10	4v�3:07

(58)

The parameters occurring in Eq. (58) are listed in Table 1.
The heating constraint (57) represents a mixed state-input

constraint of the form in Eq. (42), which can be rearranged such that
qa���, as a function of the angle of attack �, has to satisfy the
inequality

qa��� �
q�

qr�h; v�
(59)

to limit the heating to the maximum allowed value in Eq. (57). As
shown in Fig. 4, the function qa��� is monotonically decreasing with
respect to�. Hence, in each time instant t, a lower limit�	 for� 
 �	
can be calculated from Eq. (59) with respect to the instantaneous
states h and v, that is,

�	�h; v� � q	1a
�

q�

qr�h; v�

�
(60)

In this way, the heating constraint (57) can be accounted for by
replacing the lower bound of � in Eq. (56) by the state-dependent
limit �	�h; v�. This leads to the (partially state-dependent) input
constraints

� 2 ��	�h; v�; 90 deg�; � 2 �	89; 1� deg (61)

with the constant values taken from Eq. (56).
In general, the function qa��� is not analytically invertible, since

qa���may be derived as an interpolation betweenmeasurement data,
which leads, for instance, to a polynomial function as in Eq. (58). The
analytic inversion (60) can be avoided by numerically solving the
algebraic equation

ε ε

uiu+
i (x )u−

i (x )

ε ψ− 1
i (x , ui)

2

Fig. 3 Interior penalty term � �1i �x; ui��
2 with parameter " > 0.
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Fig. 4 Heating function qa��� in Eq. (58) plotted over the angle of

attack �.
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qa��	�qr�h; v� 	 q� � 0 (62)

for �	 in each time instant.

B. Numerical Results

Similar to the unconstrained case, the shuttleODEs (26–30) can be
written in the form of Eq. (47) with the state and control vectors of
Eq. (37), the final conditions (38), and the final cost in Eq. (39). The
constrained inputs u� ��; ��> in Eq. (61) are replaced by saturation
functions according to Eq. (44),

��  1�h; v; ~��; ��  2� ~�� (63)

with the new unconstrained inputs ~u� � ~�; ~��>. The two-point BVP
in Eqs. (47–52) is solved under MATLAB with the collocation code
described in the Appendix.∗∗

The constrained trajectories for the reentry problem are obtained
by starting from a sufficiently large valueq� of the heating constraint
q � q� and successively reducingq� until thedesired constraint (57)
is reached. This is done in five steps with the decreasing constraints

q� 2 f140; 120; 100; 80; 70g Btu=ft2=s (64)

For the first runwith q� � 140 Btu=ft2=s, the unconstrained optimal
solution (see Fig. 1) is used as an initial guess for the collocation

method. The corresponding new input trajectories ~��t� and ~��t�
directly follow from the inverse saturation functions (53), whereas
the initial profile of the lower constraint �	�t� is obtained by
numerically solving Eq. (62) with the MATLAB function fsolve of
the Optimization Toolbox. Because of the expected large final time
of approximately T � 2000 s, the initial penalty parameter is chosen
to "� 10	6 to ensure that the integrated penalty in Eq. (46) lies
within the range of the final cost of the reentry problem. After

q� � 70 Btu=ft2=s is reached, the penalty parameter " is gradually
decreased to "� 10	10 to approach the optimal solution.

Figure 5 shows the computed trajectories of the shuttle reentry for
the decreasing constraints (64) as well as the final solution for the
penalty parameter "� 10	10. The reduction of the heating
constraints (64) in only five steps shows the robustness of the
saturation function approach with respect to the constraints. The
heating profiles q�t� for the single steps from "� 10	6 to "� 10	10

are additionally depicted in Fig. 6. Clearly visible in Figs. 5 and 6 is
the adherence of the heating constraint by the single trajectories and
the different shapes of the reentry trajectories compared with the
unconstrained one. The distance of q�t� to the constraint q� �
70 Btu=ft2=s is negligible for "� 10	10, although the saturation
functions in Eq. (63) are only of asymptotic nature, whichmeans that
��  1�h; v; ~�� does not exactly reach the lower constraint �	 �
�	�h; v� corresponding to the heating constraint (57).

The statistics of the numerical solution of the constrained reentry
problem are listed in Table 3. In the first part of the solution, when the
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Fig. 5 Optimal trajectories for the constrained reentry problem.
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Fig. 6 Constrained heating trajectories q�t� for decreasing penalty

parameters ".

∗∗The implicit Eq. (62) for the lower constraint �	 � �	�h; v� on � is
treated as an additional algebraic equation in Eq. (A2), such that the vector of
algebraic variables comprises z� � ~�; ~�; �	�>.
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heating constraint (64) is successively decreased (see “Option 1” in
Table 3), the mesh refinement is turned off to avoid the increase of
mesh points due to the strongly changing shape of the trajectories in
the single steps.

An alternative to lowering the heating constraint (64) is to use the
homotopy approach in Sec. II, similar to the unconstrained reentry
problem. The details and the respective simulation results are omitted
here due to the lack of space. Nevertheless, the statistics are included
in Table 3 (see “Option 2”) and are based on the same initial
trajectory �x0�t�; u0�t�� and the same steps of the continuation
parameters �� ��1; �2� as in Sec. III.C.

For both options 1 and 2, the resulting trajectories for the heating
constraint q� � 70 Btu=ft2=s and the penalty parameter "� 10	6

are practically identical and thus yield the same results in the
subsequent reduction of ", see Table 3. Thereby, themesh refinement
is active and the last run with "� 10	10 yields the final trajectory in
Fig. 6 with 814 mesh points. The optimal final time T
 � 2198:67 s
and the maximum cross range ��T
� � 30:6255 deg coincide with
the reference results in [4] (up to the last digits given in [4]). This, in
particular, shows the negligible influence of the remaining penalty
term in Eq. (46) for "� 10	10. Because of the increased number of
mesh points, the overall CPU times for options 1 and 2 are
significantly higher than for the unconstrained reentry problem (see
Table 2) and amount to 340.8 and 359.4 s, respectively.

VI. Conclusions

The motivation of the paper was twofold: in the first part, a
homotopy approach was presented to address the initial guess
problem in optimal control. The homotopy approach relies on an
auxiliary optimal control problem, which can be constructed for any
given (not necessarily near-optimal) trajectory of the system. For
instance, the initial trajectory for the reentry problem was far away
from the final optimal solution and was obtained by a simple time
integration. In general, however, the homotopy path to the final
optimal solution is naturally shorter if the initial trajectory is chosen
closer to the optimal one. Further research concerns the automation
of the homotopy steps by means of search algorithms or differential/
simplicial homotopy.

The second part of the paper presented a saturation function
approach to systematically incorporate mixed state-input constraints
into a new unconstrained optimal control problemwith an additional
regularization term. An interesting relation exists to classical interior
penalty function methods, whereby the saturation function
formulation has advantages concerning the numerical solution. For
instance, the constraints can be successively reduced to start from an
unconstrained trajectory. This has been demonstrated for the reentry
problemwith input and heating constraints. Current research is spent
on extending the saturation function approach to amore general class
of state and input constraints.

Both presented approaches are connected in the sense that the
saturation function approach results again in an unconstrained
optimal control problem, to which the homotopy method can be
applied to initialize its numerical solution. The proposed methods
seem to have potential in thefield of optimal control, because they are
easy to implement and proved efficient on the reportedly difficult

reentry problem. They appear to be well suited for aerospace
trajectory optimization problems and are currently used, along with
ideas fromnonlinear geometric control, on various ascent and reentry
problems.

Appendix: Solution of Optimal Control Problems
with Collocation

The two-point BVPs of the reentry problem arising from the
optimality conditions are numerically solved with a collocation
method. Compared with shooting or gradient algorithms, the
collocation method has advantages in handling final conditions and
the inherently unstable process of system and adjoint equations.††

Moreover, additional algebraic equations such as Eq. (22) or
Eq. (49),which extend the two-point BVP to a systemof differential–
algebraic equations (DAE), can be readily taken into accountwith the
collocation method due to the discretization over the whole time
interval.

The basis for the numerical solution of the reentry problems in this
paper is the standard MATLAB BVP solver bvp4c, which solves
nonlinear two-point BVPs by means of the collocation method [29].
To be applicable to optimal control problems, we extended the
bvp4c-code to the general BVP formulation of (index 1) differential–
algebraic equations

_y� f�y; z; t;p�; t 2 �t0; tf� (A1)

0� g�y; z; t;p�; t 2 �t0; tf� (A2)

0� h�y�t0�; y�tf�; z�t0�; z�tf�;p� (A3)

with dynamic and algebraic states y�t�, z�t�, t 2 �t0; tf�. Moreover,
unknown parameters p can additionally be considered in the DAE
formulation in Eqs. (A1–A3).

The general collocation method and its implementation in bvp4c
has been left unchanged, as it was designed to be applicable and
numerically robust for a wide range of BVPs. The collocation
method in bvp4c discretizes the time interval �t0; tf� with J� 1
points

t0 < t1 < � � � < tJ	1 < tJ � tf (A4)

and approximates the ODEs (A1) by means of the Simpson formula
with fourth-order accuracy [29]. The discretized system Eqs. (A1),
together with the boundary conditions (A3) and the algebraic
Eqs. (A2), evaluated at all time points (A4), results in a set of
nonlinear algebraic equations

0� F�Ŷ� (A5)

with the vector

Ŷ > �
�
ŷ>0 ; ẑ

>
0 ; ŷ

>
1 ; ẑ

>
1 ; . . . ; ŷ

>
J ; ẑ

>
J ;p

�
(A6)

Table 3 Statistics for the solution of the constrained reentry problem

Steps Mesh points T ��T� CPU time

Option 1: decrease of q��"� 10	6�
5 steps, see Eq. (64) 200 (fixed) 2194.51 s 30.59 deg 54.8 s

Option 2: homotopy ("� 10	6)
10 steps: �10 � �1; 0� 200 (fixed) 941.34 s 4.183 deg 19.3 s
10 steps: �20 � �1; 1� 200 (fixed) 2194.51 s 30.59 deg 54.1 s

Subsequent decrease of " in 4 steps with mesh refinement
"� 10	7 779 (auto) 2197.68 s 30.6208 deg 51.0 s
"� 10	8 807 (auto) 2198.51 s 30.6249 deg 109.3 s
"� 10	9 809 (auto) 2198.65 s 30.6254 deg 70.6 s
"� 10	10 814 (auto) 2198.67 s 30.6255 deg 55.1 s

††More information on the numerical solution of OCPs can, for example,
be found in the textbooks [7,27].A detailed analysis of the collocationmethod
is given in [28].
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comprising the approximate solutions ŷi � y�ti�, ẑi � z�ti�,
i� 0; 1; . . . ; J, and the unknown parameters p. The residual
Eqs. (A5) are numerically solved by a Newton iteration scheme

Ŷ �k� � G�Ŷ�k	1�� (A7)

which starts from an initial guess Ŷ
�0�

provided by the user.
Moreover, the Newton iterations (A7) require the evaluation of the
Jacobians of the right-hand-side functions in Eqs. (A1–A3), with
respect to their arguments.

To apply the collocation method to the homotopy approach, the
BVP in Eqs. (19–25) has to be adapted to the DAE form of Eqs. (A1–
A3).‡‡ The original and adjoint equations in Eqs. (19) and (23) form
the dynamics of Eq. (A1) for the overall dynamic state
y> � �x>;�>�. The input vector u forms the algebraic variables
z� u with Eq. (22) corresponding to the algebraic Eq. (A2). The
boundary conditions for x and� in Eqs. (19), (20), and (24), together
with the transversality conditions (25) form Eq. (A3). The free end
time T is taken into account by means of the time transformation

t� "�; T � "; d

dt
� 1

"

d

d�
(A8)

with the normalized time coordinate � 2 �0; 1�. Hence, the scaling
factor " is treated as free parameter p� " in the DAE system (A1–
A3) and the new time coordinate � replaces t 2 �t0; tf � with the
normalized interval boundaries t0 � 0 and tf � 1. In general, the
multipliers � can be added to the parameter vector p> � �"; �>�. For
the reentry problem, �was omitted due to the explicit structure of the
final conditions in Eq. (38), also see Eqs. (40) and (41).
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