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SUMMARY 

Dielectrophoresis is the motion of a particle due to the interaction between a non-unifortn electric field and 
its induced dipole moment in the particle. With the advent of the fabrication technology at tnicro/nano- 
scale, dielectrophoresis is actively applied in manipulating, separating, and characterizing micro/nano-sized 
particles such as DNA, cells, proteins, nanotubes and nanoparticles. In this paper we introduce 
control engineers to dielectrophoresis by suggesting several possible research topics and performing a case 
study: a time-optimal control of a dielectrophoretic system with a state constraint. Copyright O 2005 John 
Wiley & Sons, Ltd. 
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1. INTRODUCTION 

Dielectrophoresis (DEP) refers to the motion of a particle due to the force exerted on the 
induced dipole moment of the particle by a non-uniform electric field. The study of 
dielectrophoresis and its application to the manipulation of small and biological particles was 
first thoroughly investigated out by Pohl [l]. At that time there was a limit to the magnitude of 
electric fields that could be generated with small voltages. With the advent of MEMS and 
nanotechnology, one can now generate a large electric field with weak voltages so that 
dielectrophoresis may be actively applied to manipulating, separating, and characterizing micro/ 
nano-sized particles such as cells, DNA, proteins, nanotubes, and nanoparticles [2-71. An 
advantage of dielectrophoresis over electrophoresis is that it can also work on neutrally charged 
particles [8]. 

The objective of this paper is to turn the attention of control engineers to this area of 
dielectrophoresis so that they can not only find many interesting control problems but also 
contribute to DEP-based engineering applications. The connection between control theory and 
dielectrophoresis is not new. The interpretation of a simple mode1 of the induced dipole moment 
due to an electric field us u control system was briefly mentioned by Daniel [9] in 1967. To our 
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knowledge, the first attempt to apply control theory to a DEP problem was made by Kaler et al. 
[IO, 111 for the purpose of locally stabilizing levitation of biological particle with dielectrophor- 
esis. Their main approach was as follows. They linearized the original nonlinear dynamics 
around an equilibrium of interest, applied a sinusoidal voltage on electrodes at  an  appropriate 
frequency, (naively) averaged the resultant equations over the period of the sinusoidal voltage so 
that the equations become time-invariant, and then finally modulate the amplitude of the 
boundary voltage, which was initially assumed constant, with a linear feedback controller. Their 
clever but ad  hoc procedure proved effective experimentally [10,11]. Since their work has been 
unknown to much of the control community, the approach has neither been formalized nor 
improved by modern control theory. Only recently, the issue of applying control technology to 
DEP applications was raised in Reference [12]. Hence, it is time for the control theory, which 
has advanced for the last 40 years, to make contributions to this area. For an overview of 
various control issues in other (non-DEP-related) nano-scale systems, we refer to the report 
available on the web page [13]. 

This paper is organized as follows. First, we explain the physics of dielectrophoresis and 
review a traditional method of manipulating particles with dielectrophoresis in Section 2. 
Second, we provide several possible research topics for control engineers: the system 
identification, the boundary control of DEP systems governed by PDEs, effect of a term 
quadratic in a control variable, and higher-order hidden dynamics. Third, we perform a case 
study: a time-optimal control of a DEP system with a state constraint that arises from the 
existence of electrodes. According to Chang et al. [14], al1 the time-optimal trajectories in the 
system without the state constraint begin with undershoots. Hence, one needs to do the time- 
optimal study with the state constraint to prevent particles near the electrodes from trying to go 
through electrodes. Finally, we conclude in Section 5. 

2. BACKGROUND MATERIALS 

2.1. Physics of dielectrophoresis 

We briefly explain basic physics of dielectrophoresis; see References [ l ,  8,151 for more details. 
When a particle is immersed in a medium and an electric field, E(x, t), is imposed, then an 
effective dipole moment, m(x, t), is induced in the particle, where x E [ w ~  is the position vector 
and t is the time; see Figure l(a). The relation between E and m is linear and given by 

where * denotes time convolution. The Laplace transform G(s) of g(t) is called the Clausius- 
Mossotti f~~nc t ion  (up to a constant) [ l ,  8, 151 and it depends on the physical structure and 
electric properties of the particle and the electric properties of the medium in which the particle 
is immersed. When the particle is a sphere, G(s) is rational, generically of relative degree O, where 
the degree of the denominator (or numerator) is the number of layers in the particle; see 
Figure l(b) and Appendix C of Reference [8]. For example, when the particle is spherical and 
homogeneous, G(s) is given by 
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Figure 1. (a) An electric field redistributes the charges in the particle so that a dipole moment is induced in 
the particle; and (b) a multi-layer shell mode1 of a spherical dielectric particle. The Clausius-Mossotti 
(transfer) function of the n-layered spherical particle in a medium is a rational function of relative degree O 

where the degree of the denominator is n. 

with 

where r is the radius of the particle, E, (resp., E,) is the permittivity of the particle (resp., 
medium) and a, (resp., a,) is the conductivity of the particle (resp., medium). The frequency 
dependence of the Clausius-Mossotti function G(s) is at the heart of DEP applications since 
most methods of separating particles with DEP make use of the fact that different types of 
particles have different frequency dependences [4,5,8]. 

The dielectrophoretic force, Fdep, due to the interaction between the induced dipole moment 
m and the electric field E is given by 

The dielectrophoretic torque, zdep, is given by 

In applications of dielectrophoresis there are electrodes that govern the boundary voltage, which 
induces the electric field E(x, t), so the boundary voltage plays the role of control. 
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Figure 2. (a) The arrangement of a linear electrode array; and (b) the front view of the arrangement of a 
linear electrode array where the origin of the x~xz axis lies in the middle of an  electrode. 

2.2. Parallel array of linear electrodes 

We consider the configuration with a parallel array of linear electrodes in Figure 2(a). This 
configuration is often used to separate one type of bioparticles from the rest in the mixture of 
particles, or to sort bioparticles [3,5, 161. As particles are usually relatively small compared with 
the electrodes, one may assume that each electrode is infinitely long (or, d3 $ di,  d2) and that 
there are infinite number of them. Then, the problem reduces to a planar case as in Figure 2(b). 
On electrodes we give the following boundary value of the potential function (or, the voltage): 

Vbd(x1, t) = ~ ( t ) ,  xi E [4d1 + d2) - dl 12, !(dl + d2) + di121 

with u,(t) E R, 1 E Z. We choose ul(t)'s such that the function Vbd is even and periodic in x of 
period N(dl + d2) with a fixed N E  N, i.e. 

Vbd(x~, t) = Vbd(-xi, t) = Vbd(xi + N(di + d2), t) 

It is practical to assume that the boundary value of the potential function between electrodes 
changes linearly as follows: 

with 1 E Z. This assumption is acceptable when the gap between electrodes is small (see 10.3.2 of 
Reference [5] and references therein). 

The potential function V(x1,x2, t) in the region x2 > O is derived by solving the Dirichlet 
problem, v 2 V  = 0 with the boundary condition given above. As the boundary value of the 
voltage is a linear combination of u17s, the potential function V(x1,x2, t) is also a linear 
combination of ul's. It can be written as follows: 

N 

Hence, the electric field E(xl,x2, t) is also a linear combination of ul(t): 
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with E, = -VVI. By (1)-(6), the induced dipole moment, the dielectrophoretic force and the 
dielectrophoretic torque on a particle witli the Clausius-Mossotti function G(s), are, 
respectively, given by 

N 

4 x 1 ,  X2, t) = x (g* ~ I ) ( ~ ) E I ( x I ,  ~ 2 )  
I= 1 

(7) 

N N  

7dep(xlr ~ 2 ,  t) = x x (g*~l ) ( t )~rn( t )E~(~l i  ~ 2 )  Em(xl> x2) 
I=1 m=l 

(9) 

where g(t) is the inverse Laplace transform of the Clausius-Mossotti function G(s). 

2.3. Traditional methods of manipulating particles 

In the current application area of dielectrophoresis, sinusoidal signals are often used for the 
boundary potential to manipulate/separate particles [16,17]. Sinusoidal signals have a couple of 
advantages in that they are not only easy to generate but also make use of the linear relation 
between the induced dipole moment and the electric field in (1.). 

We consider the case of controlling particles with a travelling wave array from References 
[17,18]. Notice the four-phase travelling wave electrode array in Figure 2 with the boundary 
potentials, 4 1 ( ~ 1 , 0 )  and 4 2 ( ~ t , 0 )  in Figure 3, where we assume that the potentials change 
linearly between neighbouring electrodes on the boundary [5,17]. The potential on the boundary 
is time-modulated as follows: 

One computes the corresponding dielectrophoretic force by (5) or (8), and then takes the naive 
average of it over the period 2nlo (when one wants to justify the use of the averaging inethod, 

Figure 3. The boundary condition for the potential at xz = O for the travelling wave electric field. The 
potential +,(xI, O) (. . .) is a one-phase shift of the potential, +,(xi,  O) (-). 
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Figure 4. Separation of particles with dielectrophoresis and field flow fractionation: (a) 
a mixture of two different types of particles before the DEP force is given; (b) the 
vertical separation is achieved with the DEP force; and (c) fluid flow collects one type of 

particles while the other type stays attracted to the electrodes. 

the dynamics needs to be transformed to a standard form [19], but this procedure is missing in 
this traditional approach). The averaged dielectrophoretic force (Faep) is of the form 

(Fdep)(xl ~ 2 )  = Re[GCjo)lFc(xi, x2) f Im[GCjo)IFs(xi x2) (10) 

which can be checked in References [17,18] for more details. In general, the term 
Re[GCjo)]Fc(xi,xz) in (10) creates a vertical force and the term Im[GCjo)]Fs(xi,xz) creates a 
horizontal force [4,19]. Consider a mixture of two different types of particles immersed in a fiuid 
medium in Figure 2. Each type will have different Clausius-Mossotti functions G(s). By 
choosing an appropriate frequency o ,  one can separate these two kinds of particles. One can 
also employ additional fluid flow to move particles horizontally instead of using the term 
Im[GCjo)]Fs(xi,xz). This method with fluid flow is called the jîeld Jow fractionation [4,5]; 
see Figure 4. This traditional method works well experimentally. Its formalization and 
improvement are left for control engineers. 

3. RESEARCH DIRECTIONS FOR CONTROL ENGINEERS 

We now propose several possible research topics for control engineers in the field of 
dielectrophoretic systems. This section is inspired by Jones [8], a standard reference in 
dielectrophoresis. 

First, we consider a simple system which has al1 the key features of dielectrophoretic systems. 
The configuration is given in Figure 2 with the boundary voltage as in Figure 5. Notice that we 
here consider the exact (not approximate) boundary condition, @/an = O between electrodes. 
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Figure 5. The exact boundary condition for the potential at y = O for the standing wave electric field. The 
normal derivative of the potential is zero on the boundary between neighbouring electrodes. 

We impose the boundary potential Vou(t) on every other electrode and (- Vou(t)) on the others 
where u(t) is the control. There is a neutrally charged spherical particle in a fluid medium in the 
chamber. We assume that the particle is homogenous such that the Clausius-Mossotti functions 
G(s) is given by (2) with a# O. The dielectrophoretic force Fde,(x, y, t) is of the form: 

where u(t)E(xl, x2) is the electric field in x2 > 0; see Reference [18] to verify this. Function g(t) in 
(1 1) is the inverse Laplace transform of G(s) in (2) and given by 

where S(t) is the Dirac delta function. Thus, the DEP force in (11) can be written as 

where the new variable y satisfies 

To simplify the dynamics, we will make two assumptions. First, we assume that the particle 
and its surrounding fluid are such that the Reynolds number is low. Under this assumption the 
drag force on a sphere is linear in velocity by the Stokes law; see Section 3.8.1 of Reference [q. 
Second, we assume that the term r n X  is relatively small compared with other forces, which is 
reasonable as the particle is small and light. For large or heavy particles this assumption fails 
and the dynamics cannot be simplified. The resulting study requires further investigations which 
fa11 out of the scope of this paper. We refer to References [5,20] to help understand these two 
assumptions. Then, the only remaining forces acting on the particle are the drag, the 
gravitational plus buoyant force and the dielectrophoretic force. The equation of motion is of 
the form 

inert.=O drag grav.+buoy. DEP 

with (E . V)E = (Hl,  H2). Let 
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Then, the dynamics can be written in the form familiar to control engineers as follows: 

We now discuss features of the dielectrophoretic systems and suggest possible f~iture research 
directions to control engineers. 

1. Quadratic in control. Notice that the system in (14) is not an affine control system. There 
exists a terin which is quadratic in control u. I n  general, the term quadratic in control 
comes from the fact that the Clausius-Mossotti fiinction G(s) is a rational function of 
relative degree O. The existence of this quadratic term makes dielectrophoretic systems 
challenging from a control point of view because it does not allow both plus and minus 
signs of the term. 

2. Bounded control. The control u is always bounded in its magnitude because it is a 
voltage-divided by Vo, precisely spealcing-on electrodes. 

3. Boundary control. One can also view DEP systems from the viewpoint of the partial 
differential equations (PDEs). The PDE involved here is the Laplace equation in 
computing the potential function from the boundary value where the boundary value is 
regarded as control. When there are large number of particles, one can also employ a 
density fiinction to describe their overall movement. For example, the Fokker-Plailck 
equation is used with a periodic potential to separate particles in Reference [21]; see also 
Section 8.4 of Reference [5] and references therein. Hence, PDE control theory will be 
useful for this direction of research. 

4. Sjistetn i~ieiitijicatioiz. Different types of biological cells or small particles have different 
physical/electrical characteristics such as the number of layers in the shell model in 
Figure 1(b), the permittivity, and the conductivity of the particle. Namely, one needs to 
model the Clausius-Mossotti function G(s); see Appendix C of Reference [a]. Existing 
measurement techniques of G(s) in application have not fully taken advantage of system 
identification theory. In  Appendix E of Reference [a], one can see that there have been 
some approximate methods in identifying G(s). For example, they assume that al1 the poles 
of G(s) are simple and sufficiently distant from one another so that they, can reduce the 
system identification problem to the case of a single pole. In  addition, the Argand diagram 
used in Appendix E of Reference [8] is, in principle, the same as the Nyquist plot in control 
theory. One can see that the system identification technology in control theory will 
contribute a lot to the study of nanoparticles and bioparticles [7, 10, 111. In particular, the 
work in References [IO, 111 is noteworthy because the concept of feedback control through 
the boundary value was employed to identify the Clausius-Mossotti function of a giveil 
bioparticle. In  the same references, one can learn that the dielectrophoretic levitation of 
particles is closely linked with system identification problems in the sense that one needs to 
levitate and trap a particle to measure its electrical/physical properties; see References [8, 
Section 3.4, 221 and references therein. 

5. I~zteraction among particles or betiveen particles and electrodes. When particles are close to 
each other, sometimes the interaction between them is no longer negligible. This 
interaction creates clustering or chaining of particles; see Chapters 6, 7 of Reference [a]. 
Likewise, when a particle is close to an electrode, a new chemical force starts to appear due 
to the interaction between the charges on the electrode and the induced dipole moment in 
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the particle. In these cases, one needs to modify the dynamics taking into account these 
interaction effects; see Chapter 3 of Reference [5], in particular, Section 3.4. 

6. Mu1tipole.r. Non-uniform electric fields induce not only dipole moments but also multipole 
moments in a particle; see Chapter 4 of Reference [15] or Appendix B of Reference [8]. One 
can add this into the dynamics for a more precise mode1 or employ a robust control 
technique, regarding this higher-order effect as uncertainty. 

This list is far from exhaustive. We believe that control technology, which has advanced for 
the last forty years, will make many contributions to the applications of dielectrophoresis. 

4. A CASE STUDY: A TIME-OPTIMAL CONTROL PROBLEM 

We now consider a time-optimal control problem of a dielectrophoretic system because time- 
optimal control is one of the useful and challenging optimal control problems. Ideally, time- 
optimal control will reduce the process time in manipulating particles in labs-on-a-chip systems. 
As an initial step, we will deal with a simple case of (14). For this case the time-optimal control 
problem was studied in Reference [14] without the state constraint which comes from the fact 
that particles cannot go through electrodes. In Reference [14], it was discovered that due to the 
existence of the quadratic term u2 in (14), optimal trajectories without the state constraint 
always start with an undershoot. Because of this phenomenon, it is necessary to consider the 
state constraint because the particle starting close to electrodes and following the time-optimal 
trajectory, which is derived without the state constraint considered, will violate the state 
constraint. We hope that this case study will provide a good example of exchanging problems 
and solutions between control theory and engineering application. 

4.1. Devivatiorz of equation.~ of motiorz 

We derive the dynamics for which we will investigate the time-optimal control. First, recall the 
equation of motion in (12) and (13). From Reference 1181 one can check that H1(0,x2) = O in 
(13). Hence, the x2-axis is an invariant set of the dynamics. As the vertical motion of particles in 
the whole chamber can be practically represented by that of particles on the x2-axis, we will 
restrict ourselves to this invariant line. Let us assume that the particle is neutrally buoyant, so 
that the coefficient w = O in (13). Then, the dynamics of (x2,y) on the x2-axis can be written as 

Ici2 + (byu + UL?)H~(O, x2) = O (1 5) 

y + c y = u  (16) 

where one can verify that H2(O, x2) satisfies H2(O, x2) < 0 for x2 > O, H2(0,0) = 0 and 
limX2,, H2(0, x2) = 0; see Reference [18] to verify this. Let 

for X~IE where E is a positive number. If a particle is close to the electrode, then additional 
forces other than the DEP force start to appear in the dynamics (for example the Stern layer 
effect; see Section 3.4 of Reference [5]), so the parameter E in (17) defines the region {x2 > E )  
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where the dynamics (15) is valid. As a function of x2, x(x2) is strictly monotone on {x2 3 c )  since 
x'(x2) = -k/(bH2(0, xz)) is sign definite on {x2 3 e ) .  Hence, we can use x as a new co-ordinate in 
place of x2. This new CO-ordinate not only simplifies the dynamics but also makes the dynamics 
independent of the physical size of electrodes (such as di and d2 in Figure 2) and the maximum 
value of the boundary voltage, Vo. In the state (x, y), the equations in (15) and (16) are written as 

where 

We consider the following conditions: 

x(0) = specified, y(0) = O 

x(q) = specified, y(?) = free (22) 

and 

a<O, c > O  

Initially the induced dipole is zero, so we have y(0) = O. Since we are only interested in the 
position of the particle and not interested in the final state of the induced dipole, we have 
y($)  = free. Because the available voltage has a magnitude limit, we require lui< 1. The 
condition c > O comes from (4), but the condition a < 0  is arbitrary. The case of a > O can be 
handled similarly. When a = O, then the system becomes an affine system, which is relatively 
easy to deal with. Because b#O generically in (3), the coefficient a in (20) is generically well- 
defined. Notice in (17) that depending on the sign of b the original region {x2 3 0) is mapped to 

This gives a state constraint to the dynamics in (18) and (19). Equations (18) and (19) with 
(21)-(24) and a state constraint (25) are Our final dynamics. 

4.2. Statement of the time-optimal problem 

We address the following time-optimal control problem: 

Consider the system (18) and (19) with conditions (21)-(24). Find a time-optimal 
trajectory with the state constraint x 3 0 (or x < O). 

The saine time-optimal control problem without the state constraint was fully and analytically 
studied in Reference 1141, summarized as follows. First, when x(q)<x(O), there are no time- 
optimal trajectories even though al1 x(q) (<x(O)) are reachable. Second, for x(q)  > x(O), time- 
optimal trajectories exist if and only if the parameters satisfy (1 + ac) > 0. Moreover, when 
(1 + 2ac) > 0, the existence and uniqueness of time-optimal trajectories were proved, and the 
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formula of optimal control was constructed. However, in the case of (1 + 2ac) 6 O, only existence 
was shown. Instead of uniqueness, a finite algorithm for finding optimal trajectories was 
provided. Irrespective of the sign of (1 + 2ac), a feature of al1 time-optimal trajectories is that 
there is an initial undershoot in x(t). One can guess this from (18), (19) and y(0) = O in (21). 
Because of this initial undershoot, when the initial position x(0) of x is close to x = 0, the time- 
optimal trajectory without the state constraint violates the state constraint x 3 0 .  This 
phenomenon leads us to study the time-optimal control of the same system with the state 
constraint. 

4.3. Numerical algorithm to construct optimal trajectories 

We make a numerical study of the time-optimal control problem given in Section 4.2. For 
convenience, we will only consider the case of the state constraint x>0. 

Let us introduce a time-scaling 

s = t /T 

for some T > O. Let (zi(s), z~(s)) = (x(sT), y(sT)). We use ' to denote the derivative with respect 
to S. Let us first reformulate the time-optimal problem such that the control variable u 
disappears and the time interval is normalized to [O, 11. The new idea of removing the control 
variable was effectively employed in the software package called nonlinear trajectory generation 
(NTG) to solve optimal control problems; see References [23,24]. Along these lines, the time- 
optimal control problem is given by 

min T 
(2 ,  ,22) E R~ 

1 zl(0), z l ( l )  = specified 

for a small E > O where 

In (26), E can be chosen to be any sufficiently small positive number that ensures T is positive. 
Notice that (x(t), y(t), X(t), y(t)) is replaced by (z l ( s ) , zz (s ) , z~ ' ( s ) /T ,zz l ( s ) /T) ,  which normalizes 
the time interval to [O, 11. The constraint F = O in (26) comes from the substitution of u = y + cy 
in (19) to (18). 

We now approximate this (continuous-time) optimal control problem by a (discrete) 
nonlinear dynamic programming. First, we represent (zl, zz) with B-splines as follows: 
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with 

where {BiZk,(t), i = 1,2] is the B-spline basis f~~nc t ion  defined in Reference [25] for z, with order 
k,, C' are the coefficients of the B-spline, I, is the number of knot intervals, and m, is number of 
smoothness conditions at the knots. The curve (zl,z2) is thus represented by the coefficient 
vector q. B-splines have the advantage that it is easy to enforce continuity across knot points 
and to compute their derivatives. 

We then discretize the time interval [O, 11 into ( N  - 1) subintervals 

In general N collocation points {s i , .  . . , s N }  are chosen uniformly over the time interval [O, 11 for 
convenience although optimal knots placements may also be considered. Both dynamics and 
constraints will be enforced at  the collocation points. The problem in (36) can be approximated 
by the following nonlinear programming form: subject to 

minyER~~i+lJ2 T 

subject to 

F(zl(s; q), z2(~; q), zil(s; q)/T, z2'(s; rl)lT) = 0 

(z2//T + C Z ~ I  < 1 for every s E {s), . . . , S N )  

Z I  3 0  
(30) 

zl(0; q), zl(l; q) = specified 

z2(0; q) = 0 

T 3 c  

The coefficients of the B-spline basis functions can be optimized with nonlinear programming. 
We note that the resultant control law is sub-optimal because we allow only polynomials for 
(zi,z2) and u(s;q) = z~'(s; q)/T + cz2(s; q). However, as any continuous function on a closed 
interval can be uniformly approximated by polynomials according to the Stone-Weierstrass 
theorem [36], we can find sub-optimal trajectories which are sufficiently close to optimal 
ones. 

We make a remark on the non-flatness of the system in (18) and (19); see References [27,28] 
for the theory of flatness. A system is flat if one can find a set of outputs (equal in number to  the 
number of inputs) such that al1 States and inputs can be determined from these outputs without 
integration (thus, differentiation is allowed). Hence, if systems (18)-(19) were flat, we could re- 
formulate (26) with only one function (a flat output) and represent it with B-splines in (30), 
which would reduce the numerical load in nonlinear programming optimization [24,29]. 
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However, systems (18)-(19) is not flat. I t  can be checked by the ruled-manifold criterion which is 
given in the following: 

Tlzeorem 4.1 (Martin et al. [28], Rouchon [30]) 
Assume the system i = f(z,u) is flat. The projection on the p-space of the submanifold 
p = f (z, u), where z is considered as a parameter, is a ruled manifold for al1 z. 

Eliminating u from the dynamics i = f(z, u), z E Rn yields a set of equations F(z,i) = O that 
defines a ruled manifold. In other words for al1 (z,p) E [ w ~ "  such that F(z,p) = O, there exists a 
direction d E R", d # O such that 

VÂ E R, F(z,p + Âd) = O 

One can check that there is no such direction for systems (18)-(19), and thus our system is not 
flat. This non-flatness of systems (18)-(19) explains why we used both states x and y (or, zl 
and z2) in (26) (or (30)). 

4.4. Simulations 

We now perform a simulation to illustrate the difference of the time-optimal problem with the 
state constraint (x30)  and without it. 

Consider the specification: 

cc = -314, c = 1; x(0) = 0.1, x(q) = 1.1 

We choose this arbitrarily for the purpose of comparison between the time-optimal control with 
and without the state constraint. If one wants to use a set of real data, then one needs to recall 
that x in (18) is the transformed variable in (17). Also, one might need to modify (30) (or (26)) 
with a time-rescaling, a change of control bound, etc for the purpose of numerics. 

According to Reference [14], the minimum time cost, Tw,,,,c, without the state constraint is 

A plot of (x(t), y(t), u(t)) in this case is given in Figure 6(a). Notice that the trajectory x(t) has 
such an undershoot that it violates the state constraint. This initial undershoot is due to the 
existence of the term au2 (GO) in (18) and the initial condition y(0) = 0. 

We then performed a numerical computation of a time-optimal control with the state 
constraint. We choose 

with i = 1,2 for the B-splines parameters in (28) and (29). The computed time cost is 

T,, , ,  = 8.6482 

The corresponding plot of (x(t), y(t), u(t)) is given in Figure 6(b). Notice in this case that the 
trajectory respects the state constraint, x>0.  We remark that only the control u(t) was 
computed with (30). Then, we ran the simulation of the dynamics with this u(t), so (x(t), y(t)) in 
Figure 6(b) is not the curve directly from (30) respecting the dynamics only on the N collocation 
points, but the real trajectory satisfying the dynamics for al1 t. The comparison between the two 
plots in Figure 6 shows the necessity of the state constraint in finding time-optimal trajectories. 
Let us now consider a traditional approach. We assume that the signs of n and b in (2) are given 
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Figure 6. (a) A time-optiinal trajectory (x(t), y ( / ) )  corresponding to the optimal control u(t) without the 
state constraint, x>O; and (b) a time-optimal trajectory (x(t),y(t)) corresponding to the optimal control 

u(r) with the state constraint, x>O. 

by a<O and b >O so that a = a lb  = -0.75 as given above. Then, 

As 4.u > 0,  one would choose w which maximizes Re[GCjw)] because the real part of GCjw) in (10) 
is a gain to the vertical DEP force as explained in Section 2.3. Thus, one would choose w = 0. 
That is, u = 1 or - 1. In either case, simple integration yields 

One can check that this trajectory violates the state constraint x 3 0  as the lowest point along the 
trajectory is x = -0.3034 at t = ln 4 and that the time cost Ttrad. to reach xf = 1.1 is 

Notice that in the traditional method it is not clear how to incorporate the state constraint into 
the control design procedure, but the state constraint is well treated by the time optimal control 
technique. We now compare the trajectory derived from the traditional method and the time- 
optimal trajectory without the state constraint considered. From (31) and (33) we see that the 
time-optimal control improves the time cost by 

It is interesting to notice that along the time-optimal trajectory without the state constraint 
considered one uses less energy (J lui2) and the magnitude of the undershoot is smaller than 
along the trajectory with u = 1 or -1. 
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TOWARD CONTROLLING DIELECTROPHORESIS 

5. CONCLUSIONS 

Since the initially significant study by Pohl [l], dielectrophoresis has been used for manipulating, 
separating and characterizing micro-/nano-/bio-particles. The objective of this paper is to invite 
control engineers to this application. After suggesting a list of future research directions for 
control engineers, we made a case study of the time-optimal control of a particle with 
dielectrophoresis. We derived the dynamics, and stated the time-optimal control problem with a 
state constraint, provided an NTG-approach nonlinear programming optimization algorithm to 
compute optimal trajectories and performed a simulation. The time-optimal control problem of 
the same system without the state constraint was already studied in Reference [14]. With the 
simulation, we compared the two cases: with or without the state constraint. The case study in 
Section 4 provides a good example of the synergy of engineering application and control theory. 
The former inspires the latter by providing new probleins and the latter helps the former by 
providing solutions. We hope that this article stimulates control engineers so that they can enjoy 
the interdisciplinary research in nano/biotechnology through dielectrophoresis. 
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