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Abstract: This paper considers the optimization of the self-consumed power locally produced
by residential photovoltaic panels. We focus on a simplified set-up where only the Electric
Water Heater (EWH) is regulated, while the rest of the appliances represents an uncontrollable
load. We formulate an unconstrained optimization problem by inverting the EWH dynamics
and prove that the corresponding objective function is continuously differentiable. Thanks to
an explicit characterization of its critical points, we propose a tailored and computationally
efficient optimization algorithm. Simulations performed in Dymola over a one-year time horizon
allow us to demonstrate the merits and performances of the proposed method.
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1. INTRODUCTION

The rapid growth of worldwide installed capacities of solar
power and other Distributed Energy Resources, observed
in the past decade, is expected to continue thanks to un-
precedented production cost reductions and governments
support (SolarPower Europe, 2018). As the number of
decentralized photovoltaic producers feeding power into
the local distribution grids rises, the revenue potentially
generated by flexibilities on the grid increases. Indeed, pro-
duction and consumption flexibilities have the potential
to mitigate both the risk associated to higher variability
in supplies and the need for substantial grid investments
(International Energy Agency, 2018).
In this context, a combination of monitoring, communi-
cation and control technologies enabling the concept of
smart grids (Iovine et al., 2017; Jaramillo-Lopez et al.,
2013), and Home Energy Management Systems (HEMS)
at the residential level are gaining momentum (Ha et al.,
2006). HEMS are designed to establish communication
and to control domestic appliances in order to effectively
make use of the home flexibility resources (Wacks, 1991).
Some of this flexibility is exploited by self-consumption
installations, which aim at using the locally generated
energy instead of exporting it, and thus contribute to the
distribution grid stability by avoiding voltage rise during
photovoltaic (PV) generation peak periods. These instal-
lations are increasingly encouraged through regulatory
? We acknowledge the financial support of ANRT (Agence Nationale
de la Recherche et de la Technologie) through the CIFRE partnership
contract No.2018/0724.

changes, such as simplified administrative procedures (EU
Directive, 2018), and new tariffs making self-consumption
of the generated power the most profitable option.
Fully benefiting from this renewed self-consumption frame-
work requires HEMS that can automate the coordinated
activation of home appliances. A first class of techniques
performing this automation relies on scheduling algorithms
(Ha et al., 2005; Paridari et al., 2016) or Mixed Integer
Linear Programing (Heleno et al., 2015) taking into ac-
count tariffs structure and resource allocation constraints
on both usage-level and household-level power consump-
tion. A second class explicitely accounts for the transient
dynamics of the house and the various appliances—in
particular the electrical water tank (Beeker et al., 2016)—
and can rely on optimal control (Malisani, 2012), Model
Predictive Control (Oldewurtel et al., 2012; Lefort et al.,
2013; Sossan et al., 2013; Pflaum et al., 2014; Parisio
et al., 2015; Wytock et al., 2017) or their variants such
as stochastic optimal control (Pacaud, 2018).
This paper focuses on a simplified set-up where the only
regulated appliance is the electric water heater (EWH),
while the rest of them represents an uncontrollable load.
We aim at maximizing the self-consumption of the PV
arrays (a key evaluation criterion for such installations),
and at providing an optimization strategy that can be
frequently updated. In this context, we propose to use a
specific solution which leads to a much more computation-
ally efficient numerical routine than the aforementioned
techniques. Reformulating the EWH dynamics and con-
straints, we transform the problem under consideration as
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Fig. 1. Setup under consideration: the Energy Manage-
ment System regulates the EWH.

an unconstrained optimization problem. We prove that the
corresponding objective function is continuously differen-
tiable and formulate an explicit expression of its critical
points, from which we deduce a numerically effective op-
timization algorithm. This is the main contribution of the
paper. The performance of this optimization methodology
is then compared to an industrial heuristic using a high-
fidelity simulation platform.
This paper is organized as follows. Section 2 details the
context and problem under consideration. In Section 3, the
core of our algorithm is presented with slight modifications
to the problem. Section 4 follows with the numerical
experiments specifications and results analysis. Finally
Section 5 reports conclusions and perspectives.

2. PROBLEM STATEMENT

2.1 Setup

In this section, we describe the electrical system under
consideration, depicted in Fig. 1.
The system consists of an individual house equipped with
PV arrays, heating and cooling equipments, an EWH con-
trolled by an On/Off heating authorization, and other un-
controllable electrical appliances (such as lights, a fridge,
a dishwasher, etc.).
Thanks to the heating and cooling systems maintaining
the house at thermal equilibrium, we assume the house
temperature to be nearly constant. Therefore these ap-
pliances are considered as uncontrollable, and are not
considered as decision variables in the remainder of this
work.
We assume to have perfect knowledge, present and future,
of the following elements:
• Weather conditions: outside temperature, solar flux,

wind velocity;

• PV production curve (computed by a PV arrays
physical model fed with the weather forecast);

• Inhabitants presence;
• Electrical consumption profile of uncontrollable loads;
• Hot water drains of the EWH.

Table 1. Nomenclature
Notation Description Unit
C Total electrical consumption of the

household
W

D Drained energy during hot water con-
sumption

W h

∆ewh Duration of heating period of the EWH s
E Thermal energy of the water tank W h
EPV Energy produced by the PV arrays W h
k Thermal loss coefficient of the water

tank
h−1

Pewh Power consumption of the EWH W
P ewh Power rating of the EWH W
P̂PV Total power produced by the PV ar-

rays
W

PPV Surplus of PV power W
SC Self-consumption over a time period W h
Tewh Temperature of water in the the water

tank
°C

tlim Latest acceptable starting date of the
heating range

s

τewh Ending date of the heating period s

2.2 Modeling of the electric water heater

The EWH is modeled as a volume of homogeneous tem-
perature. Leaving aside the modeling of the temperature
stratification inside the tank implies a loss of precision, but
simplifies the control design (Beeker-Adda, 2016). Taking
into account an initial energy state at time t0, thermal
losses, the power input from resistive heating and the hot
water consumption during the given period, the energy
stored at time tf in the EWH is given by

E(tf) = E(t0) e−k(tf−t0)

+
∫ tf

t0

e−k(tf−s) Pewh(s)ds−D[t0 : tf]
(1)

where
• E(t) is the energy stored in the EWH at time t;
• k is the thermal losses coefficient;
• Pewh(t) is the power input of the EWH at time t;
• D[t0 : tf] is the total hot water drain between times
t0 and tf.

We consider the heating period of the EWH to be a unique
and continuous period, of constant power consumption.
Its consumption curve is hence modeled by the following
boxcar function:

Pewh(tewh,∆ewh, t) = P ewh (H(t− tewh)−H(t− τewh))
(2)

with H the Heaviside function and P ewh the constant
EWH rated power. The heating range starting date is
denoted tewh while its ending date is τewh = tewh + ∆ewh.
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Fig. 2. Schematic representation of the self-consumption
SC(t), corresponding to the power that is both locally
produced and consumed.

This formulation corresponds to a function Pewh null from
t0 to tewh and from τewh to tf , and equal to the constant
value P ewh from tewh to τewh. Hence the energy balance
(1) simplifies as
E(tewh,∆ewh, tf) = E(t0) e−k(tf−t0) (3)

+ P ewh

k

(
e−k(tf−τewh)− e−k(tf−tewh)

)
−D[t0 : tf]

for [tewh, τewh] ⊂ [t0, tf].
Note for later use that, as the tank is modeled with
a homogeneous temperature, to any temperature Tewh
corresponds a unique specific energy E, related by the
following equation:

Tewh = Tamb + E

ρV cp
(4)

where Tamb is the ambient temperature, ρ is the density
of water, V is the volume of water in the tank, and cp is
the specific heat capacity of liquid water.

2.3 Optimization problem

Objective function and decision variables The decision
variables of our problem are the starting date tewh and the
duration ∆ewh of the heating range of the EWH. These
decision variables are referred to as the followed control
strategy: s = (tewh,∆ewh).
Our objective is to maximize the self-consumption (SC)
of the installation, defined as the part of the photovoltaic
production that is locally consumed in order to meet elec-
tric consumption (see Fig. 2). Mathematically, it is defined
as the integral over the period [0, τ ] of the minimum
between the local PV production and the total electric
consumption:

SC(s) =
∫ τ

0
min(C(s, t), P̂PV(t))dt (5)

with
• C being the overall electric consumption, depending

on s and t;
• P̂PV being the total PV production.

We rewrite this definition by substracting the uncontrol-
lable electric consumption (heating and cooling, lights,
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Fig. 3. Schematic representation of the controllable part
of the self-consumption SC(t).

white goods) from the PV production, considering only
the positive part of the remaining PV production, and
eliminating the integral parts where Pewh(s, t) = 0:

SC(s) =
∫ τewh

tewh

min(Pewh(s, t), PPV(t))dt+ Constant (6)

where PPV is the positive part of the surplus of local pro-
duction, over which we can optimally place the controllable
load.
For the sake of simplicity, we will keep on using the nota-
tion SC to refer to the controllable part of (6) (illustrated
in Fig. 3).

Constraints The objective function is subject to bound-
ary, physical, and control constraints:

E(t0) = E0 (7)
∀ t, Tewh(s, t) ≤ Tmax = 65 °C (8)

E(s, tf) = Ef (9)
τewh ≤ tf (10)

The constraint (8) corresponds to the maximal tempera-
ture the EWH is allowed to reach; (9) is a comfort con-
straint: the control shall guarantee that the EWH reaches
a specific energy level Ef at a final time tf (for instance,
to cover hot water consumption at the end of the day).
Naturally, the heating period has to be over by the final
date tf, hence the control constraint (10).
We will refer to the constraints over s as

Ceq(s) = E(s, tf)− Ef (11)

Cineq(s) =
(
Tewh(s, t)− Tmax

τewh − tf

)
(12)

where E(s, t) is given in (3) and Tewh(s, t) in (4).

Optimization problem We can now formulate the prob-
lem at stake.
Problem 1. Given a PV production curve PPV, solve for
each day

max
s = (tewh,∆ewh)
E(t0) = E0
Ceq(s) = 0
Cineq(s) ≤ 0

∫ tewh+∆ewh

tewh

min(Pewh(s, t), PPV(t))dt (13)

with Pewh(s, t), Ceq and Cineq respectively defined in (2),
(11) and (12).



3. PROBLEM REFORMULATION AND SOLUTION

In the sequel, we assume that the maximal temperature
constraint (8) is non-limiting, and is thereby ignored.
However, it is included in the numerical simulations used
for evaluation in Section 4.

3.1 Reformulation of the constraints

Two calculations are conducted in order to transform the
constraints formulation.
The first transformation shows that ∆ewh is completely
defined by tewh and the boundary constraints (7) and (9).
From (3) we directly get

∆ewh = tf + 1
k

log
(

k

P ewh

[
Ef +D[t0 : tf] (14)

+P ewh

k
e−k(tf−tewh)−E0 e−k(tf−t0)

])
− tewh

which presents no singularity for the range of numerical
values of interest. Hence, equation (14) replaces equation
(9), and most importantly, ∆ewh is no longer a decision
variable as it is entirely defined by tewh through (14).
This allows us to replace s by only the starting date tewh
thereafter.
The second calculation gives the explicit last departure date
behind constraints (9) and (10). Consider that the EWH
is activated at the latest acceptable date tewh in order to
end the heating period at tewh + ∆ewh = tf. This specific
starting time tewh is referred to as tlim and can be obtained
from (3) as

tlim = tf + 1
k

[
log(k) + log

(
E0 e−k(tf−t0)−Ef

+P ewh

k
−D[t0 : tf]

)
− log(P ewh)

] (15)

We can now reformulate the problem at hand, under the
previous assumptions and after the conducted reformula-
tions:
Problem 2. (Problem 1 simplified). Given a PV produc-
tion curve PPV(t), solve for each day

max
tewh≤tlim

∫ tewh+∆ewh(tewh)

tewh

min(Pewh(tewh, t), PPV(t))dt (16)

where Pewh(tewh, t) = Pewh(tewh,∆ewh(tewh), t) is defined
in (2) and ∆ewh(tewh) is defined in (14).

3.2 Smoothness analysis of the objective function

To provide a suitable optimization solution, we analyze
the nature of the objective function.
Proposition 1. Assume that PPV is a continuous function.
Consider SC =

∫ τewh
tewh

min(Pewh(tewh, t), PPV(t))dt with
Pewh(tewh, t) defined in (2) and τewh = tewh + ∆ewh(tewh)
with ∆ewh(tewh) defined in (14). Then SC is continuously
differentiable with respect to tewh, and its derivative is
given by
dSC

dtewh
= −min(PPV(tewh), Pewh(tewh, tewh)) (17)

+ e−k(τewh−tewh) min(PPV(τewh), Pewh(tewh, τewh))

with τewh = tewh + ∆ewh and ∆ewh defined in (14).

Interestingly, note that the objective function smoothness
property would still hold if ∆ewh were independent of
tewh, only with a simpler derivative expression. That is,
the following proof principle would also hold for a fixed
duration appliance.

Proof. Consider an EWH of rated power P ewh and of
variable duration ∆ewh(tewh).
First, observe that, ∀ t ∈ [tewh, τewh], the function t 7→
min(Pewh(tewh, t), PPV(t)) = min(P ewh, PPV(t)) is contin-
uous, PPV being at least C0.
Hence one can apply Leibniz integral rules for differentia-
tion under the integral sign on SC which gives

dSC

dtewh
= min(P ewh, PPV(τewh))dτewh

dtewh
−min(P ewh, PPV(tewh))

(18)

We know from (14) that τewh is continuous with respect
to tewh. Taking the derivative with respect to tewh of (3)
and using the fact that E(tewh,∆ewh, tf) = Ef is constant,
one gets the derivative of the ending date:

dτewh(tewh)
dtewh

=
e−k(tf−tewh) P ewh

e−k(tf−τewh(tewh)) P ewh

= e−k(τewh(tewh)−tewh)
(19)

which is obviously continuous.
This yields the conclusion.

3.3 Stationary condition and resolution algorithm

We follow the classic idea of optimization methods for con-
tinuously differentiable objective function (Nocedal and
Wright, 1999), that is to identify the points where the
objective function derivative is null.
Following Proposition 1, the stationary condition for our
problem writes as
min(PPV(t), P ewh) = (20)

e−k(τewh(t)−t) min(PPV(τewh(t)), P ewh)

Algorithm 1 Calculate t?ewh solution of Problem 2
Requires: PPV(·), P ewh, t0, E0, tf, Ef, D(·), I = [0, τ ]

1: for all t ∈ I do
2: if t is solution of (20) with tewh = t then
3: Compute SC(t)
4: Update Buffer = [Buffer, SC(t)]
5: end if
6: end for
7: Identify t?ewh = argmax

t
Buffer

We propose to determine exhaustively the solutions to the
stationary condition and then compare the corresponding
values of the objective function in order to solve Problem 2.
This procedure is summarized in Algorithm 1. Note that
this algorithm is of course intended to be used in discrete
time. In particular, steps 1 and 7 only consider a finite
number of elements, and a solution of (20) is identified
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in step 2 when the objective function derivative (17)
goes from a positive to a non-positive value between two
consecutive dates. We now apply this algorithm in a high-
fidelity environment.

4. NUMERICAL EXPERIMENTS

4.1 Test scenario and hardware specifications

We consider two crystalline silicon PV arrays of 1.5 kWp
each, both inclined of 15° relative to the horizontal and of
respective azimuth 15° and 105° relative to the south. An
EWH of volume V = 200 L and power rating P ewh = 3 kW
is considered, to cover the consumption of 2 inhabitants.
The scenario of outdoor temperature, input cold water,
and solar irradiance correspond to a house located in
Clermont-Ferrand, in the center of France. Fig. 4 displays
the total PV production curve and the corresponding
PV surplus curve, after substraction of the uncontrolled
electric consumption, for a few days.
The hot water drains scenario is perfectly known and
is repeated each day with the same pattern reported in
Fig. 5, with drains in the morning (from 7 a.m. to 9 a.m.)
and in the evening (from 6 p.m. to 7 p.m. and from 8 p.m.
to 10 p.m), ranging between 26.8 L h−1 and 27.7 L h−1, for
a total consumption of 956 L per week at 60 °C. Only slight
quantity variations occur seasonally, with the same pattern
tuned down in summer.

Table 2. Hardware specifications

PV capacity 3 kWp
EWH Power rating 3 kW
EWH volume 200 L
Weekly hot water consumption at 60 °C 956 L

The final time tf is set as 6 p.m., in order to satisfy the
main hot water drains of the day.
The overall simulation is conducted with the modeling and
simulation software Dymola (based on the object-oriented
modeling language Modelica, see Wiström (2013)), in-
cluding models for the house, the PV arrays, and the
uncontrolled electric loads.
The proposed method is validated through comparison
with two other EWH control strategies:

0 5 10 15 20

Time [hour]

0

10

20

H
o
t

w
a
te

r
fl

ow
[L

h
−

1
]

Fig. 5. Hot water drains for a winter day.

• a passive heuristic strategy, triggering the heating
authorization consistently during [1 a.m.-7 a.m.] and
[12 p.m.-2 p.m.];

• an industrial reference heuristic control.
This industrial reference control was developed for com-
mercial use in residential housing equipped with PV arrays
with the double aim of maximizing the consumption of
local PV production and ensuring a reduced electricity
bill. It follows priority rules to choose each day whether
or not to start the heating authorization, according to the
following principles:
– determine when to start the EWH according to a PV

surplus threshold set up in advance depending on various
criteria;

– figure out if heating the tank without PV production is
necessary, according to whether or not the daily heating
duration target has been met.

Note that the reference control does not require the hot
water drains sequence to perform an estimation of the next
heating duration target, whereas our proposed method
requires exact knowledge of them.

4.2 Numerical results

Simulations consist of a daily optimization over one year,
starting January 1st, using Algorithm 1 with I restricted
to the interval of start dates such that the heating au-
thorization would cover the valuable times of high PV
production. The initial and target energy levels E0 and Ef
for the proposed method correspond to the energy levels
reached at these dates by the EWH under the reference
control. Results are extracted with a 10-minute time-step.
The evolution of the cumulative self-consumption rate
for each strategy over a one-year simulation is shown
in Fig. 6. This rate is the measure usually referred to,
for self-consumption installations. It is the ratio of the
total self-consumption (controllable and uncontrollable
consumptions considered) to EPV, the total local energy
production over the period.

SC%(s) = SC(s)
EPV

(21)

EPV being independent of the control strategy s, the op-
timization previously performed over SC also maximizes
SC%.
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Table 3. Final annual SC% values for each strategy

Passive
heuristic

Reference
control

Proposed
method

44.9 % 54.1 % 57.0 %

The final values show that, overall, the proposed method
outperforms by a few points the reference control, and that
both are largely more efficient than the passive strategy
(see Table 3).
A year-long analysis of the daily SC confirms the interest
of the proposed method, especially during winter days.
Our method outputs a higher SC 249 days of the year and
a lower SC for the other 116 days. Over a whole year, the
proposed method yields an increase of the daily average
SC of + 9.8 % compared to the reference control daily
SC. These performances are mitigated by an analysis of
the 135 days of the year during which the SC for both the
proposed method and the reference control is higher than
6 kWh. For these days of high stakes happening around
the summer season, the proposed method outperforms the
reference control for only 71 days. This leads to a slight
increase of the mean daily SC, by + 0.1 %, compared
to the reference control daily SC. The reasons for these
seasonal differences are explained further down.
A major advantage of our method is its limited compu-
tational load: it achieves optimally scheduling these 365
load curves in an average of 40 seconds with Python 3.7.3
and a Core i3 2.4 GHz processor, with 8 Go RAM. The
corresponding time of less than 0.11 seconds per curve is
fast enough to consider repeating the procedure several
times for various consumption and production scenarios.

Seasonal analysis We now break down the analysis of
Fig. 6 into seasonal observations.
First of all, it can be observed that the initial measure
points are close to a cumulated SC of 100 % because
the small amounts of PV production occurring during
these winter days are at first completely used for self-
consumption by the uncontrollable consumption.
After these initial days, PV surplus starts to become
consistently available, although with very low volumes.
The reference control progressively falls behind because
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it will not try and consume the very low PV production
of winter days, as it would result in an extra cost, given
the higher grid tariff of daytime, compared to nighttime.
Fig. 7 displays the EWH consumption curves resulting
from the three strategies and the PV surplus we aim
to harness on a winter day, highlighting the differences
of approach resulting in a typically better SC with the
proposed method.
The reference control then closes the gap with the pro-
posed method during spring time when it starts harness-
ing the PV surplus available at sufficient levels. It even
matches performances with the proposed method on sum-
mer days, because sufficient PV production levels extend
the heating authorization period of the reference control,
leading to On/Off switches and an overall higher energy
consumption for the reference control;
Fig. 8 displays an example of the EWH consumption
curves resulting from the three strategies for a summer day
PV surplus. For this particular day, SC for our method is
7.3 kWh, exceeding the 6.4 kWh of the reference control.

Thermal limitation It is important to note here that the
control resulting of the three strategies is not always ex-
actly followed. This is due to the fact that the EWH model
of the Dymola simulations involves a thermostat enforcing
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the thermal limit (8), thus letting the possibility for the
EWH power to oscillate within this heating authorization
period, as can be seen in Fig. 7 and 8. We assumed this
constraint to be non-limiting for the proposed method but
simulations lead us to the opposite conclusion. Certainly,
this is a source of suboptimality of our method.
Indeed this fact constitutes a reason why the reference
control can perform better than the proposed method dur-
ing some summer days: the effective heating period given
by the proposed method might not be optimally located
with regards to the PV production curve, the thermostat
stopping the activation during the authorization period.
The impossibility to follow the command of the proposed
algorithm causes the energy stored in the tank at t = tf to
miss the target Ef set for the control, with a median daily
relative error of 5.5 %. Part of that error can also be related
to the homogeneous temperature EWH model, failing to
account for the essential phenomenon of stratification.

5. CONCLUSION AND PERSPECTIVES

This paper details a methodology to optimize the starting
date of an EWH in order to maximize the self consumption
rate of a residential PV installation. This method is
simple and has a very low computational cost. Numerical

experiments proved the relevance of the method, achieving
an improvement of three absolute points in yearly self-
consumption rate over an industrial energy management
solution.
Our approach would benefit from several functional en-
hancements: first, taking the maximum temperature con-
straint (8) into account in the EWH model; then, im-
plementing an estimation feature for future hot water
consumption, to overcome the unrealistic assumption of
perfect knowledge on this matter; finally, making use of
the lightweight side of the algorithm by incorporating it
in a robust optimization method, to overcome uncertainty
on consumption an production profiles.
A bigger shift of vision would be to adapt this work
towards minimizing the total household electricity bill and
including other controllable home appliances. An electro-
chemical battery to be controlled can also be considered,
even if studies often prove them to represent an overall
cost as long as they do not provide additional services
(e.g., Quoilin et al. (2016), Goebel et al. (2017), Roberts
et al. (2019)). These are directions of future works.
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