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1. INTRODUCTION

In the recent years, optimal control problems
with systems governed by partial differential equa-
tions subject to control and state constraints
have been extensively studied. We refer for in-
stance to (Lions, 1971; Bonnans and Casas, 1995;
Bergounioux et al., 1998) for necessary optimality
conditions for special cases of elliptic problems
and to (Maurer and Mittelmann, 2001) for nu-
merical studies. A typical approach to solve these
problems is to discretize both the control and the
state and use nonlinear programming to solve the
resulting optimization problem. In (Maurer and
Mittelmann, 2001), this approach was proposed
resulting in a large nonlinear programming prob-
lem on the order of one thousand variables.

In this paper, we will propose a different method-
ology. For optimal control of nonlinear ordinary
differential equations of the form ẋ = f(x)+g(x)u,
where R � t �→ x ∈ R

n and R � t �→ u ∈ R
m, we

have shown (Milam et al., 2000; Petit et al., 2001)
that it is possible and computationally efficient to
reduce the dimension of the nonlinear program-
ming problem by using inversion to reduce the
number of dynamic constraints, thus eliminating
variables, in the problem. Given a particular out-
put, it is generally possible to parameterize a part
of the control and a part of the state in terms of
this output and its time derivatives. The case of
complete parameterization of nonlinear ordinary
differential equations is called “flatness” (Fliess et
al., 1995; Fliess et al., 1999).

The idea of reducing the dynamic constraints via
inversion has been implemented in the Nonlin-



ear Trajectory Generation (NTG) software pack-
age (Milam et al., 2000). The outputs of the sys-
tem are approximated by B-splines and nonlinear
programming is used to solve for the coefficients of
the B-splines. This software can today be consid-
ered as an alternative to the well-established collo-
cation software packages developed using methods
described in (Hargraves and Paris, 1987; Sey-
wald, 1994), and (von Stryk and Bulirsch, 1992).
Other publications (Milam et al., 2002) deal with
the real-time implementation of NTG and thus
underlines the importance of the computation-
time reduction.

In this paper we propose to extend the “inversion”
concept to the field of partial differential equa-
tions. In this case the outputs are parameterized
by tensor-product B-splines instead of B-splines.
B-spline tensor products’ partial derivatives can
be easily computed, combined and substituted to
as many components of the states and the control
as possible in both the cost functions and the
constraints.

The contribution of our current work is to develop
theory and a set of corresponding software tools
for the real-time solution of constrained optimal
control problems for a class of systems governed
by partial differential equations. We think that
these set of software tools would be useful in the
model predictive and process control communi-
ties.

In Section 1 we detail our approach. We apply
our proposed methodology to an example from
the literature in Section 2. The results show that
this methodology is efficient and that solutions of
optimal control problems for systems governed by
partial differential equations may be computed in
real-time using our technique.

2. PROBLEM FORMULATION AND
PROPOSED METHOD OF SOLUTION

2.1 Optimal Control Problem

Notationally, we use N = {1, 2, 3, ...} to represent
the natural numbers and R to represent the reals.
Let Ω be an open set in R

2 and Γ = Ω̄ − Ω
its boundary. We denote Ω � (t, x) �→ φ(t, x)
the state of the system, Ω � (t, x) �→ u(t, x)
the control, with n = dimφ, m = dim u. Let
ξ represent the first (nt + 1)(nx + 1) partial
derivatives of φ, with nt ∈ N and nx ∈ N

ξ
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We consider systems that are governed by partial
differential equations of the form

f(ξ(t, x)) = Bu(t, x) (1)

in Ω, where B ∈ R
n×m is a matrix with coeffi-

cients in R, f : R
n(nt+1)(nx+1) → R

n is a nonlinear
function.

We desire to find a trajectory of (1) that mini-
mizes the cost functional

min
(φ,u)

J(φ, u) =
∫

Ω

L(ξ(t, x), u(t, x))dx dt (2)

subject to the domain constraints

lbΩ ≤ SΩ(ξ, u) ≤ ubΩ (3)

on Ω and the boundary constraints

lbΓ ≤ SΓ(ξ, u) ≤ ubΓ (4)

on Γ, where L : R
n(nt+1)(nx+1)+m → R, SΩ :

R
n(nt+1)(nx+1)+m → R

nΩ , SΓ : R
n(nt+1)(nx+1)+m

→ R
nΓ are nonlinear functions, nΩ ∈ N, nΓ ∈ N.

We tacitly assume that there exists such an op-
timal control and refer to (Lions, 1971; Bonnans
and Casas, 1995; Bergounioux et al., 1998; Maurer
and Mittelmann, 2001) for discussions concerning
this important issue.

2.2 Proposed Methodology of Solution

There are three components to the methodology
we propose. The first is to determine a param-
eterization (output) such that Equation (1) can
be mapped to a lower dimensional space (output
space). Once this is done the cost in Equation (2)
and constraints in Equations (3) and (4) can also
be mapped to the output space. The second is
to parameterize each component of the output
in terms of an appropriate tensor product B-
spline surface. Finally, sequential quadratic pro-
gramming is used to solve for the coefficients of
the B-splines that minimize the cost subject to
the constraints in output space.

In most cases, it is desirable to find and output
Ω � (t, x) �→ z(t, x) ∈ R

p, p ∈ N and a mapping ψ
of the form

z = ψ(ξ, u) (5)

such that (ξ, u) (and thus φ) can be completely
determined from z and a finite number of its
partial derivatives through Equation (1)
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Once the output z is chosen, we look for the
optimum in a particular functional space: we
parameterize each of its components in terms of
tensor product B-spline basis functions defined
over Ω. These tensor products are only one of
many possible choices for basis functions. They
are chosen for their flexibility and ease of enforcing
continuity between patches of surface. A complete
treatment of these functions can be found in
(de Boor, 1978). A pictorial representation of
one component of an output from an example
optimization problem is given in Figure 1 for
which Ω = (−2, 2) × (−3, 2).

Each component zl, l = 1, . . . , p of the output z is
written in terms of a finite dimensional B-spline
surface as

zl(t, x) =
pt∑

i=1

px∑
j=1

Bi,kt
(t)Bj,kx

(x)Cl
i,j (6)

pt = lt(kt − mt) + mt and (7)
px = lx(kx − mx) + mx (8)

where R � t �→ Bi,kt
(t) and R � x �→ Bj,kx

(x) are
the B-spline basis functions given by the recursion
formula in (de Boor, 1978). In this case we chose
lt = 5 and lx = 4 knot intervals in the t and x di-
rections, respectively. The piecewise polynomials
in each of the knot intervals will be of order kt = 5
and kx = 6 in the t and x directions, respectively.
Smoothness of the piecewise polynomials will be
given by the multiplicities mt = 3 and mx = 4 in
the t and x directions, respectively. Note that it
is also possible to use different parameters kt, kx,
mt, mx for each component of the output. There
is a total of pt × px = 156 total coefficients Cl

i,j

used to define the component zl of the output in
Figure 1.

The breakpoints are a grid (nbpst ×nbpsx) where
the boundary and domain constraints will be en-
forced. There is a similar notion for the integration
points. We chose 21 breakpoints in the t direction
and 26 breakpoints in the x direction.

After the output has been parameterized in terms
of B-spline surfaces, the coefficients Cl

i,j of the
B-spline basis functions will be found using se-
quential quadratic programming. This problem is
stated as

min
y∈RN

c

F (y) subject to lb ≤ c(y) ≤ ub (9)

where y = (C1
1,1, C

1
1,2, . . . , C

p
pt,px

)

and Nc = pt ∗ px ∗ p.

F (y) is the discrete approximation in output space
to the objective in Equation (2). The number of
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Fig. 1. B-spline Tensor Product Basis Represen-
tation

constraints is

M =nbpst ∗ nbpsx ∗ nΩ

+ 2 ∗ (nbpst + nbpsx) ∗ nΓ.

The vector R
Nc � y �→ c(y) ∈ R

M contains the
constraints mapped to output space from Equa-
tions (3) and (4). We will use NPSOL (Gill et
al., 1998) as the sequential quadratic program-
ming to solve this new problem.

3. EXAMPLE

We use here one of the example treated in (Maurer
and Mittelmann, 2001). It is related to a simpli-
fied Ginzburg-Landau equation arising in super-
conductivity.

As before Ω is an open set in R
2 and Γ its

boundary. We consider the following nonlinear
partial differential with homogeneous Dirichlet
boundary condition (n = dim φ = 1, m = dim u =
1)

−∆y − exp(y) = u on Ω
y = 0 on Γ.

We look for a control u that minimizes the follow-
ing cost functional of tracking type

F (y, u) =
1
2
‖y − yd‖L2(Ω) +

α

2
‖u‖L2(Ω)

where yd(t, x) = 1 + 2 (t(t − 1) + x(x − 1)), while
satisfying the constraints

y ≤ .185 on Ω
1.5 ≤ u ≤ 4.5 on Ω.

It is clearly possible to parameterize the control
using y and its partial derivatives (in this simple
case we note z = y). Doing so we cast the problem
into the following



min
1
2
‖y − yd‖L2(Ω)

+
α

2
‖−∆y(x) − exp(y)‖L2(Ω)

subject to y = 0 on Γ
y ≤ .185 on Ω
1.5 ≤ −∆y − exp(y) ≤ 4.5 on Ω.

3.1 Results

As in (Maurer and Mittelmann, 2001) we choose
Ω = (0, 1)× (0, 1), α = 0.001. No analytical gradi-
ents of the cost and the constraints were provided
to NPSOL. Instead, finite difference approxima-
tion is used for the gradients. In the future, a func-
tion will analytically compute gradients within
the NTG software package (it is already the case
for ordinary differential equations, not yet for
partial differential equations). It is expected to
cut down the cpu-time even further (at least by a
factor of 2) and increase the accuracy as well.

A set of optimal control and states are plotted in
Figure 2. The results of numerical investigations
of our approach are detailed in Table 1.

Nomenclature

• Nc: number of coefficients.
• nbpst, nbpsx: number of breakpoints in the t

and x direction respectively.
• CPU : CPU time (in seconds) on a Pentium-

III 733MHZ under Linux Red Hat 6.2 .
• ig: initial guess for coefficients, where 0

means that zeros are used as an initial guess.
If the solution from another run with less
breakpoints was used for ig then the name of
the run is specified, e.g. ig = (20, 20) means
the initial guess is the solution to the run
with the same degrees and multiplicities but
with (20, 20) breakpoints.

• Objective: objective value at the optimum
• k: degree of the polynomials, kt = kx = k in

this example.
• m: multiplicity of the knotpoints, mt = mx =

m in this example.
• l: number of intervals, mt = mx = m in this

example.
• erru: absolute violation of the constraint on

the control.
• erry: absolute violation of the constraint on

the state.

The results in Table 1 show that it is possible
to compute fast and with a reasonable accuracy
a solution of the optimal control problem. There
is also the trade off of a more precise solution
for larger computation times. The choice of initial
guess also influences computation time.
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Fig. 2. Example. Optimal control (up) and state
(down).

In the numerical experiments presented above, we
evaluate afterwards the cost associated with each
set of solution coefficients by an adaptative Lo-
batto quadrature with accuracy to 8 digits. Thus
the costs given here are not the costs evaluated
by the nonlinear programming solver but more
accurate evaluations of them. Similarly, the abso-
lute violations of the contraints erru and erry are
evaluated afterwards, using a very large number
of breakpoints in both directions.

We reproduce in Table 2 some numerical results
from (Maurer and Mittelmann, 2001). It is impor-
tant to notice that the evaluation of the objective
in their approach is different. The quantities y
and u are evaluated only at the grid points. The
cost is evaluated by the nonlinear programming
solver and is not as accurate as the results in
Table 1. Asymptotically the two approaches seem
to converge to the same value that is not known.
In terms of computation time, it is to be noted
that the results by Maurer and Mittelmann (in
Table 2) were obtained on a 450MHz Pentium-
II with a different nonlinear programming solver
than the one we use. This has to be taken into
account when comparing their absolute value.



Nc nbpst,nbpsx CPU ig Objective k m l erru erry

64 (10,10) 4 0 0.1112665 5 4 4 5.6e-1 2.5e-3
64 (15,15) 7 0 0.1117173 5 4 4 9.8e-2 0

64 (20,20) 18 0 0.1117267 5 4 4 1.6e-1 0

64 (40,40) 62 0 0.1118501 5 4 4 2.2e-2 0
64 (60,60) 176 0 0.1118300 5 4 4 4.4e-3 0

64 (80,80) 312 0 0.1118253 5 4 4 1.2e-3 0
64 (100,100) 560 0 0.1118291 5 4 4 2.7e-3 0

64 (40,40) 40 (20,20) 0.1118501 5 4 4 2.2e-2 0

64 (80,80) 163 (20,20) 0.1118253 5 4 4 1.2e-3 0
64 (80,80) 334 (40,40) 0.1118254 5 4 4 1.1e-3 0

64 (100,100) 261 (20,20) 0.1118291 5 4 4 2.7e-3 0

144 (10,10) 30 0 0.1104154 6 4 4 4.7e-1 1.0e-2
144 (15,15) 61 0 0.1105299 6 4 4 1.6e-1 2.2e-3
144 (20,20) 90 0 0.1105640 6 4 4 9.2e-2 8.0e-5

144 (40,40) 464 0 0.1106407 6 4 4 1.3e-2 1.0e-5

144 (60,60) 998 0 0.1106456 6 4 4 4.0e-2 6.8e-5
144 (80,80) 1674 0 0.1106465 6 4 4 2.2e-3 1.1e-4

144 (100,100) 2670 0 0.1106481 6 4 4 1.4e-3 3.3e-5
144 (80,80) 924 (20,20) 0.1106465 6 4 4 2.2e-3 1.5e-5

400 (80,80) 15810 0 0.1102986 6 4 8 3.2e-3 0
400 (90,90) 4910 (80,80) 0.1102987 6 4 8 2.2e-3 0

Table 1. Numerical results with the NTG approach.

gridpoints CPU Objective

2401 131 0.110242
9801 2257 0.110263

39601 42644 0.110269

Table 2. Numerical results by Maurer and Mittelmann.

3.2 Remarks

It is important to realize that the methodology we
propose produces exact solutions. Once the solu-
tion coefficients are determined, the control can
be exactly evaluated at any desired point without
any refinement of the grid by combinations of
exact partial derivatives of the output. Some con-
straints may be slightly violated in between break-
points. Asymptotically though, as the number of
breakpoints increases the violation experimentally
goes to zero.

4. CONCLUSION

The idea in this paper is the use of inversion
to eliminate variables from the optimal control
problem before using a nonlinear programming
solver. To do so, partial derivatives of the output
(the parameterizing quantities) are needed. In this
context tensor product B-Splines are a useful rep-
resentation. Numerical results suggest that this
methodology is efficient and that fast resolution of
such problems can be achieved. Real-time imple-
mentation on a reasonably fast process seems close
at hand. One can consider for instance a tubular
polymerization reactor governed by a one dimen-
sional hyperbolic equation with reaction and heat
exhange terms (see for instance (Westerterp et
al., 1988)), its time scale is typically 5 minutes
which is long enough for receding horizon control
purpose.

The methodology presented here can be used in
various situations including the following problem
that we detail to show the generality of our
approach. In (Heinkenschloss and Sachs, 1994)
the authors expose the following solid-liquid phase
transitions control problem. The model consists of
two non-linear parabolic equations in Ω subset of
R

2.

Tt +
1
2
ϕt = kTxx + u

τϕt = ξ2ϕxx + g(ϕ) + 2T.

In this model the state is φ = (ϕ, T ) ∈ R
2 (phase

function and temperature of the medium, n = 2),
u is the control (m = 1), k, τ , ξ2 are given parame-
ters, and g is a given nonlinear function. A certain
desired phase function ϕd and a temperature ud

are given. An interesting optimal control problem
is to minimize the following objective function

J =
α

2
‖T − Td‖L2(Ω) +

β

2
‖ϕ − ϕd‖L2(Ω)

+
γ

2
‖u‖L2(Ω) .

Inversion can be used in this problem. Both T and
u express in terms of the output ϕ and its partial
derivatives



T =
1
2

(
τϕt − ξ2ϕxx − g(ϕ)

) .= h1(ϕ,ϕt, ϕxx)

u =
1
2

(
τϕtt − ξ2ϕtxx − ϕtġ(ϕ)

)
+

1
2
ϕt

− k

2
(
τϕtxx − ξ2ϕxxxx − ϕxxġ(ϕ) − ϕ2

xg̈(ϕ)
)

.= h2(ϕ,ϕt, ϕtt, ϕtxx, ϕx, ϕxx, ϕxxxx).

After substitution in the cost function, the func-
tional to minimize is

J ′(ϕ) =
α

2
‖h1(ϕ,ϕt, ϕxx) − Td‖L2(Ω)

+
β

2
‖ϕ − ϕd‖L2(Ω)

+
γ

2
‖h2(ϕ,ϕt, ϕtt, ϕtxx, ϕx, ϕxx, ϕxxxx)‖L2(Ω) .

We are currently numerically investigating exam-
ples of this kind and believe that for such systems
the computation time reduction induced by the
use of inversion will be very attractive.
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(1999). A Lie-Bäcklund approach to equiva-
lence and flatness of nonlinear systems. IEEE
AC 44, 922–937.

Gill, P., W. Murray, M. Saunders and M. Wright
(1998). User’s Guide for NPSOL 5.0: A For-
tran Package for Nonlinear Programming.
Systems Optimization Laboratory. Stanford
University, Stanford, CA 94305.

Hargraves, C. and S. Paris (1987). Direct trajec-
tory optimization using nonlinear program-
ming and collocation. AIAA J. Guidance and
Control 10, 338–342.

Heinkenschloss, M. and E. W. Sachs (1994). Nu-
merical solution of a constrained control prob-
lem for a phase field model. Vol. 118 of In-
ternational Series of Numerical Mathematics.
Birkhäuser.
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