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Abstract: To optimally design hybrid powertrains, optimal energy management strategies must be 

automatically and rapidly generated. Pontryagin’s minimum principle-derived optimization tool called 

Hybrid Optimization Tool (HOT) can guarantee the fast computing of minimal fuel consumption using 

an array operation as well as Picard’s method. However, in presence of state constraints (e.g., the battery 

state of charge limitations), the near-optimality of HOT no longer holds. Herein, we use the interior- and 

exterior-penalty method to impose the state constraints in HOT and highlight numerical difficulties 

encountered in their implementation. Then, a factor that causes the numerical difficulties is optimized by 

quantifying trade-off between the state constraints violation and computational demanding. Finally, 

through a case study of a parallel hybrid electric vehicle, the results show that despite of a complex 

problem with rapidly changing dynamics, the penalty methods are able to generate results comparable 

with dynamic programming ones while guaranteeing the low computational burden.  

Keywords: hybrid vehicles, energy management, optimal control, state constraints, simulation. 



1. INTRODUCTION 

Due to the increasing complexity of hybrid powertrains, 

including various topologies and architectures, and many 

dimensional parameters, Hybrid electric vehicles (HEV) 

design is not a trivial task. A design optimization based on 

mathematical modelling is therefore needed to achieve the 

best performance (e.g. fuel economy, emissions, etc.) 

(Pourabdollah, 2013; Jianning and Sciarretta, 2016). 

Furthermore, the performance heavily depends on a 

supervisory control, known as energy management strategy 

(EMS), because the EMS determines the power split ratio 

between multiple power sources (Sciarretta et al., 2007). 

Therefore, in order to optimize the design variables and 

topology, it is necessary to generate a near-optimal EMS for 

each configuration, which allows computing its optimal 

performance. In addition, the design optimization process 

should guarantee a reasonably fast computing time in order to 

be effectively adopted in industrial practice.  

A method for fast computing of minimal fuel consumption on 

a given driving scenario has been presented in (Chasse et al., 

2011), called a hybrid optimization tool (HOT). The HOT 

uses a generic hybrid powertrain architecture that can be 

parameterized to represent various configurations. The HOT 

is based on Pontyagin’s minimum principle (PMP) (Serrao et 

al., 2011), and finds iteratively the initial value of co-states 

by a shooting method. Typically, the battery state of charge 

(SoC) is a single state variable, and the physical meaning of 

corresponding co-state is a fuel/electricity equivalence factor.  

Furthermore, it is possible to extend to multiple-state 

optimization or to multiple objectives, as in (Serrao et al., 

2013; Michel et al., 2015). The HOT as a fast PMP-based 

solution does not use multiple for-loop algorithm (time, 

control variable, initial values of co-states), but uses an array 

operation for reducing the computational time within the 

acceptance level of memory use. Moreover, HOT uses 

Picard’s method for considering state-dependent system 

dynamics (Sciarretta et al., 2015). 

However, when the state constraints become active, the near-

optimal performance of HOT becomes questionable due to a 

non-trivial co-state dynamics (Kim et al., 2011). In PMP 

framework, the state constraints can be handled in two ways. 

First, an analytical approach defines Lagrangian, and solves 

the constrained optimal control problem (OCP) using 

Lagrangian-based necessary conditions for optimality (Hartl 

et al., 1995). This approach would require a model that is 

sufficiently simple to be solved analytically (Pérez et al.,  

2016), leading to a lack of accuracy because of the 

unconsidered nonlinear properties. Secondly, a numerical 

approach transforms the constrained OCP into an 

unconstrained OCP, and then solves it. In (Van Keulen et al., 

2014), the constrained OCP is reformulated as a sequence of 

unconstrained sub-problems and is recursively solved, but it 

is only applicable to scalar state-constrained OCP.  

Alternatively, the state constraints can be replaced by 

introducing a penalty function that penalizes the state 

constraints violation in the cost function (Xing et al., 1989; 

Malisani et al., 2014). Solving the penalized OCP is an 

effective technique because it does not require the knowledge 

of the sequence of constrained (or unconstrained) arcs. This 

motivates the use of the penalty method in combination with 

the fast computing,  PMP-based HOT. However, the penalty 

method causes numerical difficulties as the penalty parameter 

goes to extremely low/high values. Thus, this paper is aimed 
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to discuss how to implement the penalty function into the 

HOT.  

The remainder of this paper is organized as follows: Section 

2 gives a brief overview of optimal EMS and introduces the 

penalty method. In Section 3, basic features of HOT are 

addressed. Section 4 presents the implementation issues and 

Section 5 shows results of a parallel HEV as a case study. 

Finally, in Section 6, conclusions are presented. 

2. OPTIMAL CONTROL PROBLEM FOR HEV 

A generic state-constrained OCP can be written as follows: 

     ∫  (     )
 

 
    (1) 

s.t.   ̇   (     )  (2) 

              (3) 

where   is the cost function,   and   represent state variable 

and control input, respectively;   and   are admissible state 

and control ranges. 

In order to focus on how to handle the state constraints, a 

standard OCP, which minimizes fuel consumption, is 

considered, where  ,  , and   are defined by the fuel power 

(   ), battery state of charge (SoC), and engine torque, 

respectively. The standard OCP with the battery internal 

resistance model (Guzzella and Sciarretta, 2013) can be 

formulated, as follows: 

   ,∫   
 

 
(   )  -  (4) 

s.t.  ̇    (     )     (     )   ⁄    (5) 

 ( )            ( )      (6) 

               (7) 

where    is the battery current as a function of open-circuit 

voltage (     ), resistance (  ), and battery power (  ), 

(   (      √     
       ) (   )⁄ ).    is the nominal 

charge capacity of the battery. 

Using Pontryagin’s minimum principle (PMP), optimal 

control input can be evaluated as 

  ( )            (     )   (8) 

where   denotes the Hamiltonian.  

2.1  State-unconstrained Problem 

In the absence of state constraints, the Hamiltonian is 

defined, and the corresponding boundary value problem 

(BVP) is formulated with (8), as follows: 

 (     )    (   )   ( )  (     ) 

                    (   )   ( )    (     )  
(9) 

 ̇ ( )    ( 
      )    ( 

   )  (10) 

 ̇ ( )     ( )
   

  
      (11) 

  ( )            
 ( )      (12) 

where   represents the equivalence factor that is an explicit 

function of co-state,     (       )⁄ . The resulting 

electric battery power,     , is computed by             .  

With assumption that the battery loss depending on SoC is 

negligibly small, the PMP framework is also called 

equivalent consumption minimization strategy (Sciarretta et 

al., 2007). In this context, constant   must be properly 

computed because it is highly dependent on the driving cycle.   

2.2  State-constrained Problem based on a Penalty Method 

A ith pure state inequality constraint is described as,  

  (   )                  . (13) 

A penalty method is introduced due to its benefit to easily 

solve complex OCP with the state constraints. Using the 

penalty function, the state constraints can be augmented in 

original cost function, thereby transforming the constrained 

OCP (1-3) into an unconstrained OCP:  

     ∫  (     )   ∑  (  (   ))
 
   

 

 
    (14) 

s.t.   ̇   (     )  (15) 

     (16) 

where   and   denote the penalty parameter and the penalty 

function, respectively.  

Sub-optimal unconstrained solution by the augmented cost 

function can converge to the solution of the original 

constrained OCP as   increases or decreases depending on its 

type. There exists two types of penalty functions, which are 

distinguished by the convergence direction: 1) interior, or 2) 

exterior. Interior penalty function (IPM) is non-negative for 

an interior (feasible) region (   ) and has a diverging 

asymptotic behaviour near the state boundary condition 

(   ); otherwise, this function is zero. Thus, each IPM 

solution is always in the interior region, and approaches the 

state boundary condition if    . On the other hand, an 

exterior penalty function (EPM) is engaged to add a high cost 

only if the state constraints become active; thus, solutions 

start from the exterior region (   ), and finally approach 

the state boundary condition if    .  

With SoC limitations (    ), the augmented Hamiltonian 

can be defined, and the corresponding BVP is formulated 

with (8), as follows:  

 (     )    (   )   ∑ [ (  (   ))]
 
     

                      ( )    (     )  
(17) 

 ̇ ( )    ( 
   )  (18) 

 ̇ ( )     ∑ *
  (  ( 

   ))

  
+ 

      ( 
   )   (19) 

  ( )            
 ( )      (20) 

where           and           represent 

maximum and minimum SoC bound. Note that, with respect 

to (10-12), the equivalence factor dynamics (19) is non-zero. 

The IPM and EPM are chosen as (21) and (22), respectively, 

for guaranteeing the smooth property at    ,  

  ( (   ))  ,
(  )         
     

     (21) 

  ( (   ))  ,
       
      

  (22) 

where subscripts   and   denote the interior and the exterior 

penalty function, respectively.    determines IPM shape. 

3. HYBRID OPTIMIZATION TOOL (HOT) 

3.1  Generic Hybrid Powertrain Architecture 
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To cover the possible configurations of HEVs, HOT uses a 

generic hybrid powertrain architecture which composed of 

engine, two electric machines, battery, transmission, and two 

connectors for torque or speed coupling and one connector 

for pure electric mode; the details are in (Chasse et al., 2011).  

3.2  Vectorization 

As explained in (Sciarretta et al., 2015), the HOT must 

execute a triple-nested loop algorithm including an outer loop 

(s0-loop) for initial co-state search, a middle loop (t-loop) for 

satisfying the desired final SoC, and an inner loop (u-loop) 

for finding the optimal control input. However, such 

algorithm is computationally demanding; thus, it is replaced 

by a vector operation. Hamiltonian is vectorized and thus 

formed as a three-dimensional array,  (      ) . Firstly, 

minimizing Hamiltonian w.r.t. the  -dimension results in 

  (    )  as two-dimensional array. This optimal control 

policy generates both trajectories of the fuel power (  
 (    )) 

and the battery current (  
 (    )). Then, summing the battery 

current over the  -dimension results in a one-dimensional 

array for the final SoC,   
  (  ). Finally, the optimal value of 

   that satisfies the terminal condition,   
 , is selected and 

then the minimal fuel consumption is obtained as 

  
  (  )     

 

  
∑ [   

 (    )]
 
      (23) 

    
 (  )  

 

  
∑ [  

 (   ) ]
 
      (24) 

    
        

 (  
 )  with     

  (  
 )      (25) 

where    is the fuel lower heating value. 

3.3  Picard’s Method 

Because of state-dependent Hamiltonian, it is necessary to 

solve a state-dependent ordinary differential equation (ODE) 

with an initial condition, i.e., an initial value problem (IVP),  

 ̇( )   (   )  with   ( )      (26) 

that can be rewritten as an integral equation, 

  ( )     ∫  (    )  
 

 
.   (27) 

The Picard’s method iteratively solves state-dependent ODE 

based on the form (27). This iterative process converges to 

the solution of the IVP under some conditions (Falb, P. L., 

1969; Nagle et al., 2000). The general Picard iteration 

process can be expressed by the following equations, 

 ̅( )( )            [   ]  (28) 

 ̅(   )( )     ∫  (  ̅
( )  )  

 

 
   (29) 

where   denotes the iteration number. 

The penalty method also causes a state dependency in   
dynamics (19). The Picard’s iteration starts at a constant 

initial guess of state and the equivalence factor trajectories.  

 ̅( )( )       ̅
( )( )            [   ]   (30) 

and then proceeds as 

 ̅(   )( )     
 

  
∑ [   ̅

  ( )(   ̅( )  ̅( ))]  
   (31) 

 ̅(   )( )     ∑ [  ̅
  ( )(   ̅( )  ̅( ))]  

   (32) 

where    indicates the   dynamics (19). The Picard’s method 

convergence is achieved when the difference between two 

successive trajectories is smaller than a prescribed tolerance. 

In order to guarantee the convergence of the Picard’s method 

within a finite number of iterations, the IVP must have an 

unique solution. However, the IPM cannot guarantee 

Lipschitz continuity at the state boundary condition unlike 

the EPM, resulting in the numerical difficulty to find   
  in 

HOT. This numerical issues are discussed in Section 4. 

4. IMPLEMENTATION ISSUES 

4.1  Convergence 

The array-based HOT constructs terminal relation,   
 (  ) , 

accurately and rapidly in order to find   
 . To this end, the 

penalty method implementation into the HOT should 

converge Picard’s iterations. However, the IPM causes non-

convergence issue due to discontinuity at    . This is due 

to the fact that the initial guess of state trajectory (e.g. initial 

SoC) cannot enforce the SoC boundary constraints and thus 

the second iteration trajectory would be in the exterior region. 

Having non-converged SoC trajectories cannot fully 

construct the terminal relation and consequently deteriorates 

the accuracy to predict minimal fuel consumption. Therefore, 

a transition point,   , is introduced for guaranteeing the 

continuity, leading to extended interior penalty method 

(eIPM), as follows: 

     {
(  )      

(   )
  {*

 

  
+
 

  *
 

  
+   }     

   (33) 

     

  
 {

 (  )      

 ,
(      )

  
 -     

   (34) 

where    must be larger than 1 theoretically (Malisani et al., 

2014), but    is set to 1 in order to construct the eIPM.  

As an example in Fig. 1, the terminal relation of IPM has a 

zigzag trend because of non-converged trajectories, whereas 

the eIPM converges to the fixed solution within a finite 

number of Picard’s iteration and the final SoC is a 

monotonically increasing function of   . Note that the EPM 

always guarantees the convergence of Picard’s iteration 

because it allows starting from the infeasible solutions. 

a) b)   

Fig. 1. Final SoC,   
 (  ), for        Ah: a) the IPM 

(      ), and b) the eIPM (       and       
  ), 

where Qa denotes allowable energy usage of battery (   
(         )  ). 
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4.2  Numerical Stability 

If    (or    ), the numerical instability might be 

caused in solving the penalized OCP (8, 18-20). Therefore, 

this section addresses the procedure to select an appropriate  . 

Using the penalty method, the terminal relation becomes a 

function of two variables such as   
 (    ). Furthermore,   

  

is also a function of the penalty parameter,   
 ( ), as shown in 

Fig. 2 for five values of Qa. Note that the batteries with large 

Qa (e.g. 1.8 Ah and 2 Ah) represent inactive state constraints 

case, and others represent active state constraints case. 

a)  

b)  

Fig. 2. Optimal value of initial equivalence factor,   
 ( ), for 

varying Qa: a) the eIPM, and b) the EPM. 

If there exists a lower bound,       , (or an upper bound, 

      ) such that for        (or       ) any solution to 

the penalized OCP is also the solution of the original 

constrained OCP,      (or     ) is called an exact penalty 

parameter (Xing, 1994). Figure 2 shows that both penalty 

methods have such exact penalty parameter. In case of the 

eIPM,   
  monotonically decreases as   increases. On the 

other hand, in case of the EPM, there exists another threshold, 

    , such that each        is too small to have an effect on 

the cost in the penalized OCP. In the transition region 

(            ), the violation level of state constraints 

decreases with the increase in  . For this reason, the 

transition region becomes wider and deeper when the    

decreases. Note that    
  is also constant if Qa is large enough 

not to activate state constraints. 

In case of the EPM, however,   affects the stiffness of the 

equivalence factor dynamics (19), and thus using      (or     ) 

might not numerically provide the optimal solution because 

HOT uses Euler ODE solver with a typical time step of 1 s. 

To solve this stiffness problem in which a large change of the 

final SoC occurs in the vicinity of   
 , a smaller time step or 

another ODE solver could be used (Rao, 2014). However, 

both approaches significantly increase the computational time, 

thus, the direct use of       (or     ) is inconvenient, time 

consuming, and not robust. 

If         the state constraints are nearly preserved, but the 

numerical difficulties illustrated above occurs; otherwise, it is 

easy to find BVP solution but that generally yields some 

violation of state constraints. Therefore, the trade-off relation 

between the preservation of the state constraints and 

reduction of the computational time should be quantified to 

optimally choose  . To this end, three performance indices 

are used. A level of stiffness (L.o.S.) is defined by the 

sensitivity of final SoC to the initial equivalence factor at   
 ,   

       [   
    ⁄ ]        (35) 

A level of violation of the state constraints (L.o.V.) is defined 

as the maximum difference between violating SoC and any 

SoC bound, 

          (                
 ))      [ ]  (36) 

And the level of the accuracy loss (L.o.A.) is defined as, 

        |  
    |   ⁄      [ ]  (37) 

From the fact that higher stiffness leads to higher 

computational time, Fig. 3 shows that the computational time 

trades off with the violation of state constraints for the EPM. 

As   decreases, L.o.V. decreases, whereas the computational 

time increases with the stiffness. For very large r, the BVP 

solution cannot be accurately computed (L.o.A. > 3 %) unless 

the time step size decreases because of the numerical 

instability (red square in Fig 3).  

a) b)  

Fig. 3. Results of the EPM: a) L.o.V., and b) L.o.S.  

In case of the eIPM, the transition point,   , plays same role 

as   of EPM in avoiding numerical difficulties. In this paper, 

   (eIPM) or   (EPM) can be chosen to produce the desired 

balance between the performance objectives. 

5.  EVALUATION 

5.1  Configuration of Parallel HEV 

A pre-transmission parallel HEV is considered for HOT 

evaluation and its configuration is summarized in Table 1. 

Both the engine and electric machine are described by their 

efficiency map.  

5.2  Simulation Environment 

The Artemis Highway Cycle is chosen with two battery sizes 

(3 Ah and 4 Ah) for evaluation of the HOT performance. The 

simulation is performed on a standard laptop with a 3.50 GHz 
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Intel quad core chip and 16.0 GB RAM using Matlab 2015b. 

In simulation, maximum (or minimum) SoC bound is set to 

85 % (or 45 %) and the initial SoC is set to 65 %. 

Table 1. Configuration of parallel HEV 

Vehicle 

parameter 

Mass [kg] 1814 

Road load: c0, c1, c2 93.5, 5.29, 0.536 

Transmission 

ratio 

Gear box (5 gears): Rd [15.5, 8.21, 5.81, 4.43, 3.48] 

Rm, Rc, Rn, Rg 3.31, 1, 1(On)/0(Off), 0 

Engine 
Max torque [Nm] 131 @340 rad/s 

Max power [kW] 59.9 @550 rad/s 

Electric 

machine 

Max torque [Nm] 28 

Max power [kW] 37.8 

Battery Capacity [Ah] 3, 4 

Note. the details are in (Chasse et al., 2011). 

HOT set-up is summarized as follows: engine torque variable 

is discretized in 23 values such that 20 values are equally 

spaced between minimum and maximum engine torque 

corresponding to the engine speed, while the additional three 

values represent ICE-only torque, zero torque at nonzero 

(ICE-on) or zero engine speed (ICE-off), respectively. The 

gear variable is discretized in 6 values such that 5 values 

represent gear box (ICE-on) and the last one represents the 

second gear ratio in ICE-off mode. The engine on/off and 

gear-shift strategies can be also considered as additional 

control variables, but gear-shift strategy is fixed as one 

computed by the baseline HOT without the state constraints 

in order to focus on the effect of enforcing the SoC boundary 

constraints. The initial equivalence factor is firstly discretized 

in 101 values (1–5). This range is then narrowed using the 

HOT results at the end of the Picard iterations. This method 

guarantees a high accuracy of the penalty method without 

sacrificing the computational time too much. 

5.3  Results and Discussion 

Results of HOT in combination with the penalty method are 

presented w.r.t the following criteria: (1) computational time 

(Tc), (2) the level of optimality loss (L.o.O.) defined as 

       |    
        

  |     
  ⁄      [ ]  (38) 

where the value of     
   is calculated by dynamic 

programming (DP), (3) L.o.V., and (4) L.o.A.  

The both penalty methods are compared to three other 

implementations: 1) DP (Sundstrom et al., 2010), 2) the 

baseline HOT without the state constraints (Baseline), and 3) 

the baseline HOT with a simple rule (S. rule), which avoids 

the violation of state constraints as follows: ICE-on mode is 

engaged if            (or           )  and during 

braking, mechanical braking is used instead of regenerative 

braking for preventing overcharging. Note that this simple 

rule must use  -loop because forcibly changed operation 

mode cannot converge the Picard’s iterations. 

As shown in Table 2, both penalty methods converge within 

the finite number of iterations, while satisfying a high 

accuracy (L.o.A. < 4 %). Moreover, they experience a small 

loss of optimality (L.o.O. < 1.5 %), compared to DP, and 

reduce the violation level compared to the baseline HOT, but 

the state constraints violation cannot be completely avoided 

because of the trade-off relation with the computational time. 

In case of the baseline HOT, eIPM, and EPM, the 

computational time strongly depends on the number of the 

Picard’s iterations (in bracket in    column), For example, the 

eIPM with the 3 Ah battery requires 3 and 13 Picard’s 

iterations for generating the baseline HOT solution to narrow 

the   range and the penalized solution, respectively. On the 

other hand, because of the t-loop, the simple rule results in 

large computational burden (around 20 s).  

As shown in Fig 4 a), the  penalty methods generate several 

jumps of the equivalence factor to preserve the SoC boundary 

constraints. However, the simple rule is instantaneously 

engaged if the SoC boundary constraints are active, leading 

to a different SoC trajectory in Fig 4 b). As a further example 

of problems induced by the simple rule, the ICE-on mode is 

forcibly operated (700–900 s), and thus the desired wheel 

torque cannot be satisfied due to the maximum engine torque 

limit, in Fig 4 c).  

a)  

b)  

c)  

Fig. 4. Simulation results for      Ah: a) equivalence 

factor, b) SoC, and c) resultant wheel torque  
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At least for the small battery sizes considered, the baseline 

HOT seems to have a small loss of optimality, but this 

performance would be deteriorated for more aggressive 

driving scenario. On the other hand, the penalty method could 

guarantee the near-optimal fuel consumption while enforcing 

the state constraints, despite of the driving scenarios. 

Table 2.  Summary of the simulation results 

Q0  Tc [s] 
L.o.O. 

[%] 

L.o.V. 

[%] 

L.o.A. 

[%] 

3
A

h
 

Baseline 1.47 (3) 0.95 10.4 0.97 

S. rule 20.8 2.29 3.47 2.08 

eIPM 8.45 (3, 13) 1.10 3.27 0.12 

EPM 6.90 (3, 10) 1.19 4.24 3.97 

DP 27.0 0 0 1.24 

4
A

h
 

Baseline 1.52 (3) 1.29 4.38 2.27 

S. rule 21.3 0.25 1.12 1.00 

eIPM 5.40 (3, 7) 1.31 1.13 1.92 

EPM 4.20 (3, 5) 1.26 1.50 0.96 

DP 26.8 0 0 1.27 

6. CONCLUSIONS 

This paper introduces the fast computing, PMP-based HOT 

with the penalty method in order to enforce the state 

constraints, and discusses the implementation issues. The 

penalty method has an advantage over the other indirect 

methods because it can solve a complex state-constrained 

OCP without a priori knowledge of the jump conditions. By 

quantifying the trade-off relation between the state 

constraints violation and the computational demanding in a 

systematic manner, the transition point and the exterior 

penalty parameter can be optimized. A case study of the 

parallel HEVs showed that both penalty methods yield the 

accurate, near-optimal solution that nearly preserves the state 

constraints while maintaining a small computational burden. 

Future works include further analysis on OCP with two state 

variables in HEV applications as well as design of real-time 

EMS based on the insights from the penalty method . 
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