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Abstract: In this paper, a first practical extension of the Equivalent Consumption Minimization
Strategy (ECMS) is proposed to include thermal dynamics (engine and catalyst temperatures)
in the optimal design of an Energy Management System (EMS) for a parallel Hybrid-Electric
light-duty Vehicle (HEV). The task of this novel multi-state ECMS is to achieve a sufficient
level of performance with respect to pollutant emissions while keeping fuel consumption within
acceptable limits. The extension suggested here is based on correlations between the thermal
state and their corresponding adjoint states, observed along extremal calculated from extensive
offline solutions of optimal control problems. Simulation results stress that the obtained
performance is sufficient to satisfy the environmental norms while keeping fuel consumption
sub-optimality relatively marginal.
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1. INTRODUCTION

As is largely acknowledged, the Hybrid Electric Vehicle
(HEV) technology is a major solution to reduce fuel con-
sumption and pollutant emissions of passenger cars. Hav-
ing two on-board energy sources provides a valuable degree
of flexibility in the power generation. To handle this degree
of freedom and to coordinate the components of the power-
train in an efficient manner, Energy Management System
(EMS) is commonly employed (Guzzella and Sciarretta,
2013).

The design of an EMS can be conveniently formulated as
a dynamic optimization problem (Guzzella and Sciarretta,
2013; Paganelli et al., 2002; Sciarretta et al., 2004). This
approach is based on the definition of a cost function to be
minimized by a dynamical system representing the vehicle
dynamics. A main difficulty in solving such problem, in
real time, is the presence of disturbances represented
by the vehicle driver’s actions (e.g. power requests for
traction). These disturbances are highly dynamic (their
typical frequency is approx. 1Hz) and difficult to predict,
as they clearly depend on many factors such as local
traffic, infrastructure status, non-vehicle actors, weather
conditions (Paganelli et al., 2002; Chasse et al., 2009).
For these two reasons, dynamic optimization approaches
based on Model Predictive Control (MPC) techniques,
that prove so effective in other applications, usually fail
in this context.

The alternative approach, which has emerged in the last
years is a prediction-free, costate-to-state feedback ap-
proach based partially on Pontryagin Minimum Principle
(PMP) (Pontryagin et al., 1962). To be implemented, this
approach only needs the current value of the disturbance
and not its future profile, at least not so precisely as
would be necessary to run a global optimization. In more
details, the costate function is estimated on a second-to-
second basis as the output of a feedback controller on
the state variable (which is assumed to be measured or
estimated with good accuracy). Such state-costate depen-
dency is established on a physical basis and experimental
observations. Then, the control variable is determined as
the minimizer (for each time) of the Hamiltonian of the
system (Paganelli et al., 2002; Bryson and Ho, 1969). In
the specific literature, the strategy embodying this ap-
proach is known as Equivalent Consumption Minimization
Strategy (ECMS) (Paganelli et al., 2002; Delprat et al.,
2003; Musardo et al., 2005). It applies to an EMS that
considers only the battery State of Charge (SoC) as a state
variable. Experience suggests that the terminal SoC is a
monotonic increasing function of the initial costate value
(Paganelli et al., 2002; Chasse et al., 2009; Delprat et al.,
2003). When such a dependency is inverted to compute
the value of the costate as a function of the SoC, it gives
rise to the ECMS. So far, this effective technique has been
limited to the aforementioned case where only one state is
considered in the optimization.
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In numerous studies for EMS of HEV, one frequent hidden
assumption is that the HEV system is under thermal
equilibrium. However, from an engine modeling viewpoint,
engine temperature is an important factor that influences
both fuel consumption and pollutant emissions (Kiencke
and Nielsen, 2005). The engine is subject to stop-start
phases, and its temperature may drop. On the pollutant
side, the after-treatment system is only activated beyond
a certain threshold temperature, and its efficiency is rel-
atively poor at low catalyst temperatures (Michel et al.,
2014b; Lescot et al., 2010; Merz et al., 2012; Serrao et al.,
2011; Chasse et al., 2010; Michel et al., 2014a).

In this paper, the objective is to extend the costate-
to-state feedback approach to more complex cases with
multiple state variables. The considered case is the min-
imization of a trade-off between pollutant emissions and
fuel consumption under no equilibrium thermal state (cold
start). The engine and catalyst temperatures has to be
considered as state variables (Maamria et al., 2015). The
system becomes a multi-state system, and thus the PMP
approach requires multiple-costate estimation. The pro-
posed extension is based on the parametrization of the re-
lations between the adjoint state variables and their corre-
sponding states (which are assumed to be measured, or at
least well estimated) independently of the driving cycles.
These relations can be determined from offline numerical
experimentations. The proposed real-time strategies are
capable of handling some degrees of uncertainty in the
future driving scenarios.

The paper is organized as follows. In Section 2, a math-
ematical control-oriented model taking into account the
influence of engine and catalyst temperatures on fuel con-
sumption and pollutant emissions and the optimization
problem under consideration are presented. Then, a PMP
solution for the case where the driving cycle is known in ad-
vance, and the employed numerical method are described
in Section 3. On this basis, the novel multi-state ECMS
designed to include the thermal dynamics of the engine
and the after-treatment system is presented in Section 4.
Finally, the obtained numerical results are presented and
discussed in Section 5 and some conclusions and perspec-
tives are drawn in Section 6. An appendix is added where
the links with neighboring extremals and the presented
extension are sketched.

2. SYSTEM DESCRIPTION AND OPTIMIZATION
PROBLEM FORMULATION

2.1 System Description

The parallel hybrid architecture studied in this paper is
depicted in Figure 1. The internal combustion engine is
fitted with an after-treatment system. The electric motor
allows the power assist, including purely electric drive
and battery recharge. The transmission ratio between the
electric motor and the wheels is constant, while the gear-
box is an automated manual transmission. Additionally, a
battery is used as an energy storage system for the electric
energy.

Fig. 1. The chosen parallel HEV architecture

2.2 Optimal Control Problem (OCP) Formulation

The modeling methodology is adopted from (Guzzella and
Sciarretta, 2013), resulting in a quasi-static model of the
vehicle components. The OCP considered here was studied
in (Maamria et al., 2015). We assume that the vehicle
follows a prescribed driving cycle.

Cost function The cost function (1) to be minimized
is a weighted sum of fuel consumption c and pollutant
emissions rate mpoll out of the after-treatment system,
over a fixed time window corresponding to a driving cycle
of a duration T :

J(u) =

∫ T

0

[(1− α)c(u, t, θe) + αmpoll(u, t, θe, θc)]dt. (1)

In (1), the parameter 0 ≤ α ≤ 1 is a weighting factor
serving to adjust the relative importance of fuel consump-
tion and pollutant emissions, u is the engine torque, θe is
the engine (coolant) temperature, θc is the after-treatment
system temperature. The time variable t accounts for the
dependence of fuel consumption and pollutant emissions
on the engine speed, which is a set path defined by the
driving cycle to be tracked.

In (1), c(.) is the instantaneous fuel consumption:

c(u, t, θe) = ch(u, t)e(θe),

where the function ch(.) is the fuel consumption rate for
a warm engine. It is given by a quasi-steady map as a
function of the engine speed and torque (derived from
experimental engine tests). The correction factor e(.) of
fuel consumption is a decreasing function (not necessarily
smooth) with asymptotic value of 1. In our case, e(.) is
approximated by

e(θ) =

{
−aθ + b, θc ≤ θ ≤ θw,
1, θ > θw,

where a and b are positive constants, which were identified
from experimental data extracted from the engine control
maps given by car manufacturers (see (Maamria et al.,
2014)). The threshold θw is an admissible value of θe after
which the thermostat is activated (its value is around
80◦C).

Similarly, the rate of the pollutant emissions (CO, HC,
NOx) out of the after-treatment system mpoll(.) is of the
form

mpoll(u, t, θe, θc) = mpoll,h(u, t)epoll(θe)(1− ηpoll(θc)),

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

9244



where mpoll,h is the emission rate out of the engine when
the engine is warm, given by a quasi-steady map as a
function of engine speed and engine torque. The correction
factor epoll(.) is a decreasing function of θe and is always
greater or equal to one. ηpoll is the after-treatment system
conversion efficiency (see Figure 2) which depends on the
catalyst temperature θc.
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Fig. 2. After-treatment system conversion efficiency for
pollutant emission

State variables Three state variables are considered. The
first one is the SoC (ξ). Its dynamics is given by

ξ̇ = − Ib
Q0

, ξ(0) = ξ0,

where Ib is the battery current intensity and Q0 is the
nominal battery capacity (see (Guzzella and Sciarretta,
2013; Padovani et al., 2013) for more details).

One operational constraint for charge-sustaining HEVs
requires that the final value of ξ should be equal to its
initial value

ξ(T ) = ξ(0). (2)

The dependency of the current Ib on ξ is neglected in the
control model as commonly assumed in the literature (Kim
et al., 2011). In what follows, the dynamics of ξ considering
a given initial condition ξ0 is written as

dξ

dt
= f(u, t), ξ(0) = ξ0. (3)

The second state variable is the engine temperature (θe).
It satisfies the first order non-linear differential equation
(Merz et al., 2012)

Ce
dθe
dt

= Pth,e(u, t, θe)−Ge · (θe − θ0)− Pth,aux,

where Ce is an equivalent thermal capacity, Ge is an equiv-
alent thermal conductivity, θ0 is the ambient temperature,
Pth,e is the sum of friction power dissipated into heat and
thermal power transferred from the engine to the coolant
(given by a look-up table), and Pth,aux is the thermal
power drained by the cabin heater (considered constant).
In what follows, the dynamics of θe considering the initial
condition θ0 as the ambient temperature is written as

dθe
dt

= g(u, t, θe), θe(0) = θ0. (4)

The last state variable is the catalyst temperature (θc).
This variable represents the (spatially averaged) catalyst
temperature (Serrao et al., 2011; Eriksson, 2002). The
considered model is a zero-dimensional model based on
physical equations. Based on an energy balance, the after-
treatment system temperature variation can be approxi-
mated by

Cc(θc) ·
dθc
dt

= Pth,ec − Pth,cr −Gc · (θc − θ0) + Pch,c,

where Cc is an equivalent thermal capacity of the catalyst
depending on θc, Gc in an equivalent conductance of the
catalyst and θ0 is the ambient temperature. The term Gc ·
(θc − θ0) represents the heat flux exchanged with ambient
air (mainly governed by convection). The term Pch,c is the
rate of heat released by the chemical reactions. Details
about this model are given in (Maamria et al., 2015; Merz
et al., 2012; Michel et al., 2014a; Eriksson, 2002). In order
to simplify the notations, the dynamics of θc considering
a given initial condition θc,0 is written as

dθc
dt

= k(u, t, θe, θc), θc(0) = θc,0. (5)

Constraints The control u is constrained to belong to a
set Uad defined by:

umin(t) ≤ u(t) ≤ umax(t) (6)

where the bounds umax and umin are determined by the
driving conditions, and physical limitations of the engine
and the electric motor.

More generally, the OCP could include some instantaneous
constraints on the state variables ξ and θe, but this
would lead to a more complicated numerical solving. The
constraints on θe are not important in this study, because
the cost function will be independent from θe after a
certain threshold which is generally an admissible value.
On the other hand, and as the vehicle is equipped with
a large battery, we assume that the constraints on xi are
satisfied. Therefore, the state constraints are omitted.

In summary, the OCP, denoted by (OCP ), is defined

(OCP ) min
u∈Uad

J(u), (7)

under the dynamics (3, 4, 5) and the boundary con-
straint (2). The obtained control strategy is noted (S2) 1 .

3. OPTIMAL SOLUTION FROM PMP

Based on the Pontryagin Minimum Principle (PMP) (Pon-
tryagin et al., 1962), the Hamiltonian H is defined by

H = L(u, t, θe, θc) + λf(u, t) + µg(u, t, θe) + νk(u, t, θe, θc)

where λ, µ, ν are the adjoint variables associated to ξ, θe
and θc respectively, and L is given by

L(u, t, θe, θc) = (1− α) · c(u, t, θe) + α ·mpoll(u, t, θe, θc).

The adjoint states λ(t), µ(t) and ν(t) are defined by

dλ

dt
= −∂H

∂ξ
= 0,

dµ

dt
= −∂H

∂θe
,
dν

dt
= −∂H

∂θc
(8)

with

1 The subscript 2 in S2 refers to the number of the thermal state
variables.
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µ(T ) = 0, ν(T ) = 0, (9)

since the final temperatures θe(T ) and θc(T ) are free and
the final time T is fixed. On the other hand, λ is constant
and its value will be calculated to satisfy the final SoC
constraint (2).

If u∗ is an optimal control, then, for every t, u∗(t) mini-
mizes the Hamiltonian in the set defined by (6) along op-
timal states and corresponding adjoint states trajectories

u∗ ∈ arg min
u∈Uad

H(u, t, θe, θc, λ, µ, ν). (10)

Equations (2, 3, 4, 5, 8, 9, 10) constitute a Two-Point
Boundary Value Problem (TPBVP). The solution of this
TPBVP was done for a pre-defined driving cycle and the
results were discussed in (Maamria et al., 2015).

In what follows, for convenience, equivalence factors that
are positive and dimensionless, denoted by (s, p, q), are
used instead of using (λ, µ, ν) (which are negative). The
relationships between them are given by

s(t) = −Hlhvλ(t)

Q0Uocv
, p(t) = −Hlhv

Ce
µ(t), q(t) = −Hlhv

Cc
ν(t),

where Hlhv is the lower heating value of the fuel.

4. TOWARD ONLINE CONTROL STRATEGY:
COSTATES ADAPTATION

Although the PMP represents a powerful tool for solving
the energy management problems for HEV, it is not suit-
able for real-time applications because of the dependence
of its solution in the future driving conditions. In real
situation, the future driving conditions are unknown. For
practical applications, the control strategy has to be cal-
culated from the available information in real-time. One of
the well-known methods to deal with driving condition un-
certainties is the ECMS (Paganelli et al., 2002; Sciarretta
et al., 2004; Serrao et al., 2009). This method combines
the results of optimal control:

• the control variable minimizes at all times the Hamil-
tonian of the system in equation (10),
• the adjoint variable is calculated as the output of a

feedback controller on the state variables (assumed to
be measured or at least estimated) of the form

s(t) = s0−kp ·(ξ(t)−ξref )−ki
∫ t

0

(ξ(s)−ξref )ds (11)

where s0 is a first guess possibly inspired by offline
calculations, kp is a tunable positive coefficient, and
ki is a tunable positive coefficient to favor the conver-
gence of ξ(t) toward ξref . More advanced feedback
laws have been reported in the literature (Serrao
et al., 2011; Musardo et al., 2005; Onori and Serrao,
2011; Sivertsson and Eriksson, 2014).

The ECMS in its original formulation was studied and
used for a single state EMS design (considering only the
SoC dynamics) (Chasse et al., 2009; Kessels et al., 2008;
Chasse et al., 2010). In what follows, the relation (11) with
ki = 0 is used to update the equivalence factor s:

s(t) = s0 − kp · (ξ(t)− ξref )

For the problem under consideration, two additional equiv-
alence factors (p and q) have to be considered and they

are varying over time. For this, the impact of the engine
temperature on q is neglected. The objective is to find
relationships (mapping) between (p, q) and the thermal
states (θe, θc) of the form

p(t) = p(θe(t), α), q(t) = q(θc(t), α). (12)

Ideally, these relations have to be robust against the
driving conditions variation. The proposed method is
based on post-analysis of the PMP results. For a given
driving cycle, we proceed as follows:

(1) using the PMP, solve the OCP defined in (7) for
various values of α,

(2) for each value of α, approximate the relations between
(p, q) and (θe, θc) by polynomial functions,

(3) define the relationship between the coefficients of
polynomial functions calculated in step (2) and α by
interpolation.

This tedious work is done once, and offline for a given
driving cycle. These relations, once identified, are used and
tested for other driving cycles.

Multi-state ECMS The control variable u is calculated
by minimizing the Hamiltonian H at each time t

u ∈ arg min
u∈Uad

H(u, t, θe, θc, λ(ξ(t)), µ(θe(t), α), ν(θc(t), α)),

where

λ(ξ) = − Hlhv

Q0Uocv
· (s0 − kp · (ξ(t)− ξref )),

µ(θe, α) = − Ce

Hlhv
·p(θe(t), α), ν(θc, α) = − Cc

Hlhv
·q(θc(t), α).

The expressions of p and q are obtained off-line as ex-
plained above. The obtained on-line strategy is denoted
by (ECMS2).

5. NUMERICAL RESULTS

Simulation results are obtained for a parallel hybrid elec-
tric vehicle equipped with a gasoline engine and a 3-way
catalyst system whose characteristics are listed in Table 1.
Look-up tables, derived from experimental tests, for fuel
consumption ch(.), CO emissions mCO,h(.) and electric
power Pe(.) are reported in (Maamria et al., 2015). CO
emissions only are taken to illustrate the method, as they
embody all the relevant features of the system. The choice
of CO emissions in the cost function is not restrictive, the
same approach can be applied in gasoline engines to NOx
and HC.

The parameters of the engine and catalyst temperatures
are given in (Merz et al., 2012; Maamria et al., 2014;
Maamria, 2015)

Table 1. Vehicle characteristics

Vehicle weight 1932 kg

Engine max. power 92 kW

Electric Motor max. power 42 kW

Battery capacity 5 Ah

Four normalized driving cycles are considered: NEDC
(New European Driving Cycle), FTP (Federal Test Proce-
dure), WLTC (Worldwide Harmonized Light vehicles Test
Procedures) and FHDS cycles.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

9246



5.1 Identification of p

Figure 3 shows the relationship, for a fixed value of
α, between p and the engine temperature θe on the
optimal trajectories for the considered driving cycles. The
equivalence factor p is a decreasing (monotonic) function
of θe with an asymptotic value of zero when θe > 80. This
decreasing behavior can be seen as the reduction of the fuel
energy consumption percentage used to overcome frictions
at low values of θe and to warm-up the engine.
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Fig. 3. Equivalence factor p as a function of θe

For a fixed value of α, the proposed correlation is

p(θe, α) =

{
d1(α)θ2e + d2(α)θe + d3(α), if θe ≤ 80,
0, if θe > 80,

(13)
where the parameters di are identified from the optimal
solution and for each value of α. The threshold 80◦C from
which the adjoint state vanishes is supported by the fact
that fuel consumption becomes independent of θe beyond
this value. These parameters, once identified, are tested
for other driving cycles to evaluate the robustness of the
control strategy.

5.2 Identification of q

Figures 4 and 5 show the relationship between q and θc on
the optimal trajectories for the considered driving cycles
for α = 0.6 and α = 0.8.

The proposed relationship between q and θc for a fixed
value of α is of the form

q(θc, α) =


h1(α)θc + h2(α), if θc ≤ 200,

h3(α)θ2c + h4(α)θc + h5(α), if 200 < θc ≤ 400,

0, if θc > 400,
(14)

where the parameters hi have to be identified from the
optimal trajectories. The parameters h2 and h5 are de-
termined to provide the continuity of the equivalence
factor q at θc = 200◦C and θc = 400◦C. The threshold
200◦C, beyond which the behavior of the equivalence fac-
tor q changes, is the activation temperature of the after-
treatment system. The threshold 400◦C is the temperature
beyond which the efficiency of the after-treatment system
reaches its maximum value.
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Fig. 4. Equivalence factor q function of θc for α = 0.6
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Fig. 5. Equivalence factor q function of θc for α = 0.8

5.3 Simplified strategies

Two simplified control strategies of (S2) are presented. The
first simplification is to assume that the engine is warm
and its temperature θe is always greater than 80◦C. This
can be formulated

eCO(θe) = e(θe) = 1.

As the cost is independent from θe, only the dynamics of
SoC and θc have to be considered in the optimization with
the final constraint (2). The adjoint variable µ (and thus
the equivalence factor p) is null. This simplified strategy is
noted (S1) and its on-line version is denoted by (ECMS1).

An additional possibility to simplify the strategy (S1) is
to assume that the catalyst is never activated and its
efficiency ηpoll is zero:

ηpoll(θc) = 0.

This simplification is equivalent to minimizing the pol-
lutant emissions out of the engine. As fuel consumption
and the pollutant emissions are independent from θc, the
number of states can be reduced to 1. Only the dynamics
of SoC has to be considered with the final constraint (2).
The adjoint variables µ and ν (and thus the equivalence
factors p and q) are null. We note this simplified strategy
(S) and its on-line version by (ECMS).
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The control strategies are summarized in Table 2 where
the assumptions used to determine optimal trajectories are
recalled. Note that these simplified strategies are only used
to compute the control trajectories. For a fair comparison
between the various obtained strategies, we use the full
model given by equations (1, 3, 4, 5).

Table 2. Control Strategies

Strategy Equivalence factors Assumptions off/on-line

S2 s(t), p(t), q(t) / Offline

S1 s(t), q(t) θe ≥ 80 Offline

S s(t) θe ≥ 80, ηpoll = 0 Offline

ECMS2 s(ξ), p(θe), q(θc) / On-line

ECMS1 s(ξ), q(θc) θe ≥ 80 On-line

ECMS s(ξ) θe ≥ 80, ηpoll = 0 On-line

5.4 Simulation Results

The proposed mapping of (p, q) as functions of (θe, θc)
are determined for the NEDC for various values of α and
they will be tested below for the other three driving cycles:
WLTC, FTP and FHDS. For the equivalence factor s, a
single calibration, for each value of α, of the parameters s0
and kp is used. The relative errors between the two strate-
gies (S2) and (ECMS2) in fuel consumption, CO emissions
and the satisfaction of the final SoC constraint (expressed
by ξ(T ) − ξ(0)) are summarized in Figures 6, 7 and 8
respectively.
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Fig. 6. Relative error in the fuel consumption [%]

From Figures 6 and 7, the maximum error in CO emissions
between the strategy (S2) and (ECMS2) is less than 5.5%
while the maximum error in fuel consumption is less
than 6% for the considered driving cycles. This maximum
error depends on the driving cycle. The error on the final
constraint is illustrated in Figure 8.

To make fair comparisons between (S2) and (ECMS2), the
equivalent fuel consumption defined by

Qeq =
1

1− α

[∫ T

0

(1− α)c(u, t, θe)dt+ λ · (ξ(T )− ξ(0))

]
is used. The obtained relative error in Qeq between the
strategies (S2) and (ECMS2) is reported in Figure 9. The
maximum relative error in Qeq is less than 2%.
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Fig. 7. Relative error in the CO emission [%]
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Fig. 8. Final constraint satisfaction
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Fig. 9. Relative error in equivalent fuel consumption [%]

To illustrate the added value of the strategies (ECMS1)
and (ECMS2), fuel consumption and CO emissions ob-
tained using these two strategies are compared to their op-
timal values calculated using the strategies (S1) and (S2)
for cold-start conditions for the NEDC cycle in Figure 10.
In this case, the parameters (s0, kp) are tuned to satisfy
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the final constraint on the SoC and the full simulation
model (3, 1, 4, 5) is used for the comparison.
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Fig. 10. Fuel consumption [L/100 km] and CO emissions
[g/km] for NEDC

These numerical results show that the strategies (ECMS),
(ECMS1) and (ECMS2) are close to strategies (S), (S1)
and (S2), in terms of fuel consumption and CO emissions.
These real-time strategies allow the CO emissions to be
reduced in order to satisfy the European regulation with
an acceptable extra-fuel consumption comparing to the
optimal strategy (S2) calculated with the full knowledge
of the driving cycle.

6. CONCLUSION

In this paper, the design of an on-line EMS considering
advanced modeling of engine and after-treatment system
(3-way catalyst) for a parallel HEV has been addressed.
An extension of the ECMS based on correlations between
the thermal state and their corresponding adjoint states,
observed along extremal has been tested. The proposed
correlations have been shown to be robust against the
driving conditions change: sub-optimality in the equivalent
fuel consumption is less than 2% while sub-optimality in
CO emissions is less than 6%. The proposed strategies give
satisfactory results for the pollutant emissions reduction
with an acceptable extra-fuel consumption compared to
optimal strategies.
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Appendix A. RELATION BETWEEN ECMS AND
LINEAR QUADRATIC REGULATOR

It is possible to relate the ECMS in its original formulation
(considering only the SoC) to the usual linear quadratic
regulator (which allows the calculation of an optimal feed-
back for linear systems and neighboring optimal control
in more complex cases. For more details, see (Bryson and
Ho, 1969) and chapter 6 of (Maamria, 2015)). To establish
this relation, the following assumptions are considered:

• The fuel consumption ch (for a warm engine) is
approximated by a second-order polynomial function
in u with the coefficients ci that depend on the engine
rotational speed:

ch(u, ωeng) = c0(ωeng)u2 + c1(ωeng)u. (A.1)

• The dynamic of the SoC is approximated by an affine
function of the control u:

f(u, ωel) = −α0(ωel)u− α1(ωel). (A.2)

This assumption is relevant if the power requested by
the electric machine is not significant compared to
the maximum available power and the losses in the
battery are neglected. Otherwise, f is quadratic in u.
• The constraints on the control variable u are ne-

glected, which is equivalent to considering a powerful
machine and a large battery.

As the vehicle is assumed to follow a prescribed driving
cycle, the parameters (ci, αi) become functions of time.
The cost function to be minimized in the fuel consumption
when the engine is warm. It can be obtained from the
general cost function in (1) by setting α to zero and by
considering a warm engine start (θe ≥ 80◦C). To take into
account the final constraint on the SoC, a final quadratic
cost is added to the fuel consumption

Jm(u) = β · (ξ(T )− ξref )2 +

∫ T

0

ch(u, t)dt. (A.3)

To satisfy the final constraint (2) exactly, β should be
infinite, which is not possible from a numerical viewpoint.
Thus, a certain error in (ξ(T )−ξref ) must be allowed. The
optimization problem aiming at minimizing (A.3) with the
assumptions (A.1, A.2), and in the absence of state and
input constraints, is a linear quadratic problem (LQ).

From the PMP, the necessary and sufficient condition for
which u∗0 is the optimal control minimizing (A.3) under
the dynamics (3), is given by

u∗0(λ, t) =
λα0(t)− c1(t)

2c0(t)
.

Applied to this problem, Dynamic Programming gives the
costate variable as a function of the state and time. Indeed,
=(ξ, t) is defined as the optimal cost for the problem
(A.3) where the initial time 0 is replaced by t ∈ [0, T ]
and the initial state condition is replaced by ξ(t). As the
problem is linear quadratic without constraints, its value
function =(ξ, t), the optimal control and the adjoint state
are determined by solving a Riccati differential equation
(Bryson and Ho, 1969).

Since the state only appears in the optimal control problem
by the difference ξ(T )− ξref , a variable x defined by

x(t) = ξref − ξ(t)
is used to simplify the calculations. The form of = is
quadratic with respect to x such that

=(x∗, t) =
1

2
v0(t) · x∗2 + v1(t) · x∗ + v2(t).

Then, λ∗ is given by

λ∗(t) =
∂=
∂ξ

(x∗, t) = v0(t) · x∗(t) + v1(t), (A.4)

where x∗ is the optimal state trajectory. In this expression,
λ∗ is an affine function of x, with a time varying gain
v0 and a time varying drift v1. The parameters v0 and
v1 are solutions of the time varying differential equations
obtained from Riccati equation

dv0
dt

=
α2
0

2c0
· v20 , v0(T ) = 2β,

dv1
dt

=

(
α0c1
2c0

− α1

)
· v0 +

α2
0

2c0
· v0 · v1, v1(T ) = 0.

These equations are solved backward to compute the
optimal control, the state and the costate trajectories.
Observe that if β = 0, the parameters v0 = v1 = 0, which
is intuitive since, in the absence of the final constraint, the
optimal strategy is to use the electric energy available in
the battery as there is no instantaneous constraint on the
SoC.

The expression (A.4) of λ as a function of x is similar to
the formula (11) in the case ki = 0 where the drift λ0 and
the gain kp are time varying. This is the analogy one can
draw between the single state ECMS and LQ control.
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