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Abstract: This paper presents solutions to handle ranking, equalities and bounds for the
parameter estimates of a linear adaptive controller scheme used in the production of com-
mercial fuels by blending. The control problem under consideration is a multi-variable output
regulation problems with large uncertainties in the plant parameters. It can be solved using a
specifically designed adaptive controller which combines constrained optimization and a closed-
loop estimator of the plant parameters. As in numerous applications of adaptive control, while
output convergence is usually guaranteed under feasibility assumptions, little is known about the
asymptotic behavior of the parameter estimates themselves. Yet, from an application view-point,
it is desired that these estimates satisfy some physical properties. In particular, parameters
ranking, equalities and bounds are of practical importance and assert the consistency of the
estimation. In this paper we expose techniques that guarantee this desired behavior.

INTRODUCTION

The problem under consideration in this article is the
adaptive control of blending systems as they are found
in refining applications. These systems are used to pro-
duce a mixture (commercial fuels) having some desired
properties. This problem is relatively general, as similar
issues can be formulated in various applications where non-
reactive components are blended and linearly impact on
the properties of the blend (see e.g. the early references by
Bay et al. [1969], Feld et al. [1968]).

A challenge which is encountered in practice is that the
properties of the components are vastly uncertain. The cul-
prits usually are the upstream units which produce these
components with time-varying, unmeasured, unknown or
poorly known properties.

In most applications, and in refining in particular, the
blending objectives are to produce a mixture having some
prescribed properties while minimizing production costs.
Considering the previously mentioned uncertainties, this
is a real challenge.

Over the past 40 years, such blending control problems
have attracted much attention (see Walton and Swart
[2003], Hi-Spec [2003], Perkins [2000], Le Febre and Lane
[1995], Singh et al. [2000]). There has been significant re-
search effort to propose closed-loop strategies using signals
from on-line analysers located downstream the blender.
It is worth mentioning that, usually, only downstream
measurements are considered. The main reason for this
choice is to minimize the number, and thus the cost,

of required analysers. Basic strategies use single-variable
controllers (mostly integral effect) in a single-input single-
output modeling approach. A priori estimates of the com-
ponents properties are used to assign the feedback loops.
Recently, a new method has been presented in Chèbre
et al. [2010], Bernier et al. [2006]. It uses a genuine ap-
proach in which measurements are used to update knowl-
edge on the components properties. This is a multi-variable
adaptive scheme. As is required in the applications under
consideration, this algorithm directly addresses constraints
on the blend properties flows limitations and pumping
constraints by solving a constrained optimization problem.
This algorithm, which has been installed from 2001, is now
being used on 17 blenders located in 6 refineries within the
TOTAL group.

The main algorithm consists of two distinct, though con-
nected, layers: an optimization problem and a feedback
loop with an observer. The optimization problem per-
mits to account for the various discussed constraints and
production cost minimization. The observer is used to
partially estimate the components properties in a spirit
of adaptive control methods. Both layers are required to
provide convergence and guarantee a successful blend. To
provide convergence of the blend properties to a prescribed
target, the observer needs not to converge to the actual un-
known values of the components properties. This behavior
can be analyzed using LaSalle’s invariance principle (see
e.g. Khalil [1992]) for the underlying dynamical system.
This might be the case though, but may not be so common
in practice. Such behavior is well documented for multi-
variable adaptive controllers (see e.g Ioannou and Sun
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[1996], Åström and Wittenmark [1995]). Most of the time,
the blend target is reached before accurate estimates of
the components properties are obtained. Very often, this
is not a concern, because blend properties are definitely
the primary target.

So far, nothing more was expected from the properties esti-
mates than providing output convergence, i.e. a successful
blend. Yet, from the end-user perspective, and also for
diagnosis purposes (e.g. to detect possible malfunctions in
upstream units), it is desirable that the estimates show
a sensible behavior. Among the possible requirements,
two are often formulated by process engineers: ranking
and constraints (bounds or equalities) on certain of the
properties. Ranking constraints express the fact that some
components are known to have higher or lower properties
values than others. Bounds are usually accounting for the
fact that absolute minimum and maximum expectable
values are known. Equalities are implied by upstream
coupling of components or branching particularities in
the fluids routing. By contrast with the values of the
parameters which are vastly uncertain, these features are
certain: no matter what happens in the blending process,
the formulated ranking, equalities and bounds must hold.

In this paper, we present some solutions to force the adap-
tive scheme proposed in Chèbre et al. [2010] to generate pa-
rameter estimates which satisfy these parameters ranking,
equalities and bounds. In details, we propose updates in
the adaptation law that take the form of additional terms
in the right-hand-side of the observer differential equa-
tions, or, as an alternative, periodically reset the observer
state at discrete times. The first solution guarantees that
the ranking and bounds are satisfied asymptotically, i.e.
when the time t goes to +∞. This fact is guaranteed by a
careful study of LaSalle’s invariance set (see Khalil [1992])
which is eventually reached by the system. The second
solution considers an optimization problem to periodically
compute corrections to the estimator state. Such optimiza-
tion problems are proven to possess unique solutions by
means of Farkas’ lemma. Two typical cases are considered.

The paper is organized as follows. In Section 1, we present
the control problem under consideration: the blending
process, the actuators and the available sensors are briefly
exposed. The solution introduced in Chèbre et al. [2010],
Bernier et al. [2006] is detailed along with its convergence
properties. Then, we formulate the desired additional fea-
tures. In Section 2, we expose a first solution to guarantee
ranking and bounds. The method is investigated using a
Lyapunov function and LaSalle’s invariance principle. In
Section 2, we expose the second method which invokes
an additional optimization problem to address ranking,
equalities, and bounds. The mathematical feasibility of
this constrained optimization problem is proven. Finally,
we briefly compare the merits of the two methods and draw
some conclusions in Section 4.

1. PROCESS DESCRIPTION, CONTROL PROBLEM,
AND PROPOSED SOLUTION

1.1 Process description

In this section, we recall the basics of blending operations
in refining. This process is used to obtain finished (or semi-

finished) products from transformed petroleum cuts and
upstream units flows. The main operational problem is
that, for cost and reliability reasons (in particular, sensors
drift over time), the components properties are usually not
measured on line while they are vastly uncertain. Among
the sources of uncertainty are the drifts in the operation of
upstream units, and slicing phenomena in storage tanks.
On the other hand, the output of the system, i.e. the
(m) properties of the blend, are analyzed on line. Mixing
the various (n) components with the right proportions
provides the final blend, with properties required by the
m specifications of interest. Usually, m is larger than n.

The blend properties can be controlled with n blender
motorized inlet valves. Given a blender outlet total volume
flow rate, the valves openings define a control vector
consisting of n volume ratios u = (u1, . . . , un)T , referred
to as the recipe 1 .

1.2 Control problem

The primary goal of any blending system is to produce a
mixture having some specified properties. In other words,
the blending system has to find a recipe u such that the
properties of the mixture satisfy some objective.

The instantaneous blend properties are considered as
the output of the system. They are denoted by the
m−dimensional vector y. The components properties are
grouped in a m× n matrix B.

Following a common practice (see Chèbre et al. [2010]), the
blending models are assumed to be linear. This assumption
is not restrictive, because, up to some change of variables,
numerous properties actually satisfy this linearity assump-
tion. Therefore, preliminary vector coordinate-wise non
linear mappings can be used to validate this assumption.
In particular, at steady-state, the following relation holds

y = Bu (1)

Several constraints on the recipe u need to be considered.
For mathematical consistency, the recipe vector u coor-
dinates must all lie in [0, 1] and satisfy

∑n
i=1 ui = 1.

From an operational and economical point of view, u
should remain close to a recipe of interest uopt. Further,
hydraulic constraints (physical limitations of the pumps
and pipes) and components availability impose upper and
lower bounds on the coordinates ui, i = 1, ..., n.

Various constraints on the blend properties y need to be
considered as well. A reference yr and/or upper and lower
bounds are associated to each coordinate of y. From a
practical point of view, these bounds can be considered
as hard bounds (related to commercial specifications) or
soft bounds, which can be violated at the expense of profit
losses (also referred to as “give-away”).

The matrix of the components properties B is poorly
known. Yet, B̂ an initial estimate for it (most frequently
given by laboratory samples) and some on-line blend
properties measurements are available.

The control problem to solve is as follows: given B̂ an
initial estimate of B, given real time measurements of
1 low-level flow controllers (named ratio control system) guarantee
that this vector tracks any reference signal
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the output blend properties y, find a closed-loop control
scheme, acting on u, such that y converges to yr and
remains between pre-specified bounds. At all times, umust
satisfy the operational constraints, and preferably be close
to a recipe of interest uopt.

1.3 Proposed solution

To solve the previously presented control problem, a
twofold approach was proposed in Chèbre et al. [2010].
The constraints and the various control objectives are
formulated in an optimization problem. Simultaneously,
an observer reconstructs an estimate of the components
properties. These two parts of the control law closely inter-
act. Under some mild simplifying assumptions, theoretical
convergence of this strategy is guaranteed as discussed
below.

Optimization problem First consider that B̂, an estimate
of the components properties matrix B, is given. Not
every blend property needs to match a specified reference.
Some of them must simply remain within some prescibed
bounds. Values of blend properties associated to specified
references yr (dim yr = r ≤ m) can be estimated, using (1),
through an (r × n) sub-matrix B̂r of B̂. Similarly, the
blend properties associated to hard and soft bounds can
be computed using the sub-matrices B̂h and B̂s. Lower
and upper bounds vector on the hard and soft constraints
are noted yh,lb, yh,ub, ys,lb, and ys,ub, respectively. Vector
lower and upper bounds on the control vector are noted
ulb and uub. Taking into account the consistency equation∑n

i=1 ui = 1, the recipe of interest uopt, and, most
importantly, the blending objectives, one can formulate
the control problem under the form of the following
optimization problem

min
u
‖u− uopt‖2Q

0 ≤ ulb ≤ u ≤ uub ≤ 1
n∑

i=1

ui = 1

B̂ru = yr

yh,lb ≤ B̂hu ≤ yh,ub

ys,lb ≤ B̂su ≤ ys,ub

(2)

where a symmetric definite matrix Q is used to weight
the Euclidian norm, i.e. ‖u‖2Q = uTQu. This matrix can
be chosen to promote or to penalize the use of some
components. The optimization problem (2) is a quadratic
programming problem. It can be very effectively handled
with various software packages such as IMSL. [2006]. Its
solution gives an open-loop control u.

Feedback On-line blend properties measurements y are
used to update the open-loop control law by means of
updates of B̂ the estimate of the matrix B, which gen-
erates a feedback into the optimization problem (2). The
measurements, which are assumed to be done continuously,
are related to the current values of the control variable by
the model

y = Bu

Then, the estimation B̂, which is assumed to be constant,
is updated as follows. Considering its jth row B̂j , the
continuous-time update law is

dB̂T
j

dt
= −βjHu

(
B̂ju− yj

)
, (3)

where H is the following diagonal scaling matrix (ū being
a reference recipe, e.g. a constant value close to uopt)

H =
1
‖ū‖


1
ū1

0

. . .

0
1
ūn


and βj is a strictly positive parameter. This update law is
analogous to those found in adaptive control (see e.g. Ioan-
nou and Sun [1996], Åström and Wittenmark [1995]).
Considering the output relation (1), the essential idea is
the comparison of the observed system response Bu with
the model output B̂u.

Finally, the feedback control law is as follows: sequentially,
the optimization problem (2) is solved and the estimate
of the components properties B̂ are updated, when new
measurements are available, according to (3).

The proposed solution combines an on-line parameter es-
timator (3) and a control law which is defined as the so-
lution of the optimization problem (2). From this descrip-
tion, it can be viewed as an (indirect) adaptive controller
(see Ioannou and Sun [1996]), . As will now appear, B̂ is
continuously adjusted so that B̂u(t) approaches Bu(t) as
t→ +∞. Yet, no particular effort is made to design the in-
put u(t) so that B̂ converges toward B, as would normally
be desired in an on-line parameter estimation technique.
This is not one of the objectives, as it could cause large
variations of the input signal u(t) (e.g. to satisfy some
persistency of excitation property, see Ioannou and Sun
[1996], Åström and Wittenmark [2008], Khalil [1992]).

Consider, for any property j = 1, . . . ,m, the scalar
function (Lyapunov function candidate)

Ψ(B̂j) =
1
2

(B̂j −Bj)H−1(B̂j −Bj)T

This function is strictly positive away from Bj , where it
equals 0. Its time-derivative along the trajectories of (3) is

dΨ
dt

(B̂j) = −βj

(
B̂ju− yj

)2

≤ 0

Therefore, Ψ(B̂j) is a Lyapunov function for system (3)
(see Khalil [1992]). From LaSalle’s invariance principle,
for any initial condition, the solution of system (3), B̂j(t),
converges when t→ +∞ towards the largest invariant set
of (3), included in the subset {B̂j s. t. dΨ/dt(B̂j) = 0}.
Therefore, B̂j(t) converges in a way such that Bju = B̂ju.
Yet, by definition of the optimisation problem (2), which
is assumed to possess a solution (which is necessarily
unique), B̂ju satisfies the blend objectives. Therefore, so
does yj(t) = Bju(t), in the limit as t → +∞. The same
reasoning applies to all the blend properties. In summary,
the blend is successful, even though B̂j does not converge
to Bj . In details, one has
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lim
t→+∞

B̂r(t)u(t) = yr,

yh,lb ≤ lim
t→+∞

B̂h(t)u(t) ≤ yh,ub,

ys,lb ≤ lim
t→+∞

B̂s(t)u(t) ≤ ys,ub

while the equality limt→+∞ B̂ = B might not hold.

1.4 Desired additional features

As emphasized above, the control algorithm presented
in Chèbre et al. [2010] and briefly recalled, guarantees
that the blend is successful, even though B̂j does not
converge to Bj . It may converge to a point that is not
Bj . A point that is of importance for process engineers
who monitor the blend operations and the operators
themselves, is that the calculated estimates should be
sensible. In other words, it would be a plus to guarantee
that the intermediate variables in the adaptive control
law B̂j satisfy some consistencies with real world. Yet, no
persistency of excitation assumption can be formulated,
in other words, it is not acceptable to consider input
signals having time variations rich enough so that all
the components of Bj , for all j, can be identified 2 .
Unfortunately, this is precisely the kind of conditions
which would guarantee that B̂j would converge to Bj ,
and therefore, asymptotically reach sensible values. A less
demanding goal is that the estimates should satisfy the
following two requirements:

(1) all (or some of) the coordinates of B̂j = (B̂1
j , ..., B̂

m
j )

should remain sorted in a certain order, and stay
within some bounds 3 . Without loss of generality, up
to a re-ordering, it is desired that
Bmin

j ≤ B̂1
j ≤ ... ≤ B̂m

j ≤ Bmax
j (4)

Bmin
j ≤ B̂m+1

j ≤ Bmax
j , ..., Bmin

j ≤ B̂n
j ≤ Bmax

j (5)
where m is a given integer.

(2) because some of the components are routed together
in the networks of pipes, some properties of the
components are necessarily equal, and their estimates
should account for this fact and be equal for all times.

The first requirements is suggested by the a-priori knowl-
edge on the nature of the components, and bounds on
their properties. The ranking may bear on some of the
components only, as some of the ranking relations might
be uncertain. The second requirement can bear on nu-
merous components depending on the flow network under
consideration. For sake of clarity, we start by presenting
solutions for the first requirements only. The second ones
are treated next. Numerous combinations are possible,
depending on variations of the optimisation problem under
consideration (2) which can be relaxed. The interested
reader can refer to Chèbre et al. [2010], Bernier et al.
[2006].

2. CHANGES IN THE UPDATE LAW

We now expose a first solution to guarantee ranking and
bounds. The idea is to introduce a new term in the
2 the estimate will eventually stop being updated in the case where
no new information is available
3 these bounds are the same for a given property j

adaptation law (3) to penalize estimates that would be
sorted in the wrong order, or leave the prescribed bounds.
For this, a simple comparison function is considered

h(x) =
{

0, if x ≤ 0
x, if x > 0

and used to define the following vector

f(Bj) =



h(Bmin −B1
j )− h(B1

j −B2
j )

h(B1
j −B2

j )− h(B2
j −B3

j )
...

h(Bm−2
j −Bm−1

j )− h(Bm−1
j −Bm

j )
h(Bm−1

j −Bm
j )− h(Bm

j −Bmax)
0
...
0


In fact, this function composed of comparisons functions
representing the bounds (4) plays a key role in the conver-
gence of B̂j toward a feasible region when used to change
the update law as follows

dB̂T
j

dt
= −βjHu

(
B̂ju− yj

)
+ λHf(B̂j) (6)

This fact is readily seen using a Lyapunov analysis using
the same Lyapunov function candidate as before. Here, one
has
dΨ
dt

(B̂j) = −βj

(
B̂ju− yj

)2

+ λf(B̂j)(B̂j −Bj)

= −βj

(
B̂ju− yj

)2

+ λ(h(Bmin −B1
j )− h(B1

j −B2
j ))(B̂1

j −B1
j )

+ λ(h(B̂1
j −B2

j )− h(B2
j −B3

j ))(B̂2
j −B2

j ) + ...

+ λ(h(Bm−1
j −Bm

j )− h(Bm
j −Bmax)(B̂m

j −Bmax
j )

= −βj

(
B̂ju− yj

)2

+ λ
∑

h(B̂i
j − B̂i+1

j )
(
B1

j −Bi+1
j + B̂i+1

j − B̂i
j

)
Yet, from its definition, h(B̂i

j − B̂
i+1
j ) ≥ 0, B1

j −B
i+1
j ≥ 0,

and h(B̂i
j−B̂

i+1
j )(B̂i+1

j −B̂i
j) ≤ 0. It can easily be deduced

from this that dΨ
dt (B̂j) ≤ 0. Applying LaSalle’s invariance

principle, we conclude that the B̂j converges to the set
such that B̂ju = Bju and (4) holds. As before, the blend
is therefore successful and, further, the desired bounds are
satisfied, asymptotically, as t→ +∞. Formally, this yields
the following result.
Proposition 1. Consider the update law (6), for all j.
Used in the closed-loop control algorithm consisting of
repetitively solving the optimization problem (2), this
algorithm guarantees convergence to a successful blend
as limt→∞ B̂j(t)u(t) = Bj(t)u(t) and asymptotically, the
estimates B̂j satisfy the additional constraints (4).

3. RESET OF THE ESTIMATE MATRIX

3.1 Handling ranking and bounds

The preceding method provides satisfaction of the desired
inequalities on the estimates B̂j for all j, but only asymp-
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totically. As will now be shown, it is possible to make punc-
tual changes so that the estimate satisfies after this update
all the desired requirements. Mathematically, the update
is performed by computing a vector δj such that B̂j + δj
satisfies the constraints and such that (B̂j + δj)u = B̂ju.
Formally, the following proposition holds, which shows
that such δj can be found.
Proposition 2. Consider a (recipe) vector

∑
ui = 1, ui ≥

0, for all i, such that Bmin
j ≤ B̂ju ≤ Bmax

j . Then, there
exists δ = (δ1, ..., δn) ∈ Rn such that

Bmin
j ≤ B̂1

j + δ1 ≤ ... ≤ B̂m
j + δm ≤ Bmax

j (7)

Bmin
j ≤ B̂m+1

j + δm+1 ≤ Bmax
j , ..., Bmin

j ≤ B̂n
j + δn ≤ Bmax

j

(8)
and δu = 0 (9)

In other words, the vector B̂j +δ satisfies both the ranking
and the bound constraints. The set of all such δ is a convex
subset of Rm.

The preceding proposition is an existence result. In partic-
ular, the choice of δ can be made unique by invoking the
minimization of a convex function such as ‖δ‖2. The proof
of this result is given below.

Proof. The constraints bearing on the vector δ can be
represented under the affine form

Aδ ≤ b

where A is a (2n − m + 3) × n matrix composed as
follows. Its first two lines are u and −u respectively, then
its lines are composed by a band diagonal matrix using
[−1, 1]T column vectors to represent the inequalities (7),
and columns of zeros on the right of this matrix, then the
last lines of A contains the opposite of the identity matrix
(of size n−m) with columns of zeros on the left, and the
identity matrix of the preceding size with columns of zeros
on its left. The identity matrices are used to represent (8).
The vector b is defined following the same procedure. The
set Aδ ≤ b is a convex set (polytope). To prove that it is
non-empty, we use Farkas’ lemma in a form which is now
given (see e.g. Nering and Tucker [1993]).
Lemma 3. (Farkas’s lemma). For any matrix A and any
vector b, one and only one of the following two properties
hold: i) there exists a vector δ such that Aδ ≤ b, ii) there
exist a vector having only positive coordinates ν ≥ 0 such
that νA = 0 and νb < 0.

We now use this lemma, by contradiction, to show that no
vector ν can be found that satisfies the requirements of ii),
which gives the conclusion that i) holds.

Consider the matrix A and b defined above, and assume
that there exists a vector ν = (ν1, ..., ν2n−m+3) having
only positive coordinates ν ≥ 0 such that νA = 0 and
νb < 0. By summing up all the n equations obtained from
νA = 0, we have

ν1 − ν2 = ν3 − νm+3 +
n∑

i=m+1

(νi+3 − νi+3+n−m)

Yet, from the relation νb < 0, which writes

0 > νb = ν3(B̂1
j −Bmin

j ) +
m−1∑
i=1

νi+3(B̂i+1
j − B̂i

j)

+ νm+3(Bmax
j − B̂m

j ) +
n−m∑
i=1

νi+m+3(B̂i+m
j −Bmin

j )

+
n−m∑
i=1

νi+n+3(Bmax
j − B̂i+m

j )

some calculations yield that the the following holds

−Bmin
j (ν3 +

n∑
i=m+1

νi+3) + (ν1 − ν2)(B̂ju)

+Bmax
j (νm+3 +

n∑
i=m+1

νi+3+n−m) < 0

This gives the following inequality

(B̂ju−Bmin
j )

(
ν3 +

n∑
i=m+1

νi+3

)

< (B̂ju−Bmax
j )

(
νm+3 +

n∑
i=m+1

νi+3+n−m

)
(10)

This inequality can not be true, because, by assumption
B̂ju−Bmin

j > 0, B̂ju−Bmax
j < 0 while all the coordinates

of ν are positive. Therefore, by Farkas’ lemma, the set
Aδ ≤ b is non-empty, which concludes the proof. 2

Proposition 2 guarantees existence of a vector δ that can
serve to update the estimates B̂j periodically. In between
the updates, the usual adaptation law (3) can be used as
before.

3.2 Handling equalities and bounds

We now expose a solution to update the estimates B̂j

for all j such that they satisfy equality constraints and
lie within some prescribed bounds. Again, the update is
performed by computing a vector δj (noted δ below for
simplicity) such that constraints, listed below in (13)-(14)-
(15) are satisfied by B̂j + δj . Additionally, it is required
that δju = 0 to avoid disturbing the output of the system
(as discussed in § 3.1). Note m the number of (multiple)
equalities and, for all i = 1, ...,m note ni the number of
components having the same value (i.e. the multiplicity).
Note also Ni =

∑i−1
k=1 nk, and N = Nm+1 = n1 + ...+ nm,

N1 = 0. Without loss of generality, up to a re-ordering, it
is required to find a vector δ = (δ1, ..., δn) such that



B̂1
j + δ1 = B̂2

j + δ2 = ... = B̂n1
j + δn1

B̂n1+1
j + δn1+1 = ... = B̂N3

j + δN3

...

B̂Nm+1
j + δNm+1 = ... = B̂N

j + δN

(13)



Bmin
j ≤ B̂n1

j + δn1 ≤ Bmax
j

Bmin
j ≤ B̂N3

j + δN3 ≤ Bmax
j

...

Bmin
j ≤ B̂N

j + δN ≤ Bmax
j

(14)
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ν1 − ν2 =
m∑

i=1

(νNi+2i+ni+1 − νNi+2i+ni+2) +
n−N∑
k=1

(νN+2m+k+2 − νN+2m+k+2+n−N ) (11)

−Bmin
j

(
m∑

i=1

νNi+2i+ni+1 +
n−N∑
k=1

νN+2m+k+2

)
+ (ν1 − ν2)B̂ju+Bmax

j

(
m∑

i=1

νNi+2i+ni+2 +
n−N∑
k=1

νN+2m+k+2+n−N

)
< 0

(12){
Bmin

j ≤ B̂N+k
j + δN+k ≤ Bmax

j

for all k = 1, ..., n−N
(15)

Formally, the following proposition holds
Proposition 4. Consider a (recipe) vector

∑
ui = 1, ui ≥

0, for all i, such that Bmin
j ≤ B̂ju ≤ Bmax

j . Then, there
exists δ = (δ1, ..., δn) ∈ Rn such that δu = 0 and such
that (13)-(14)-(15) hold.

Proof. Again, as in § 3.1, the set of constraints bearing on
the vector δ can be written under the affine form Aδ ≤ b,
which defines a polytope. Proposition 4 states the non-
emptiness of this convex set.

Each of them lines of equalities in (13), say the ith without
loss of generality, can be decomposed into a series of ni−1
equalities on the differences δNi+1 − δNi+2, ...δNi+ni−1 −
δNi+1 . For convenience, a redundant equation bearing on
δNi+1 − δNi+1 is considered as well.

Consider Ai the (ni + 2)× ni matrix composed of a (ni −
1) × ni band-diagonal matrix using [1,−1] line vectors to
represent the (first) ni − 1 equalities followed by a line
[-1, 0, ..., 0, 1]. It is complemented by [0, ..., 0,−1] and
[0, ..., 0, 1] to account for (14).

Consider A the (2+2(n+m)−N)×n matrix, represented
below in (16), which is composed of two first lines being u
and −u respectively, followed by a block-diagonal matrix
built using the collection of A1, ..., Am, and eventually
followed by Ab which is the (2(n − N)) × n matrix used
to represent the bounds (15). This last matrix Ab contains
an identity matrix of size (n−N) below its opposite.

On the other hand, the vector b is defined following the
same procedure. To prove that the convex set Aδ ≤ b
is non-empty, we use Farkas’s lemma under the form of
Lemma 3. As in § 3.1, we proceed by contradiction. Assume
that there exists a vector having only positive coordinates
ν ≥ 0 such that νA = 0. Considering that A has the form

A =



u1 ... ... un

−u1 ... ... −un

A1

. . .
Am

Ab

 (16)

we obtain, by exploiting, through the matrix A, the ith
out of m lines of equalities in (13), and its corresponding
inequality in (14)



(ν1 − ν2)uNi+1 + νNi+2i+1 − νNi+2i+ni = 0
(ν1 − ν2)uNi+2 + νNi+2i+2 − νNi+2i+1 = 0

...
(ν1 − ν2)uNi+ni−1 + νNi+2i+ni−1 − νNi+2i−ni−2 = 0
(ν1 − ν2)uNi+ni

+ νNi+2i+ni
− νNi+2i+ni−1

+ νNi+2i+ni+2 − νNi+2i+ni+1 = 0
(17)

Besides, from the lines of (15), we simply obtain, through
the matrix A,

(ν1 − ν2)uN+k − νN+2m+2+k + νN+2m+2+n−N+k = 0
for all k = 1, ..., n−N (18)

Now, by summing up all the lines of (17) for all i = 1, ...,m,
with all the lines of (18), and noting that

∑
ui = 1, one

simply obtains (11).

On the other hand, we now wish to formulate the second
relation in the statement of Farkas’ lemma, namely νb < 0.
This scalar relation can be factorized under the form (12).

Consider the two relations (11) and (12). By introducing
four factors A,B, C,D, these actually take the form

ν1 − ν2 = A− B + C − D
and
−Bmin

j (A+ C) + (ν1 − ν2)B̂ju+Bmax
j (B +D) < 0

These yields the necessary condition
(B̂ju−Bmin

j )(A+ C) + (Bmax
j − B̂ju)(B +D) < 0

which, considering the assumed positiveness of the coor-
dinates of ν and the implied positiveness of all the factors
A,B, C,D, along with the assumption Bmin

j ≤ B̂u ≤ Bmax
j ,

is impossible. This yields the conclusion by contradic-
tion. 2

4. CONCLUSIONS

In this article, two methods have been proposed to impose
ranking, equalities and bounds on the parameters of the
adaptive controller of blending systems. Blending systems
are relatively particular processes, due to the implicit con-
straint on the actuator (the sum of its coordinates being
constant) but the control method, and the conclusions
raised in this article are relatively general. This contri-
bution addresses one practical limitation of this multi-
variable method, which, is well known in the theory of
adaptive control (see Ioannou and Sun [1996]). The first
solution, which relies on a carefully designed change of
the adaptation law, provides asymptotic satisfaction of
these requirements of practical interest. In practice, this
solution is very light to implement, does not require any
particular tuning effort, but on the other side, its asymp-
totic convergence can be considered as too slow for the
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end-user, especially in a context of frequently changing
plant parameters (the true value of the plant parameters
being time-varying). Then, it appears that the second
solution, which requires to solve a convex optimization
problem (more precisely a quadratic program), is a very
good choice. It is also relatively easy to implement since
standard optimization routines (such as IMSL. [2006]) can
be incorporated in the existing code. The corresponding
computational burden remains reasonably small, and most
importantly, the corrective terms have a direct effect on the
parameters. After the update, they are sorted in the right
order, all lie within the prescribed bounds, and all equali-
ties are satisfied. In practice, this is the solution which has
been included in the industrial software ANAMEL.
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