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et Systèmes, 60 Bd St-Michel, 75272 Paris, Cedex 06, France

Abstract: This paper extends recent results for the literature which employ a backstepping transforma-
tion under the form of an infinite dimensional system to address robust control of time delay systems. The
contribution treats the case of output feedback through a state observer, while allowing online adaptation
of the delay system. A theoretical result is proven and an example illustrates the approach.

1. INTRODUCTION

This paper addresses the general problem of the equilibrium
regulation, through an output feedback, of a potentially unstable
linear systems with an unknown input time-delay. As estab-
lished in numerous recent surveys and research papers (e.g.
Richard [2003], Huang and Lin [1995] or Zhong [2006]), the
lack of robustness of Smith predictors [1959] with respect to
the uncertainty on the delay is still a major concern, especially
in view of implementations, in which it often appears as a
performance bottleneck.

Lately (see Krstic [2008],Krstic and Bresch-Pietri [2009],Krstic
and Smyshlyaev [2008]), new techniques have been proposed to
address this uncertainty for (single) input time-delay systems.
We follow this methodology and extend it to the case where the
system state is not measured. The incorporation in the strategy
of a state observer, and the analysis, through a convergence
study, of its compliance with different delay adaptation laws
are the main contributions of this paper.

In details, the approach we follow is based on a form of
backstepping boundary control for partial differential equations
(PDEs), modeling the actuator delay as a transport process. This
transformation enables the use of systematic Lyapunov tools
for establishing stability properties. While the observer design
we use could seem classical, the main result stated here and its
proof are, up to our knowledge, new.

The main result (Theorem 1) addresses the case of delay adap-
tation, which satisfy Assumption 4 presented below, requiring
the employed update law to improve the delay estimation. It is
consistent with numerous delay identification techniques pre-
sented for example in O’Dwyer [2000].

The paper is organized as follows. In Section 2, we describe
the general framework of the problem under consideration,
before presenting in Section 3 the output-feedback strategy
we propose. A proof of the convergence properties of this
control is provided in Section 4. Finally, in Section 5, we
illustrate the merits of our approach through an example from
the literature. For this case-study, we consider a delay update

law based on a Least Mean-Square method, compliant with the
delay estimation assumption stated previously and with on-line
implementation.

2. PROBLEM STATEMENT AND NOTATIONS

2.1 Notations

In the following, n and p are strictly positive integers, |.| refers
to the usual Euclidean norm whereas the norm ‖.‖ is defined
for a functional f (., t) as

‖ f (t)‖ =

√

∫ 1

0
f (x, t)2dx , f : (x, t) ∈ [0;1]×R+ → R (1)

2.2 Problem formulation

Consider the system with unknown input time delay

a(s)Y (s) = b(s)e−DsU(s) (2)

where D > 0 is an unknown positive constant denoting the
delay, s ∈ C denotes the Laplace variable and a(s) and b(s)
are polynomial functions of s. One can transform this system
into the following state-space realization (see Kailath [1980]
for the achievement and the choice of such a formulation), that
we consider from now on to design the control

{

Ẋ(t) = AX(t)+BU(t −D)
Y (t) = CX(t)

(3)

where Y ∈ R
p is the measured output, X ∈ R

n is unmeasured
and U is the scalar input. The following assumptions further
characterize the class of considered systems.

Assumption 1. An upper bound D̄ and a lower bound D > 0 of
the unknown delay D ≤ D ≤ D̄ are known.

Assumption 2. The pair (A,B) is controllable, the pair (A,C) is

observable, and (K,L) ∈ R
1×n ×R

n×p are stabilizing gains.

Assumption 3. For a constant set-point Y r, there exists a couple
(X r,U r) satisfying

{

0 = AX r +BU r

Y r = CX r (4)
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The existence of such a non-degenerate equilibrium Y r implies
that the transfer function does not introduce pure integrators.

The control objective is to have system (2) to track the given
set-point Y r through an observer feedback. Before presenting
the proposed control design, one can discuss the assumptions
listed above. Assumption 1 is formulated for Lyapunov analysis
purposes only, and is easily borne out for practical purposes,
while Assumption 3 guarantees the well-posedness of the stud-
ied problem. Finally, only Assumption 2 can be considered
as restrictive. It requires the equivalent delay-free form of the
state-space formulation to be both controllable and observable,
which is a reasonable assumption to design an output feedback
stabilizing controller.

3. CONTROL DESIGN

We now present the control method we propose. Following
the approach of Krstic [2008] (see also Bresch-Pietri et al.
[2010] and Bresch-Pietri and Krstic [2009]), one can introduce
a transport model of the delay by defining the distributed input
u(x, t) = U(t + D(x− 1)) , x ∈ [0,1]. The plant (3) can then be
represented under the form











Ẋ(t) = AX(t)+Bu(0, t)
Dut(x, t) = ux(x, t)
u(1, t) = U(t)
Y (t) = CX(t)

(5)

Unfortunately, because the speed of propagation of the dis-
tributed waiting line 1/D is uncertain, one cannot deduce the
value of u(x, t) for each x ∈ [0,1] from the history of the given
input U(t). Therefore, to design the control, we consider an
estimate

û(x, t) =U(t + D̂(t)(x−1)) (6)

of the distributed input, where D̂(t) is a (varying) estimate of the
delay. With this estimate waiting line, we define an observer of
the system state







˙̂X(t) = AX̂(t)+Bû(0, t)−L(Y −CX̂(t))

D̂(t)ût(x, t) = ûx(x, t)+ ˙̂D(t)(x−1)ûx(x, t)
û(1, t) = U(t)

(7)

When both the system state and the delay value are perfectly
known, the following predictive controller (see e.g. Smith
[1959], Artstein [1982]) achieves exponential stability of sys-
tem (3) toward 0

U(t) =KXP(t +D)

=K

(

eADX(t)+
∫ t

t−D
eA(t−s)BU(s)ds

)

(8)

This controller can be understood as a delay-version of the
classical proportional controller, where XP(t + D) can be in-
terpreted as a D-units of time ahead prediction of the system
state, starting from X(t) and driven by the control history over
a D-units of time window. Applying the certainty equivalence
principle, we use here the control law

U(t) =U r −KX r +K
[

eAD̂(t)X̂(t)

+D̂(t)
∫ 1

0
eAD̂(t)(1−y)Bû(y, t)dy

]

(9)

where the estimate delay satisfies the following “growth condi-
tion”.

Assumption 4. There exists a positive constant M > 0 such that,
with D̃(t) = D− D̂(t) and τD ∈ C 0([0;+∞[),

˙̂D(t) =γDProj[D;D̄] {τD(t)} (10)

∀t ≥ 0 ,τD(t)D̃(t) ≥ 0 and |τD(t)| < M (11)

This assumption allows one to consider sharp delay update
laws, provided that the direction τD improves the estimate. This
can be achieved using various methods (for a survey of these
methods see O’Dwyer [2000]), exemplified in this article in
Section 5. Finally, for sake of conciseness, we introduce the
following error variables used below

∆X(t) =X(t)−X r (12)

∆X̂ =X̂(t)−X r (13)

e(x, t) =u(x, t)−U r (14)

ê(x, t) =û(x, t)−U r (15)

X̃(t) =X(t)− X̂(t) (16)

ẽ(x, t) =e(x, t)− ê(x, t) (17)

where (12)-(15) represent the tracking errors and (16)-(17) the
estimation errors, resulting, respectively, from the observation
of the state and of the estimation of the waiting line.

Theorem 1. Consider the closed-loop system consisting of (5),
the control law (9), the estimate plant (7) with a delay update
law satisfying Assumption 4. Let us define

Γ(t) =|∆X(t)|2 + |∆X̂(t)|2 +‖e(t)‖2

+‖ê(t)‖2 +‖êx(t)‖
2 + D̃(t)2 (18)

There exists γ∗ > 0, R > 0 and ρ > 0 such that, if the initial
state satisfies Γ(0) < ρ and if 0 ≤ γD < γ∗ then

∀t ≥ 0, Γ(t) ≤ RΓ(0) (19)

Y (t) →
t→∞

Y r, X(t) →
t→∞

X r, X̃(t) →
t→∞

0 (20)

and U(t) →
t→∞

U r (21)

The state variables of the plant (5) and the observer (7) are
(X , X̂ ,u, û, D̂). Equivalently, the condition stated in Theorem1
(Γ(0) sufficiently small) requires that, initially, each of these
variables are sufficiently close to their corresponding trajec-
tories (namely X r, U r and the unknown value D). Another
formulation is presented in the Lyapunov proof in the next sec-
tion, as this condition is expressed with the equivalent variables
(∆X̂ , X̃ , ẽ, ŵ)(see (22)).

4. PROOF OF THEOREM 1

In the following, we use the systematic Lyapunov tools intro-
duced by Krstic [2008] to analyze the stability of input time-
delay systems. These tools are based on a backstepping trans-
formation of the actuator state 1 . Pursuing this approach, we
define the following transformed distributed input, satisfying a
Volterra integral equation of the second kind,

ŵ(x, t) =ê(x, t)− D̂(t)
∫ x

0
KeAD̂(t)(x−y)Bê(y, t)dy

−KeAD̂(t)x
∆X̂(t) (22)

1 this transformation is made to convert the plant (5) into the target system

Ẋ(t) = (A+BK)X(t)+Bw(0, t), Y (t) = CX(t)
Dwt(x, t) = wx(x, t) with the boundary condition w(1, t) = 0.
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jointly with its inverse,

ê(x, t) =ŵ(x, t)+ D̂(t)
∫ x

0
Ke(A+BK)D̂(t)(x−y)Bŵ(y, t)dy

+Ke(A+BK)D̂(t)x
∆X̂(t) (23)

designed to fulfill ŵ(1, t) = 0.

4.1 Lyapunov analysis

We introduce the following Lyapunov-Krasovskii functional
candidate

V (t) =∆X̂(t)T P1∆X̂(t)+b0X̃(t)T P2X̃(t)

+b1D

∫ 1

0
(1+ x)ẽ(x, t)2dx

+b2D̂(t)
∫ 1

0
(1+ x)ŵ(x, t)2dx

+b2D̂(t)
∫ 1

0
(1+ x)ŵx(x, t)

2dx+ D̃(t)2 (24)

where b0, b1 and b2 are positive coefficients and the symmetric
definite matrices P1 and P2 satisfy the following Lyapunov
equations, for given symmetric definite positive matrices Q1

and Q2,

P1(A+BK)+(A+BK)T P1 = −Q1 (25)

P2(A+LC)+(A+LC)T P2 = −Q2 (26)

This functional is equivalent to Γ, defined in (18), as will be
shown, but reveals more helpful in the analysis, as the set of
variables (ẽ, ŵ, ŵx) presents boundary conditions equal to zero.
In details, this particular property is handy through integrations
by parts, involving the factor (1 + x) under the integrals, to
create bounding negative terms.

First, consider the dynamics of the variables involved in (24),
which can be written, using (22) and (23), as

˙̃X(t) = (A+LC)X̃(t)+Bẽ(0, t) (27)

d∆X̂

dt
= (A+BK)∆X̂(t)+Bŵ(0, t)−LCX̃(t) (28)

Dẽ(x, t) = ẽx(x, t)− D̃(t)g(x, t)

− ˙̂D(t)D(x−1)g(x, t) (29)

ẽ(1, t) = 0 (30)

D̂(t)ŵt(x, t) = ŵx(x, t)−
˙̂D(t)D̂(t)h(x, t)

+ D̂(t)KeAD̂(t)xLCX̃(t) (31)

ŵ(1, t) = 0 (32)

D̂(t)ŵxt(x, t) = ŵxx(x, t)−
˙̂D(t)D̂(t)hx(x, t)

+ D̂(t)2KAeAD̂(t)xLCX̃(t) (33)

ŵx(1, t) = ˙̂D(t)D̂(t)h(1, t)− D̂(t)KeAD̂(t)LCX̃(t) (34)

where the functions g and h are defined in Appendix A. Taking
a time-derivative of V and using suitable integrations by parts,
we obtain

V̇ (t) =−∆X̂(t)T Q1∆X̂(t)+2∆X̂(t)T P1Bŵ(0, t)

−2∆X̂(t)T P1LCX̃(t)+b0

(

−X̃(t)T Q2X̃(t)

+2X̃(t)P2Bẽ(0, t)
)

+b1

(

−‖ẽ(t)‖2 − ẽ(0, t)2

−2D̃(t)
∫ 1

0
(1+ x)ẽ(x, t)g(x, t)dx

+2 ˙̂D(t)D
∫ 1

0
(1− x2)ẽ(x, t)g(x, t)dx

)

+b2

(

−‖ŵ(t)‖2 − ŵ(0, t)2

−2 ˙̂D(t)D̂(t)
∫ 1

0
(1+ x)ŵ(x, t)h(x, t)dx

+2D̂(t)
∫ 1

0
(1+ x)ŵ(x, t)KeAD̂(t)xLCX̃(t)dx

)

+b2

(

2ŵx(1, t)2 − ŵx(0, t)2 −‖ŵx(t)‖
2

−2D̂(t) ˙̂D(t)
∫ 1

0
(1+ x)ŵx(x, t)hx(x, t)dx

+2D̂(t)2
∫ 1

0
(1+ x)ŵx(x, t)KAeAD̂(t)xLCX̃(t)dx

)

+b2
˙̂D(t)

(

∫ 1

0
(1+ x)ŵ(x, t)2dx

+
∫ 1

0
(1+ x)ŵx(x, t)

2dx

)

−2D̃(t) ˙̂D(t)

Choosing b2 ≥ 4|P1B|2/λ1, b0 ≥ 16
|P2LC|2

λ1λ2
and applying Young’s

inequality with Assumption 4, one gets

V̇ (t) ≤−
λ1

4
|∆X̂(t)|2 −

b0λ2

4
|X̃(t)|2 −b1 ‖ẽ(t)‖2

−

(

b1 −
2|P2B|2

λ2b0

)

ẽ(0, t)2 −b2 ‖ŵ(t)‖2

−
b2

2
ŵ(0, t)2 +2b2ŵx(1, t)2 −b2 ‖ŵx‖

2

−b2ŵx(0, t)2 +2b1|D̃(t)|
∫ 1

0
(1+ x)|ẽ(x, t)||g(x, t|dx

+2b1γDMD

∫ 1

0
(1− x2)|ẽ(x, t)||g(x, t)|dx

+2b2γDMD̂(t)
∫ 1

0
(1+ x)|ŵ(x, t)||h(x, t)|dx

+2b2D̂(t)
∫ 1

0
(1+ x)|KeAD̂(t)xLCX̃(t)ŵ(x, t)|dx

+2b2γDMD̂(t)

∣

∣

∣

∣

∫ 1

0
(1+ x)ŵx(x, t)hx(x, t)dx

∣

∣

∣

∣

+2b2D̂(t)2
∫ 1

0
(1+ x)|KAeAD̂(t)xLCX̃(t)ŵx(x, t)|dx

+2b2γDM
(

‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

We now use the inequalities given in Appendix B to bound

the resulting positive terms. By choosing b1 ≥
2|P2B|2

λ2b0
and b0 ≥

8b2
λ2

(M3 +M4 +M6), we can define the following quantities

V0(t) =|∆X̂(t)|2 + |X̃(t)|2 +‖ẽ(t)‖2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2

(35)

η =min{λ1/4,b0λ2/8,b1,b2/2} (36)

and obtain

V̇ (t) ≤−
(

η −b1M1|D̃(t)|− γD (b1MM1 +b2MM2

+b2γDM4 +b2MM5 +2b2M))V0(t)

−b2(1− γDM)ŵx(0, t)2

Employing the bound |D̃(t)| ≤ ε
2
+ V (t)

2ε , with ε > 0, and defin-

ing m(γD) = b1MM1 +b2MM2 +b2MM5 +2b2M+b2γDM4, we
get
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V̇ (t) ≤−

(

η −b1M1

[

ε

2
+

V (t)

2ε

]

− γDm(γD)

)

V0(t)

−b2(1− γDM)ŵx(0, t)2

Then, choosing the parameter ε and the gain γD such that

ε <
2η

b1M1

γD <min

{

1

M
,1,

η −b1M1ε/2

m(1)

}

(37)

and restricting the initial condition so that

V (0) < 2ε
η −b1M1ε/2− γDm(γD)

b1M1
(38)

we finally conclude that there exists a non-negative function µ
such that

V̇ (t) ≤−µ(t)V0(t) (39)

Therefore, in the end, we have established that

∀t ≥ 0 , V (t) ≤V (0) (40)

4.2 Equivalence

In view of obtaining the asymptotic stability result stated in
Theorem 1, we prove here that the two functionals Γ and V
are equivalent, i.e. that there exist constants a > 0 and b > 0
such that aV (t) ≤ Γ(t) ≤ bV (t).

First, considering (22)-(23) and applying Young’s inequality,
we establish the following inequalities

‖ê(x, t)‖2 ≤r1 ‖ŵ(x, t)‖2 + r2|∆X̂(t)|2 (41)

‖êx(x, t)‖
2 ≤r3 ‖ŵx(x, t)‖

2 + r4 ‖ŵ(x, t)‖2 + r5|∆X̂(t)|2

‖ŵ(x, t)‖2 ≤s1 ‖ê(x, t)‖2 + s2

∥

∥∆X̂(t)
∥

∥

2

‖ŵx(x, t)‖
2 ≤s3 ‖êx(x, t)‖

2 + s4 ‖ê(x, t)‖2 + s5|∆X̂(t)|2

where r1,r2,r3,r4,r5,s1,s2,s3,s4 and s5 are positive constants.
Then, one easily obtains

Γ3(t) ≤2|X̃(t)|2 +2|∆X̂(t)|2 +2‖ẽ(t)‖2 +3‖ê(t)‖2

+‖êx(t)‖
2 + D̃(t)2

≤
max{3+3r2 + r5,3r1 + r4,r3}

min{λ1,b0λ2,b1D,b2D,1}
V3(t) (42)

V3(t) ≤max{λ1 +2b0λ2 +2b2D̄(s2 + s5),

4b1D+2b2D̄(s−1+ s4),2b2D̄s3,1}Γ(t) (43)

which gives the desired stability result (19) with R = b/a.

4.3 Convergence properties

We now conclude the proof of Theorem 1, applying Barbalat’s
Lemma for |X̃(t)|2, |∆X̂(t)|2 and Ũ(t)2.

Integrating (39) between 0 and +∞, it is easy to obtain the
integrability of the first two quantities. Further, from (27)-(28),
we get

d|X̃(t)|2

dt
=2X̃(t)T

(

(A+LC)X̃(t)+Bẽ(0, t)
)

d

dt

(

|∆X̂(t)|2
)

=2∆X̂(t)T
(

(A+BK)∆X̂(t)+Bŵ(0, t)−LCX̃(t)
)

From (40), it follows that |X̃(t)|, |∆X̂(t)|,‖ẽ(t)‖ ,‖ŵ(t)‖ and
‖ŵx(t)‖ are uniformly bounded. Then, with (41), we obtain the
uniform boundedness of ‖ê(t)‖ and, consequently, of ‖û(t)‖.
With (9), we conclude that U(t) is uniformly bounded, and,

therefore, that ẽ(0, t) = U(t −D)−U(t − D̂(t)) is bounded for

t ≥ D̄. We finally get the boundedness of d(|X̃(t)|2)/dt for
t ≥ D̄ and conclude, with Barbalat’s Lemma, that X̃(t) → 0 as
t → ∞.

Similarly, from the definition (22), we get the boundedness of
ŵ(0, t) for t ≥ D̄ and, immediately, the one of d(|∆X̂(t)|2)/dt

for t ≥ D̄. We conclude, by Barbalat’s Lemma, that ∆X̂(t) → 0
as t → ∞. Comparing this result with the previous one, we get
(20).

Finally, one can obtain

dŨ(t)2

dt
=2Ũ(t)

(

KeAD̂(t) d(∆X̂(t))

dt
+ ˙̂D(t)G0(t)+H0(t)

)

with

G0(t) =K
[

eAD̂(t)A∆X̂(t)

+
∫ 1

0
(I +AD̂(t)(1− y))eAD̂(t)(1−y)Bê(y, t)dy

+
∫ 1

0
eAD̂(t)(1−y)B(y−1)êx(y, t)dy

]

H0(t) =K

∫ 1

0
eAD̂(t)(1−y)Bêx(y, t)dy

From the previous analysis, it is straightforward to obtain the
uniform boundedness of G0(t) and H0(t). Then, with Assump-

tion 4, we get the uniform boundedness of dŨ(t)2/dt and we
conclude by Barbalat’s Lemma.

5. ILLUSTRATIVE EXAMPLE

In this section, to illustrate the merits and the feasibility of the
proposed approach, we consider an open-loop unstable process
of order three with an unknown time-delay studied in Huang
and Lin [1995] and Huang and Chen [1997]

Y (s) =
e−0.5s

(5s−1)(2s+1)(0.5s+1)
U(s) (44)

We compare the obtained simulation results to both the PID
proposed in Huang and Lin [1995] and the three-elements
structure proposed by Huang and Chen [1997]. The general
scheme of our strategy is given in Fig. 1

5.1 Model and necessity of an observer

In Huang and Chen [1997], the proposed controller is designed
only for first-order and second-order delayed unstable plants.
Consequently, for control purposes, the author use the effective
following approximation

Y (s) ≈
e−0.939s

(5s−1)(2.07s+1)
U(s) =

e−Ds

(as−1)(T s+1)
U(s)

(45)

proposed in Huang and Lin [1995]. In details, the stable part
of the transfer function has been approximated by a first-order
delayed function, using a closed-loop identification technique
and a least mean-square optimization in the frequency domain.

The controller settings are sought after based on this approxi-
mation model, which highlights the necessity of constructing an
observer. We introduce the following state-space representation

A =

(

0 1
5×2.07

1
[

1
5
− 1

2.07

]

)

, B =

(

1
5
× 1

2.07
0

)

, C = (0 1) (46)
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Estimated transport (7)
û(x, t)

(Xr, Ur)

Y (t)

Calculation of the state
and control references

Y r

Delay adaptation (Ass. 4)
˙̂
D(t)

Control (9)
U(t)

Observer (7)

X̂(t)

Process (2)
b(s)e−Ds

a(s)

U(t)

Fig. 1. The proposed adaptive control structure. The closed-loop algorithm uses distributed parameters system (i.e a varying speed
waiting-line) and a system state observer.
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Fig. 2. Response of the adaptive controller for the output
trajectory presented in Fig. 2(a), with Y (0) = 0, u(:,0) = 0

and D̂0(0) = 0.4s and with the delay adaptation strategy
presented in Section 5.

and construct the observer






˙̂X(t) = AX̂(t)+Bû(0, t)+L(Y −CX̂(t))

D̂(t)ut(x, t) = ûx(x, t)+ ˙̂D(t)(x−1)ûx(x, t)
û(1, t) = U(t)

(47)

where the observer gain are, e.g. set to L = [−2.09 −2.72]T .

5.2 Delay adaptation

To obtain a delay update law satisfying Assumption 4, we
consider here the following instantaneous cost function

φ : (t, D̂) ∈ [t0;+∞]× [D; D̄] 7→ |YP(t, D̂)−Y (t)|2 (48)

where Yp(t, D̂) is a (t − t0)−units of time prediction of the
system output, starting from Y (t0) as initial condition and

assuming that the actual delay value is D̂(t). The instant t0 is
chosen such that the corresponding system state X(t0) is known.
Then, using a steepest descent algorithm, one can take

τD(t) =− γD(YP(t, D̂)−Y (t))×
∂YP

∂ D̂
(t, D̂) (49)

This choice is based on the same idea that in most identification
techniques, i.e. the comparison of two versions of the output
signal, the one corresponding to the unknown delay D and the
other to the controlled delay D̂(t).

This adaptation gives an accurate estimation of the unknown
delay, provided that the initial delay estimate is sufficiently
close to the true delay value. In details, this condition, which is
compliant with the one already stated in the Lyapunov analysis,
guarantees that no extraneous local minimum interfere with the
minimization process.

The instable part of the process favorably conditions the prob-
lem, but requires cautious discretizations while simulating the
process. Further, the computation of YP, and particularly of the
involved integral, requires an accurate knowledge of the dy-
namics of the system. For this reason, we define the following
state-space representation of the original transfer function (44),
jointly with the original delay D0 = 0.5s,

A0 =

(

0 1 0
0 0 1

0.2 −0.5 −2.3

)

, B0 =

(

0
0

0.2

)

(50)

C0 =(1 0 0) (51)

The two delays are related by by the following expression
D(t) = D0(t)+0.439, that we extend to their estimations. With

this relation, the signals YP and ∂YP/∂ D̂ can be computed via
the exact dynamics of the system output as
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IAE [-] T5% [s]

Proposed Strategy 1.55 3.04

Three-element Controller 3.04 8.02

PID 5.37 14.81

Table 1. Performances in tracking for the first ref-
erence step (0-20s) for the different controllers: In-
tegral Absolute Error (IAE) and 5% time-response.

YP(t, D̂) =C0

[

eA0(t−t0)X(t0)+
∫ t

t0

eA0(t−τ)B0U(τ − D̂0)dτ

]

(52)

∂YP

∂ D̂
(t, D̂) =−C0

∫ t

t0

eA0(t−τ)B0
dU

dt
(τ − D̂0)dτ (53)

We can deduce from this adaptation the estimate D̂(t) =
D̂0(t)+0.439 and use it in the control.

5.3 Simulation set-up and results

The tracked trajectory is given in Fig. 2(a). The configuration of
the first 20s in the simulation are similar to the one presented in
Huang and Chen [1997], with zero initial conditions Y (0) = 0
and u(:,0) = 0 = û(:,0). The initial delays estimates are taken

as D̂0(0) = 0.4 = D̂(0)− 0.439. Finally, the control gain K is
chosen thanks to a LQR criterion, and the delay update gain is
arbitrarily set to γD = 10.

The obtained results are presented in Fig.2. First, as shown
in Table 1, the proposed strategy compares favorably to the
two other controllers mentioned in this paper, in both accuracy
of tracking and speed. This conclusion is not surprising as
the reference controller of Huang and Chen [1997] is set by
considering a certain trade-off with other criteria, such as the
ability to reject disturbances which are out-of-the-scope of this
paper.

Second, one can notice on Fig.2(b) that the delay estimate
provides a good identification of the unknown delay. The most
visible improvements in this estimation occur at step changes
of the reference signal. This is consistent with the employed
update law, as the cost function presents its most important
gradient at these instants. In other words, the transient behaviors
of the system output provides delay observability.

The delay identification has direct consequences on the control
efficiency : overshoots observed in the output for each reference
step change are less important after 40s, which correspond to
the convergence of the delay estimate.

6. CONCLUSION

In this paper, a state observer technique has been proposed to
control time-delay system, with an uncertainty on the delay,
through the methodology introduced in Krstic [2008], and
further developed in view of application in Bresch-Pietri et al.
[2010]. This extension is of particular interest for systems given
under the form of a transfer function, such as the example
chosen to illustrate the method. Such SISO descriptions are
generalized in numerous process-control application, where
step tests are used to identify the various influences of the inputs
of the systems (sse e.g. Richalet [1998] and Petit et al. [2002]).

One path to explore is the application of the presented ap-
proach to such systems. Other problem of importance, both

from a practical and a theoretical view points, is the issue of
disturbance rejection. Combining integrators with the presented
methodology seems like a natural solution to reject biases but
a convergence analysis will certainly require careful attention.
A third issue is the robustness to plant uncertainties, for which
the incorporation of the adaptive scheme developed in Bresch-
Pietri et al. [2010] into the presented control seems a promising
way. These are subjects of future research.

7. APPENDIX

7.1 Appendix A : Dynamics functions

g(x, t) =
ŵx(x, t)

D̂(t)
+KBŵ(x, t)+ D̂(t)

∫ x

0
K(A+BK)

× e(A+BK)D̂(t)(x−y)Bŵ(y, t)dy

+K(A+BK)e(A+BK)D̂(t)x
∆X̂(t)

h(x, t) = (1− x)g(x, t)+ D̂(t)
∫ x

0
KeAD̂(t)(x−y)B(y−1)

×g(y, t)dy+
∫ x

0
K(I +AD̂(t)(x− y))eAD̂(t)(x−y)B

[

ŵ(y, t)+ D̂(t)
∫ y

0
Ke(A+BK)D̂(t)(y−ξ )Bŵ(ξ , t)dξ

+Ke(A+BK)D̂(t)y
∆X̂(t)

]

dy+KAxeAD̂(t)x
∆X̂(t) (54)

7.2 Appendix B : Bounds used in the Lyapunov Analysis

Using the expression of the functions given in Appendix A,
jointly with Young’s inequality and Cauchy-Schwartz’s in-
equality, one can show that there exist positive constants
M1,M2, ...,M6 independent of initial conditions such that

2

∫ 1

0
(1+ x)|ẽ(x, t)||g(x, t)|dx

≤ M1

(

|∆X̂(t)|2 +‖ẽ(t)‖2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

2D

∫ 1

0
(1− x2)|ẽ(x, t)||g(x, t)|dx

≤ M1

(

|∆X̂(t)|2 +‖ẽ(t)‖2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

2D̂(t)
∫ 1

0
(1+ x)|ŵ(x, t)||h(x, t)|dx

≤ M2

(

|∆X̂(t)|2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

2D̂(t)
∫ 1

0
(1+ x)|KeAD̂(t)xLCŵ(x, t)dx|

≤ M3|X̃(t)|2 +‖ŵ(t)‖2 /2

2ŵx(1, t)2

≤ M4

(

|X̃(t)|2 + γ2
D

(

|∆X̂(t)|2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
))

2D̂(t)

∣

∣

∣

∣

∫ 1

0
(1+ x)ŵx(x, t)h(x, t)dx

∣

∣

∣

∣

≤ ŵx(0, t)2 +M5

(

|∆X̂(t)|2 +‖ŵ(t)‖2 +‖ŵx(t)‖
2
)

2D̂(t)2
∫ 1

0
(1+ x)|KAeAD̂xLCŵx(x, t)|dx

≤ M6|X̃(t)|2 +‖ŵ(t)‖2 /2
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