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Abstract: This paper considers an energy management problem for an electric vehicle and
explains how to solve it with an inversion-based approach. Modeling assumptions are discussed
and yield the formulation of a simple, yet representative, optimal control problem to solve. This
tutorial problem can serve as a benchmark for future works and other optimization techniques
as it comprises the effects of gravity, aerodynamics and the equations of the electric drive.
The purpose of this paper is to expose, step by step, how to compute the optimal trajectories
using a presented inversion-based approach, in which the state variables, the control, and the
adjoint variables are analytically parameterized by a single unknown which satisfies a high order
two-point boundary value problem. Numerical results are provided.

1. INTRODUCTION

Over the last decades, to maximize the energy efficiency of
automotive vehicles, engine control technologies have been
addressing with great efforts the important problems of
transient control of energy production while limiting pollu-
tant emissions (see Jankovic et al. [1998], Van Nieuwstadt
et al. [2000], Eriksson et al. [2002], Guzzella and Sciarretta
[2007], Shaver [2009], Chiang et al. [2007], Chauvin [2006],
Hillion [2009], Lepreux [2009], Leroy [2010], Moulin [2010]
among others). An also important problem is the one of
energy management by means of high-level vehicle driving
optimization. This is true for internal combustion engines,
hybrid and electric vehicles as well (see e.g. Brahma et al.
[2000], Gong et al. [2008], Lin et al. [2003]). In a typical
such problem, the path to follow is known in advance, as
the beginning and endpoint reaching times are, while the
question is to find the most efficient way to travel along
this path in terms of energy savings. The goal is thus to
optimize the acceleration of the vehicle with respect to
its energy consumption while meeting drivability require-
ments.

This problem and related ones (see e.g. Guzzella and Sciar-
retta [2007], Sciarretta and Guzzella [2007] and references
therein) have been given more and more importance as
enabling embedded sensors have become available. In par-
ticular, radar ranging devices, GPS, inertial measurement
units (IMU), navigation and cartographic systems with
altimetry, are now considered in numerous applications
(see the rendez-vous problem studied in Sciarretta and
Guzzella [2005]).

In this paper, we study such a problem in which a car
powered by a DC-type motor is considered. This tutorial
problem can be addressed with various optimization tech-
niques. We hope it can serve as a benchmark for future re-
search. We give several details and modeling assumptions.

Then, we propose a method to solve the proposed optimal
control problem (OCP). It relies on the inversion based
methodology to address such problems (see e.g. Murray
et al. [2003]). The steps bringing a high order two-point
boundary value problem are detailed. In a sequence, the
states variables, the control, and the adjoint variables are
analytically parameterized by a single unknown. Numeri-
cal results obtained with a freely available software pack-
age are given. They illustrate the merits of the proposed
method, which, thanks to its relatively low computational
burden (the Intel Core 2 Duo CPU usage being largely be-
low 1 sec.), could be included in future feedback strategies,
e.g. through a receding horizon approach (as in e.g. Borhan
et al. [2009]).

The paper is organized as follows. In Section 2, we expose
the OCP and present the model under consideration. In
Section 3, we expose the solution method, by underlining
the invertibility of the primal and dual systems invoked in
the calculus of variations of the OCP. Finally, in Section 4,
we give some conclusions and sketch future directions of
research.

2. SYSTEM MODELING AND OPTIMAL CONTROL
PROBLEM

The vehicle under consideration is powered by a DC-type
motor. However, permanent-magnet synchronous motors
can be modeled by similar equations, under certain as-
sumptions (Guzzella and Sciarretta [2007]). We now briefly
expose modeling steps yielding a two-states, single-input
dynamical system, and propose motivations for an OCP
to be solved.

A sketch of the vehicle with its power-train including a
battery, a DC/DC converter, a motor, and a transmission
is presented in Fig. 1.
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Fig. 1. Schematics of the full electric powertrain consid-
ered.

2.1 DC-type motor

The equivalent electric circuit of a DC motor armature
reads

ImRm = Um − κω (1)
where Im is the armature current, Rm is the armature
resistance, Um is the armature voltage, κ is the speed
constant, and ω is the rotational speed of the motor. Losses
other than ohmic are neglected in this model.

The motor torque production is described by
T = κIm (2)

The electric power consumption Pm is calculated by ex-
pressing Im, Um as a function of T, ω,

Pm = ImUm = ωT +
Rm

κ2
T 2 (3)

Define a control variable u as a percent torque demand,
T = uτ (4)

where τ is the motor maximum torque. This parameter
changes with motor speed, particularly if flux-weakening
strategies are applied. For simplicity, this dependency is
neglected here.

2.2 Transmission and vehicle model

A single-gear transmission without losses is considered
here, including the final gear. Rigid wheels without slip
are further assumed, from whence,

F =
uτRt

r
, ω =

vRt

r
(5)

where F is the traction force at the wheels, v is the vehicle
longitudinal speed, Rt is the transmission ratio, and r is
the wheel radius.

Newton’s third law is applied to the longitudinal direction
of the vehicle body, under the action of rolling resistance,
aerodynamic, and gravity forces (see Fig. 1), leading to

mv̇ =
uτRt

r
−

1

2
ρaAfcdv

2−mgcr −mg sin(α(x)), ẋ = v

(6)
where m is the vehicle mass, ρa is the external air density,
Af is the vehicle frontal area, cd is the aerodynamic drag

coefficient, cr is the rolling resistance coefficient, α is the
road slope as a function of the position x along the road,
and g is the acceleration of gravity.

Equations (6) can be rewritten as

v̇ = h1u− h2v
2 − h0 − γ(x), ẋ = v (7)

where

h0 � gcr, h1 �
τRt

mr
, h2 �

cdAfρa

2m
(8)

and
γ(x) � g sin(α(x)) (9)

The power consumption (3) can be rewritten as

Pm = b1uv + b2u
2 (10)

where

b1 �
τRt

r
, b2 �

Rm

κ2
τ2 (11)

2.3 Optimal control problem

Considering the preceding equations, we desire to find a
control strategy that minimizes the power consumption
under the constraints that the vehicle must reach a des-
tination point at a distance D in a given time T , with a
zero velocity, starting from a given point, at rest. This
yields the formulation of the following optimal control
problem (OCP) where an integral cost and end-points
state constraints come into play⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min

∫ T

0

(
b1u(t)v(t) + b2u

2(t)
)
dt

v̇ = h1u− h2v
2 − h0 − γ(x)

ẋ = v

x(0) = 0, x(T ) = D

v(0) = v(T ) = 0

(12)

Note that, with respect to the optimal control of the
propulsion in an ICE-base vehicle (Guzzella and Sciarretta
[2007], Sciarretta and Guzzella [2005]), the term b2u

2 fur-
ther appears in the power consumption to be minimized,
while the state equations keep the same shape. As a further
remark, in the case the electric motor would be controlled
by means of its voltage, a slightly different formulation
would result, implying the same shape of the cost function
(with u now representing the voltage ratio with respect
to the battery voltage and with a negative b1) and an
additional term in the speed state equation, which is linear
in v. As it is easy to see, the methods illustrated below keep
their validity to these cases as well.

3. SOLUTION METHOD

The preceding OCP (12) can be solved by numerous meth-
ods. Among these are Dynamic programming (see e.g Bert-
sekas [2001], Bryson [1999], Sundström and Guzzella
[2009]), direct methods (e.g. collocation as exposed in Har-
graves and Paris [1987]), and indirect methods (a.k.a.
adjoint methods). We now briefly outline the main char-
acteristics of these methods.

Dynamic programming is a very efficient method when
applied to systems of low dimensions, such as the one
considered here. Its main advantage is that is provides a
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feedback solution, because it generates a field of extremals
covering every possible initial condition, at once. On the
other hand, its computational burden is relatively high,
and it can reveal troublesome to generalize to higher
dimensions systems. Recently, it has been applied on
several problems related to the one considered in this
article (see e.g. Guzzella and Sciarretta [2007]).

In the field of trajectory generation problems, leaving out
the previously discussed approach of dynamic program-
ming, two families of numerical techniques are commonly
used (see von Stryk and Bulirsch [1992a]). The direct
methods imply a discretization of the optimal control prob-
lem, yielding a nonlinear program (NLP). On the other
hand, indirect methods are based on the solution of neces-
sary conditions for optimality, as derived by the calculus of
variations. While direct methods have been the workhorse
of control engineers (as advocated in Hargraves and Paris
[1987], Betts [2001, 1998]), indirect methods are usually
reported to produce higher accuracy solutions, although
being relatively instable. Both approaches can be cascaded
to take advantages of these properties (see Bulirsch et al.
[1993], von Stryk and Bulirsch [1992b], Shen and Tsiotras
[1999]).

In the following, we explain how to setup such an indirect
approach using commonly and freely available software. In-
terestingly, this method takes advantage of the geometric
structure of the system differential equations. As a result
the computational burden is alleviated.

3.1 Geometric structure of the system equations

Geometric tools of nonlinear control theory (see Isidori
[1989], Nijmeijer and van der Schaft [1990] for an overview
of this field) have long been used for feedback linearization
of control-affine systems. The induced changes of variables
readily solve the inverse problems of computing inputs
corresponding to a prescribed behavior of outputs. When
trajectory optimization is desired, further techniques are
needed.

As it has been noted in Milam [2003], Petit et al. [2001b],
it is advantageous to use the geometric structure of the
dynamics to solve an OCP. In particular, the invertibility
or partial invertibility (i.e. the system may have a zero
dynamics) in the input-ouput sense of geometric control of
nonlinear systems (see again Isidori [1989], Nijmeijer and
van der Schaft [1990]), is a key property in this context.
The reason for this is as follows. In general collocation
methods, coefficients are used to approximate with basis
functions both states and inputs (see Hargraves and Paris
[1987]). While it was known since Seywald [1994] that it
is numerically efficient to eliminate the control, it was
emphasized in Petit et al. [2001b], Milam [2003] that
it is possible to reduce the problem further. In details,
the numerical impact of the relative degree (as defined
in Isidori [1989]) of the output chosen to cast the optimal
control problem into a NLP was emphasized.

Choosing outputs with maximum relative degrees is the
key to efficient variable elimination that lowers the number
of required coefficients (see for example Petit et al. [2001a],
Ross et al. [2002], Fahroo and Ross [2002], El-Kady [2003],
Neckel et al. [2003], Carson III et al. [2006]). In differential

equations, in constraints, and in cost functions, unneces-
sary variables are substituted with successive derivatives of
the chosen outputs. When combined to a NLP solver (such
as NPSOL by Gill et al. [1998], e. g.), this can induce dras-
tic speed-ups in numerical solving (see Nieuwstadt [1996],
Steinbach [1997], Agrawal and Faiz [1998], Milam et al.
[2000], Ross and Fahroo [2002], Oldenburg and Marquardt
[2002], Murray et al. [2003], Bhattacharya [2006]).

Interestingly, this (at least partial) invertibility plays a
similar role in indirect methods. In Chaplais and Petit
[2003], the case of single-input single-output (SISO) sys-
tems with a n-dimensional state was addressed. It was
shown that r the relative degree of the primal system also
plays a role in the adjoint (dual) dynamics. It appears that
the two-point boundary value problem (TPBVP) implied
by the stationarity conditions of the calculus of variations
can be rewritten by eliminating many variables. Only n−r
variables are required. In the case of full feedback linearis-
ability, the primal and adjoint dynamics take the form of
a 2n-degree differential equation in a single variable: the
linearizing output. The adjoint variables are computed and
eliminated. In Chaplais and Petit [2008], the general case
of multi-inputs multi-outputs (MIMO) systems was ad-
dressed. Noting n the dimension of the state, m the num-
ber of inputs, and r the total relative degree. It was shown
how to determine a 2n dimensional necessary state-space
form equation for the primal and adjoint dynamics using a
reduced number of variables (m+2(n−r)). Adjoint states
corresponding to the linearizable part of the dynamics can
be explicitly computed and eliminated from stationarity
conditions. This is the reason for the substantial reduction
of the computational burden associated to the numerical
solving of the TPBVP.

In the case of our OCP (12), the 2-states with 1 input
system is (fully) invertible. It is in fact already under a
cascade form, x being the linearizing output (see Isidori
[1989], Nijmeijer and van der Schaft [1990]). We take
advantage of this property and determine an equivalent
form of the TPBVP (17). It takes the form of a fourth
order differential equation in a single variable to be solved
along with appropriate boundary conditions.

We now explain how to proceed.

3.2 Stationarity conditions from calculus of variations

Consider the OCP (12) and introduce the Hamiltonian

H = b1uv + b2u
2 + λ1(h1u− h2v

2 − h0 − γ(x)) + λ2v
(13)

where λ1 and λ2 are two adjoint variables.

Following e.g. Bryson [1999], the calculus of variations,
in the absence of state or input constraints yields the
following stationarity conditions, ∀t ∈ [0, T ],

∂H

∂u
= 0 (14)

λ̇1 = −
∂H

∂v
(15)

λ̇2 = −
∂H

∂x
(16)

These take the form
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u = −
λ1h1 + b1v

2b2

λ̇1 = −b1u + 2λ1h2v − λ2

λ̇2 = λ1
dγ

dx

Together with the primal equations found in (12), they
constitute the following TPBVP

v̇ = −
λ1h1 + c1v

2b2
h1 − h2v

2 − h0 − γ(x)

ẋ = v

λ̇1 = b1
λ1h1 + c1v

2b2
+ 2λ1h2v − λ2

λ̇2 = λ1γ
′(x)

x(0) = 0, x(T ) = D

v(0) = v(T ) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

This set of 4 first-order differential equations in the 4
unknowns (x, v, λ1, λ2) with 4 endpoint conditions, must
be solved to eventually determine the optimal control

u = −
λ1h1 + c1v

2b2

3.3 Determination of a high order form of the TPBVP

As will now appear, the TPBVP (17) can be rewritten in
a much more compact form.

All the variables, including the primal variables x, v, u
and the dual variables λ1, λ2 can be rewritten, under the
assumption that the stationarity conditions hold, using x
and its derivatives (see Equations (18),(19),(20),(21) be-
low). Then, we will determine the fourth-order differential
equation satisfied by x (see Equation (22)), arising from

d2

dt2

(
∂H

∂u

)
= 0

In view of the computer implementation, it will be rewrit-
ten under the factorized form (22).

Explicit derivation of the primal and dual variables along
extremals From the beginning, it is known that the
system dynamics, which are already under a cascade form,
are invertible using x as linearizing output. In other words,
x, v, and u can be written using x and its derivatives. From
this, it is a general result, see Chaplais and Petit [2008],
that all the dual variables can also be determined from x
and its derivatives.

From the system dynamics, one has

v = ẋ (18)

u =
1

h1

(
v̇ + h2v

2 + h0 + γ(x)
)

=
1

h1

(
ẍ + h2.(ẋ)2 + h0 + γ(x)

)
(19)

Then, from the stationarity conditions, starting with ∂H
∂u

=
0, one obtains

λ1 = −
1

h1
(b1v + 2b2u)

= −
1

h1

(
b1ẋ + 2

b2

h1

(
ẍ + h2. (ẋ)

2
+ h0 + γ(x)

))
(20)

Then, d
dt

(
∂H
∂u

)
= 0 yields

λ2 = −b1u + 2λ1h2ẋ + 2
b2

h2
1

(
x(3) + 2h2ẋẍ + ẋγ′(x)

)
+

b1

h1
ẍ

=
−b1

h1

(
h2. (ẋ)

2
+ h0 + γ(x)

)

+ 2λ1h2v +
2b2

h2
1

(
x(3) + 2h2ẋẍ + γ′(x)ẋ

)
(21)

Finally, from the stationarity equation (recall that d
dt

(
∂H
∂u

)
=

0 holds for all t ∈ [0, T ])

d2

dt2

(
∂H

∂u

)
= 0

we obtain the high (fourth) order differential equation
to be satisfied by x. It is rewritten under the factorized
form (22)

Ax(4)+B(ẋ)x(3) + C(x, ẋ, ẍ)x(2)

+ D(x, ẋ, ẍ, x(3))ẋ− h1λ1(x, ẋ, ẍ)γ′(x) = 0 (22)

with (after some easy computations)

A = 2
b2

h1

B = 4
b2h2

h1
ẋ

C = 2
b2

h1
γ′(x) + 4

h2b2

h1
ẍ− 2h2b1ẋ + 2h1h2λ1

D = 2γ′′(x)
b2

h1
ẋ− b1γ

′(x) + 2h1h2 (−b1u + 2λ1h2ẋ− λ2)

The endpoints conditions associated to the single variable
fourth-order differential equations are

x(0) = 0 = ẋ(0) = ẋ(T ) = 0, x(T ) = D (23)

A simple particular case For sake of checking the analyt-
ical computations performed above and their forthcoming
numerical implementation, it is instructive to consider the
particular case where the aerodynamic friction and the
slope of the road are null, i.e. h2 = 0, γ(x) = 0. Then, the
fourth order differential equation (22) is simply

x(4) = 0 (24)

In other words, [0, T ] � t �→ x(t) is the interpolating
polynomial of third order, whose coefficients are readily
determined from the boundary conditions (23).

The adjoint variables are

λ1 = −
1

h1

(
b1ẋ + 2

b2

h1
(ẍ + h0)

)
(25)

λ2 = −
b1

h1
h0 + 2

b2

h2
1

x(3) (26)

In details, the variables histories are
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x(t) =3
D

T 2
t2 − 2

D

T 3
t3

v(t) =6
D

T 2
t− 6

D

T 3
t2

u(t) =
1

h1

(
6

D

T 2
− 12

D

T 3
t + h0

)

λ1(t) =−
1

h1

(
b1(6

D

T 2
t− 6

D

T 3
t2)

+ 2
b2

h1
((6

D

T 2
− 12

D

T 3
t) + h0)

)

λ2(t) =

(
−h0

b1

h1
− 24

b2D

h2
1T

3

)

3.4 Numerical implementation

The high order TPBVP (22)-(23) can be solved using the
freely distributed code COLNEW by Ascher et al. [1995]
which is implemented in the standard bvode routine in
the Scilab software package. Interestingly, new software
packages are now available (Kitzhofer et al. [2009]) in
the Matlab environment. Before presenting some obtained
results, we would like to mention some significant impact
on convergence that dealing with such a high order repre-
sentation of the system of differential equations has (see
also Chaplais and Petit [2008] for more discussions).

Performance of solvers on high order representations of
TPBVP In [Ascher et al., 1995, section 5.6] numerical
schemes for solving boundary value problems for high
order differential equations are studied. A collocation
scheme is proposed along with various implementations. A
first convergence result for linear boundary value problems
is proven 1 . Note p the regularity of the coefficients of the
linear differential system, and m its order. Approximate
solutions are sought after among piecewise polynomials
of degree k + m. There are k collocation points, and
h corresponds to the mesh size. Under an orthogonality
condition on the collocation points, the following error
estimates are derived in [Ascher et al., 1995, theorem
5.140]. At the mesh points xi

|u(j)(xi)− u(j)
π (xi)| = O(hp), O ≤ j ≤ m− 1 (27)

where u is the exact solution of the TPBVP problem
and uπ is the approximate solution obtained through the
collocation scheme for the high order system. Outside the
mesh points, one has

|u(j)(x)− u(j)
π (x)| = O(hk+m−j) + O(hp), O ≤ j ≤ m− 1

(28)
Interestingly, if one chooses to use the proposed collocation
method on an equivalent state-space form, (27) remains
unchanged, but (28) is replaced by

|y(x)− yπ(x)| = O(hk+1) + O(hp) (29)

where y (resp. yπ) is the exact (resp. approximate colloca-
tion) solution of the equivalent state-space form TPBVP
(y is the concatenation of the derivatives of u from order
0 to m − 1 see [Ascher et al., 1995, pages 220-222]). In

1 These approaches are then extended to the nonlinear case using
quasi-linearization and a Newton method to solve the nonlinear
problem. Roundoff errors depend on which functions basis is used
for collocation. This is beyond the scope of this remark; interested
readers can refer to [Ascher et al., 1995, section 5.6.4].

terms of convergence, the upper bound of (28) is better
than (29). If p is large enough, it clearly appears that
the collocation method for the high order system is more
accurate than the collocation method for the state-space
form at points outside the mesh.

Some numerical results The differential equation (22)
with boundary conditions (23) in the single unknown x is
implemented in Scilab.

The obtained results are reproduced in Figure 2. The
following value for the parameters were considered

b1 = 103; b2 = 103; h0 = 0.1; h1 = 1;h2 = 10−3;

with
D = 10;T = 1

and
γ(x) = p0 + p1x + p2x

2 + p3x
3; (30)

with
p0 = 3; p1 = 0.4; p2 = −1; p3 = 0.1;

The computational burden is very low 2 . On a standard
laptop equipped with an Intel Core 2 Duo 2.80 MHz with
4 GB of RAM, the whole computation, starting from 0 has
initial guess, took less than 200 ms. The routine bvode was
called with the following parameters: ncomp = 1 number
of differential equations, m = 4, aleft = 0, aright =
T , 7 collocation points per subinterval, 1 subinterval
in the initial mesh, a single tolerance of 10−7 on the
differential equation. The factors A, B, C and D appearing
in (22) were analytically differentiated with respect to their
arguments as the routine bvode makes frequent call to
their derivatives.

As a check, the computed value of the Hamiltonian (13),
which is constant along the extremals in theory, ranges
from −3630425.5 to −3630425.2. This stresses the accu-
racy of the employed method. The cost value is, after a
trapezoidal integration, 1228586.7

The obtained solution presents the expected features the
optimal should have: a steady increase of speed followed by
a decrease to reach the zero velocity at the endpoint. The
velocity history is not symmetrical, due to the asymmetry
of the slope profile over time.

4. CONCLUSION

In this paper, an optimal control problem for an electric
vehicle has been considered and treated by an inversion-
based trajectory generation approach. The dynamics and
the cost functional under consideration have been formu-
lated in a relatively simple and compact form, for sake
of proposing a benchmark problem for future works. Yet,
numerous efforts have been made to make this formulation
representative of true vehicle dynamics. The inversion-
based method has proven effective and accurate. Interest-
ingly, the case of state constraints, which is of importance
for applications and usually difficult to address both from
a theoretical and a practical viewpoint, can be treated
using saturation functions in the presented dynamics (the
reader can refer to Graichen et al. [2010], Graichen and
Petit [2009] for details) which are directly incorporated in

2 The interested reader can contact the authors to have access to
the implementation code.
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Fig. 2. Numerical results

the calculus of variations. Further works will be focused
on considering more general cases (most likely constrained
as previously discussed), over longer time horizons, to
account for complex trajectories involving various type of
roads, and numerous stops and starts. Addressing uncer-
tainties is also a topic of importance, and could be done
using several approaches, including observers, and receding
horizon techniques, to name a few.
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