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Abstract: Torque balancing for DI engines aims at eliminating the vibration mode
and decreasing the level of emissions induced by disturbances such as variability
in injectors efficiency, inertia and geometry between cylinders. The contribution of
this article is to present a real-time experimental setup along with simulations and
experimental results of estimation of the indicated torque of a DI engine. We build a
time-varying linear model of the system and design a linear observer to estimate the
indicated torque produced by each cylinder. This is achieved with the instantaneous
engine speed as only measurement. This work can be used in a next step when
unbalance could be corrected in an adaptive manner by controlling the mass injected
into each cylinder.
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1. INTRODUCTION

Torque balancing for diesel engines is a major
feature of modern engine controllers for two main
reasons:

• Diesel injection systems introduce a bias in
injected masses between cylinders (relative
errors can be up to 20% at low engine speed).
Torque production varies from cylinder to
cylinder in a monotonic way with respect to
the injected fuel mass.

• This torque variation is a periodic time func-
tion and generates a undesired vibration
mode in the engine.

This phenomenon is important at low engine
speed and idle mode conditions. To estimate
torque production from each cylinder we use the
instantaneous engine speed at the crankshaft.
Currently, an engine speed measurement every 45o

of crankshaft rotation seem sufficient to estimate

torque balance and to correct it in an adaptive
manner by controlling the mass injected in each
cylinder.
Torque balance determination by the measure-
ment of the crankshaft angle has been addressed
previously in the literature. Most of the solu-
tions proposed have their foundation on a Direct
or Indirect Fourier Transform as in (Jianqiu et
al., 2002a), (Jianqiu et al., 2002b) and (Ginoux
and Champoussin, 1997) or are founded on the
derived measures from crankshaft position (van
Nieuwstadt and Kolmanovsky, 1997). Our ap-
proach use a time-varying model for the design
of an engine torque observer.
The goal of our work is to build a more accurate
observer of torque balancing in transient mode
(according to torque and engine speed). The paper
organizes as follows. In the Section 2, we describe
the experimental setup. We explain the engine
dynamics in Section 3 and the approximation we



made to obtain a linear equation in Section 4.
We then recall the notion of residue in Section
5. In Section 6, we describe our observer design.
We conclude in Section 7 by conclusions and the
future work

2. EXPERIMENTAL SETUP FOR CONTROL
DESIGN

The synthesis of the state based observer-controller
was first validated on a 4 cylinder DI engine
model. This reference model is based on the
Chmela combustion modelling (Chmela and Or-
thaber, 1999). The reference model included dy-
namics of the combustion and the transforma-
tion into indicated torque and after into effec-
tive torque. The transmission is represented as
in (Chmela and Orthaber, 1999). A more realistic
model with non linearities and effects due to the
imperfection of flywheel tooth will be integrated in
a second time. The observer has been tested with
instantaneous engine speed measurements coming
from the reference model and also tested on the
test bench.
The synopsis of the complete simulation is de-
scribed on the figure below. We implemented the
simulation model (reference model + observer +
controller) on a real time simulator based on xPC-
Target (Support, n.d.). The real time ratio is not
achieved due to the complexity of the reference
model. With a 1 GHz Pentium based computer,
1 second of engine simulation is computed in 30
seconds. This HiL platform was transferred to
a fast prototyping system by adding specific in-
put/ouputs boards. The same code was kept and
implemented in the control system in order to be
tested on the test bench.

3. ENGINE DYNAMICS

We want to reconstruct the combustion torque
with crankshaft velocity as only measurement.
Following (Kiencke and Nielsen, 2000) we write
the dynamics equation. The torque balance on the
crankshaft is given by

d

dα
(
1
2
J(α)α̇2) = Tcomb(α)− Tload(α)− Tfric(α)

(1)
Let Tmass = Tcomb−Tload−Tfric denote the mass
torque. The combustion torque is also referred to
as indicated torque. We consider that the load
torque Tload is a low frequency signal and that
friction torque is a second order polynomial in
α̇ (Cavina and Ponti, 1999). We can split the mass
torque into two terms

Tmass = J(α)α̈ +
1
2

dJ

dα
α̇2 (2)

The first term represents the oscillating masses
and the second one represents the rotating masses.
We use a model of two massed connected by a
single rod (Fehrenbach, 1990) (see also (Kiencke
and Nielsen, 2000)). The overall rod mass mrod is

• an oscillating part mrod,osc = mrod
losc

l

• a rotating part mrod,rot = mrod
lrot

l

The two lengths lrot and losc with lrot + losc = l
are defined by the position of the center of gravity
of the connecting rod. The oscillating mass is :

mosc = mpiston + mrod
losc

l

and the rotational mass on each cylinder is:

mrot

CY L
=

mcrank

CY L
+ mrod

lrot

l

The crankshaft mass is deduced from the moment
of inertia

mcrank =
JCrank

r2

After further calculations we have

Tmass = Jα̈ +
1
2

dJ

dα
α̇2

with

• J(α) = mrotr
2 + mosc

∑CY L
j=1 (dsj

dα )2

• dJ
dα = 2mosc

∑CY L
j=1

dsj

dα
d2sj

dα2

4. NOTION OF RESIDUES AND USE FOR
TORQUE BALANCING

The residue is the relative error of the effective
work. It is a classical notion for torque balancing
as explained in (Kiencke and Nielsen, 2000). It can
be written

Ri =
CY L
4π

∫ αi+
2π

CY L

t=αi− 2π
CY L

Tinddt− 1
4π

∫ 4π

t=0
Tinddt

1
4π

∫ 4π

t=0
Tinddt

(3)
where the angle on the crankshaft αi represents
the middle point between the TDC and the BDC
of the cylinder i. By definition

CY L∑

i=1

Ri = 0

The residues will allow us to know the equilib-
rium of the stroke. When the system is perfectly
balanced the residues are 0. A positive residue in
cylinder i reveals that this cylinder generates more
torque than the average of the 4 cylinders. This
unbalance can be corrected by injecting less fuel
into cylinder i. If convergence time is not an issue,
a simple integral controller can be used to correct
cylinder i. More sophisticated adaptation laws
can be developed and seem efficient in practice
(see (?))



Figure 1. Global Scheme

5. DISCRETE TIME-VARYING LINEAR
APPROXIMATION

For further calculations, the torque balance is an
angle-dependent differential equation with time-
derivatives

J(α)α̈ = Tcomb(α)− T ∗load(α)− f(α)α̇2 (4)

with

• f = dJ
dα

• T ∗load = Tload + Tfric

T ∗load refers to the extended torque. We can re-
formulate the second derivative of the crankshaft
angle to have

α̇
dα̇

dα
=

1
J(α)

(Tcomb(α)−T ∗load(α)− f(α)α̇2) (5)

Using a first order approximation on the inte-
gration of the previous equation, we can break
the dependence on time and on crankshaft angle
and only save a dependence on the square of the
crankshaft angle speed.

α̇2(n + 1) −α̇2(n) ≈
2∆α

J(n)
(Tcomb(n)− T ∗load(n)− f(n)α̇2(n))

(6)
We use as angular path ∆α = 6o. The model
is then discretized with respect to angle steps
instead of time steps. Using the square of the
crankshaft angle speed α̇2 as the first state vari-
able x1, we get the linear equation

x1(n+1) = (1− 2∆α

J(n)
f(n))x1(n)+

2∆α

J(n)
x2(n) (7)

where {
x1(n) = α̇2(n)
x2(n) = Tcomb(n)− T ∗load(n) (8)

This formulation of the problem will allow us to
use classical methods of control to estimate the
indicated torque.

6. OBSERVATION OF THE INDICATED
TORQUE

From the previous dynamics we look for an ob-
server of the system to estimate the indicated
torque. The system has a two-dimensional state
and a single measurement (crankshaft speed). It
must be complemented with another equation re-
flecting the evolution of Tcomb(n)− T ∗load(n).

6.1 x2 considered as an unknown constant

As a first try we consider that the variation of the
indicated torque during one angular step is small.

6.1.1. Observation Model We use as second
equation

dx2

dα
= 0 (9)



during ∆α. Between two angular steps we get




x1(n + 1) = (1− 2∆α

J(n)
f(n))x1(n) +

2∆α

J(n)
x2(n)

x2(n + 1) = x2(n)
(10)

We have the system
{

X(n + 1) = A(n)X(n)
y(n) = CX(n)

with

• X(n) =
[
α̇2(n) Tcomb(n)− T ∗load(n)

]T

• A(n) =


 (1− 2∆α

J(n)
f(n))

2∆α

J(n)
0 1




• C =
[
1 0

]

We build the observer by linear feedback on the
crankshaft angular speed.
{

X̂(n + 1) = A(n)X̂(n)− L(n)(ŷ(n)− y(n))
ŷ(n) = CX̂(n)

so the error satisfies{
X̃(n + 1) = (A(n)− L(n)C)X̃(n)

ỹ(n) = CX̃(n)

with X̃(n) = X(n)− X̂(n).

6.1.2. Observer convergence The dynamics of
our system is periodic, so we just have to check
stability for

∏T
k=1(Ak − LkC). We numerically

investigate the convergence of the system. The
eigenvalues of

∏T
k=1(Ak − LkC) are [0, 10−4]T

which proves the convergence of the observer.

6.1.3. Results and Comments

6.1.3.1. Simulation results In Figures 2, 3, and 4
we have

• ref : reference
• pp1 : result of the first observer with pole

placement dx2
dα = 0

The simulation is at 1000rpm with an BMEP
of 2bar. For the simulation part, we introduced
offsets on the mass injected in each cylinder.

• Cylinder 1: 20% of the reference mass
• Cylinder 2: 0% of the reference mass
• Cylinder 3: -20% of the reference mass
• Cylinder 4: 5% of the reference mass

We introduced also some noise for the simulation
which reproduces the imperfection of the flywheel.

6.1.3.2. Results from the bench Figures 5 and 6
display the result of the estimator on experimental
data. We reconstruct the indicated torque from
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Figure 2. Indicated torque (1000rpm, 2bar)

1 1.05 1.1 1.15 1.2

−100

−50

0

50

100

Time [s]

R
es

id
ue

s 
[%

]

Residues in % : ref(bold blue), est(red)

1 1.05 1.1 1.15 1.2
1

1.5

2

2.5

3

3.5

4
Ordor of the cylinders

Figure 3. Residues (1000rpm, 2bar)
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Figure 4. Engine Speed (1000rpm, 2bar)

the bench with the in-cylinder pressure and we
test the observer on the flywheel velocity mea-
surement. The setting point is not the same as
the simulation one.

6.1.3.3. Comments The simulation and the re-
sult on the bench are relatively satisfactory. Qual-
itatively, the residues are well estimated. On the
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Figure 5. Indicated torque on the bench

0.6 0.62 0.64 0.66 0.68 0.7 0.72

−20

−10

0

10

20

30

Time [s]

R
es

id
us

 [%
]

Residus %: ref(bold blue), est(red)

0.6 0.62 0.64 0.66 0.68 0.7 0.72
1

1.5

2

2.5

3

3.5

4
Order of the cylinders

Figure 6. Residues on the bench

other hand the quantitative prediction is not accu-
rate. In order to drive the residues to zeros, only
the qualitative information matters: simple PID
would work on this fully actuated system provided
the sign of the gains are known. The idea behind
this observer is the simplest as we introduced no
more knowledge about the system. Using more
physics on the second equation, we now aim at
increasing the quality of the observation.

6.2 x2 modelled as a stable second order filter with
known parameters

6.2.1. Observation Model The second observer
is based on the fact that the indicated torque is
periodic, so we consider x2 as a stable second order
filter with known parameters. We use for second
equation

x2(n) = a(n) + b(n) sin(n∆α) (11)

As the indicated torque varies in transient mode
(according to torque and engine speed), the pa-
rameters a and b must be adapted. Both a and b
are now included in the state. The dynamics reads

{
X(n + 1) = A(n)X(n)

y(n) = CX(n)

with

• X(n) =
[
α̇2(n) a(n) b(n)

]T

• A(n) =




(1− 2∆α

J(n)
f(n))

2∆α

J(n)
2∆α

J(n)
sin(n∆α)

0 1 0
0 0 1




• C =
[
1 0 0

]

Again, we build the predictor by linear feedback
on the crankshaft angular speed. The observer
dynamics reads
{

X̂(n + 1) = A(n)X̂(n)− L(n)(ŷ(n)− y(n))
ŷ(n) = CX̂(n)

so the error satisfies{
X̃(n + 1) = (A(n)− L(n)C)X̃(n)

ỹ(n) = CX̃(n)

with X̃(n) = X(n)− X̂(n).

6.2.2. Observer convergence As we said above,
the dynamics is periodic so we just have to check
stability for

∏T
k=1(Ak −LkC). The eigenvalues of∏T

k=1(Ak − LkC) are [0.67,−3.510−17, 5.210−4]T

which proves the convergence of the observer.
These last eigenvalues correspond to an average
model Ā with eigenvalues having the following
modulus [0.9933, 0.5318, 0.8816]T . A question
of particular interest is the design of the gain
scheduling that would give an improved conver-
gence. This is a point we are focusing on.

6.2.3. Results and Comments

6.2.3.1. Results from the simulation Figures 7
and 8 show the comparaison of the two observers
and the better results of the second one.
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Figure 7. Indicated torque with the second ob-
server

6.2.3.2. Comments Accuracy is improved but
remains an issue. Convergence is obtained in prac-
tice but its interpretation is tricky. Indeed, for a
given n, the pair (A(n), C) is not observable. One
eigenvalue of the observability matrix is always 0.
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Figure 8. Residues with the second observer

Thus the gain scheduling design is somewhat more
difficult to achieve. Today it seems this formula-
tion of the problem could be improved further, by
adding more harmonics to the approximation for
instance.

7. CONCLUSION AND FUTURE WORK

This article summarizes the evolution of the ob-
server design at IFP for torque balancing on DI
engine. After explaining the engine dynamics in
Section 3 and the model we use in Section 4, we
explored two ways to describe the evolution of
the indicated torque and showed the results on
simulation and on the bench (Section 6).
So far we have some good results on the estimation
of the torque balance, though their quantitative
accuracy can be improved. By using the period-
icity of the indicated torque and a first harmonic
development, we have better results but have not
finished the exploration of this method yet. The
quality of the observation was improved and a
proof of the convergence of this type of observer
is in progress.
Future directions seem clear. For the control de-
sign method, we have to evaluate the strengths
and weaknesses of the previous methods by in-
creasing the size of the decomposition (by adding
terms in cos(α), sin(2α), cos(2α), . . . ). Concern-
ing physical modelling, an other estimation of the
load torque, not depending on the single time
estimation of the indicated torque at TDC and
BDC. We will have to introduce a more accurate
model of transmission and its non linearities. This
part will be required for use on a vehicle whose
transmission is less stiff. Moreover, the problem
of torque balancing can be included in the more
global problem of cylinder balancing which in-
clude torque balancing but also air fuel ratio reg-
ulation.

8. NOMENCLATURE

Symbol Units Physical Variables
BMEP [bar] Break Mean Effective Pressure
BTC Bottom-Top Center
CYL Number of cylinders
J [kgm2] Moment of inertia
Jcrank [kgm2] Crankshaft moment of inertia
l [m] Connecting rod lenght
mcrank [kg] Crankshaft mass
mosc [kg] Oscillating mass
mrod [kg] Rod mass
mrod,osc [kg] Oscillating rod mass
mrod,rot [kg] Rotational rod mass
r [m] Radius of the crankshaft
Ri Residue of cylinder i
s [m] Piston stroke
ṡ [m/s] Piston velocity
sj [m] Piston velocity of cylinder j
TDC Top-Down Center
Tcomb [Nm] Combustion torque
Tfric [Nm] Friction torque
Tind [Nm] Indicated torque
Tload [Nm] Load torque
T ∗load [Nm] Extended load torque
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