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ABSTRACT

Station-keeping and reorientation control of a
cluster of fully-actuated low-thrust micro-satellites
is considered in this paper. We propose a very
general optimization based control methodology to
solve constrained trajectory generation problems
for stationkeeping and reorientation. By taking
advantage of the fully-actuated structure of the
micro-satellite, it is possible to compute the control
on-board the micro-satellites. Performance of this
methodology is reported for a typical micro-satellite
formation flying space mission using the Nonlinear
Trajectory Generation software package.

Keywords: Formation Flying, Coordinated
Optimal Control.

1 INTRODUCTION

Several proposed earth orbiting demonstration space
missions plan to utilize formations of cooperating
fully-actuated micro-satellites to perform the func-
tion of a single complex satellite. The Air Force
space based radar system called TechSat21!? is a
prime example of such a mission. One of the chal-
lenges of these missions is the formation control of
the micro-satellites to meet a unified objective. T'wo
typical formation control problems are the following;:

1. Station-keeping: A distributed array of small
micro-satellite apertures will collaborate to
form a much larger aperture than that possible
with a single satellite.
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2. Reconfiguration and Deconfiguration: Distri-
bution of micro-satellite aperture can be dy-
namically reconfigured or deconfigured to meet
changes in imaging or mission requirements.

Under the classical gravitational potential as-
sumption, a standard approach to the formation
control problem is to linearize the dynamics of the
satellites around some reference orbit. In the case
that the reference orbit is circular with no per-
turbative forces, the linearized equations of motion
are commonly referred to as the Clohessy-Wiltshire
equations.! When the correct initial conditions are
chosen, the relative positions of the micro-satellites
are periodic. By positioning the satellites at differ-
ent phases along these periodic solutions, a sparse
aperture can be created for imaging. Ideally, if satel-
lite positioning is acceptable for imaging, no fuel
would be used by taking advantage of the natural
dynamics of the vehicles.

However, most micro-satellite missions will be
subject to various perturbatives forces. The second
zonal harmonic of the non spherical Earth (J3) is a
dominant perturbation for the orbits under consid-
eration in this paper and cannot be neglected. The
Jo perturbation acts diffentially on each satellite and
induces secular motion between the micro-satellites
in the formation. Sedwick et al.'' derived an ana-
lytic expression for exact cancellation of differential
Jo for a micro-satellite formation in a polar, circular
orbit. The appropriate choice of initial conditions
for a micro-satellite can also mitigate the differen-
tial effect of Jo, see Schaub et al.,'0 Vadali et al.'®
and Koon et al.b

Our approach is based on using optimal control
to actively control the sparse aperture of the micro-
satellites formation. This has the advantage over
existing techniques in that geometric formation con-
straints can be satisfied for arbitrary orbits. Opti-
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mal control has proven relevant in the absence of
Jy. Kumar et al.” used optimal control to solve
for the relative motion of two satellites in very low
Earth orbits. As a result, Kumar kept the satellites
constrained to a box accounting for a generic differ-
ential drag perturbation. Inalhan et al.> considered
the micro-satellite reconfiguration as a distributed
and hierarchical control problem. In this paper we
will explicitly take the J, effect into account and
consider a centralized optimal control formulation
for a micro-satellite formation. The optimal control
problem is then solved using the Nonlinear Trajec-
tory Generation (NTG) software package.

Two strategies will be considered. First, the sta-
tion keeping control of three satellites: minimize fuel
subject to some nonlinear communication and imag-
ing trajectory constraint. Second, the reconfigura-
tion control of three micro-satellites: minimize fuel
subject to final time formation constraints.

We will address the formation control problem in
terms of the absolute reference frame and not the
frame relative to the orbit. This is a challenge since
numerical computations must be done with a high
degree of accuracy. Yet this point of view simpli-
fies the methodology. Optimal trajectories to lin-
earize about may not be simple periodic trajectories
as with a circular orbit with no perturbations. In-
stead, the trajectories would be expressed as a time
varying curve creating complicated expressions for
the linearized dynamics. Finding the best trajecto-
ries for a formation of micro-satellites is a difficult
task. The numerical implementation of optimal con-
trol for such a strategy would also be complex. An-
other disadvantage of using the linearization is that
large reconfiguration maneuvers may be away from
the region where a linearization is valid.

This paper is organized as follows. Section 2
presents the formulation of the problem under con-
sideration. Section 3 provides a brief overview of the
nonlinear trajectory generation software that will
be used in all computations. The structure of the
micro-satellites problem that makes real-time tra-
jectory generation possible is also addressed in this
section. Section 4 describes the costs and constraints
in order to satisfy typical station keeping and recon-
figuration requirements.

Numerical results are given in Section 5. Several
trade studies are conducted and simulation results
are also presented in this section. Finally, extensions
to general classes of perturbations and conclusions
are given in Section 6.
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2 PROBLEM FORMULATION

The motion of each fully-actuated micro-satellite is
described in absolute coordinates. Including the J
perturbation, the dynamics are described by the fol-
lowing differential equations

2 2
. LT 3/ R. 23
= [1— s [ =) (5% —

mi;
+ul,
2 2
. 1Y 3 Re) ( 2 )
mij; = — 1—Joo [ =) (52 -1
/ ( 2( ril?
+uy,
2 2
.. 1z 3 [ Re z
=— 1+ Jo= [ —=) (3-52
e ( " 2() ( |n»|2)>
+ul,

(1)

where x;, y;, and z; are the coordinates of the ab-
solute position of the ith micro-satellite ¢ € {1, 2, 3}
and |r;|= \/x? + y? + 22 . The gravitational con-
stant is denoted by p and the second zonal harmonic
of the non-spherical earth effect by Jy. Superscripts
I and B denote the inertial and body frame, respec-
tively. Figure 1 depicts the coordinate systems used
throughout this paper. Classically, the local coor-
dinate system is chosen so that the X© axis points
up, the YO axis is parallel to the velocity vector and
the Z© axis is in the cross range direction. For the
inertial coordinate system, the X! direction is to-
wards the vernal equinox, the Y direction is along
the equatorial axis and the Z! points toward the
north pole.

The mass of each satellite is denoted by m and
is considered constant (100 kg). It is assumed that
the moments of inertia are such that (Iz > Ix,ly)
so that each micro-satellite is gravity gradient stabi-
lized.

It is assumed that the body frame of the satellite
is always aligned to the orbit frame as a result of the
passive attitude stabilization. Therefore, it is easy
to find the transformation from the body frame to
the inertial frame by the following

pPxqg g
o xall’~ Tlall

[(ﬁ) : <|§i3|)’
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Figure 1: Orbit and inertial coordinate systems.
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v g = (x,y,2)", p
(#,7,2)T. Tro is the transformation from the frame
fixed to the orbit to the inertial frame and T g is the
transformation from the body frame to the inertial
frame. Trp is a rotation matrix, so |[uf||= ||u!||
where ||-|| is the Euclidean norm. This particular
point will be useful in the optimal problems formu-
lations.

All numerical calculations presented in this paper
assume a semi-major axis (a) of 7138 km, which cor-
responds to an altitude of 800 km for a circular orbit.
Eccentricities (e) between 0 and 0.1 are addressed.
Generally, the technique presented here can be used

for any desired orbit.

where u

3 TRAJECTORY GENERATION METHODOLOGY

To solve the proposed optimal control problems,
we use a software package developed at Caltech
called NTG. NTG requires a nonlinear programming
solver; we will use the sequential quadratic program-
ming package NPSOL by Gill et al.* for all numeri-
cal calculations in this paper.

There are three primary components to the NTG
methodology. The first is to determine outputs such
that Equation (1) can be mapped to a lower di-

3

mensional output space. Once this is done the cost
and the constraints can also be mapped to the out-
put space. The second is to parameterize the out-
puts in terms of B-spline curves. Finally, sequential
quadratic programming is used to solve for the co-
efficients of the B-splines to minimize the cost sub-
ject to constraints in output space. This approach
has proven relevant in many practical examples and
benchmark problems. The reduction of the dimen-
sionality induced by this efficient parameterization
allows substantial reduction of the execution time re-
quired for solving the nonlinear programming prob-
lem. From a practical point of view, this feature
allows us to consider real-time applications. See
Milam et al.® and Petit et al.” for complete details
on NTG.

The problem of finding a parameterization for this
system is particularly easy to solve since, as with
any fully actuated mechanical system, each micro-
satellite is flat, see Fliess et al.?3> Namely, by choos-
ing the configuration variables z;, y; and z;, we can
parameterize the complete state and inputs z;, &;,
Yis Uy Ziy Zis uii, and u?I/ and ug, respectively, this

: B I T
gives u” = Toru' where Tor =T},
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Numerical implementation In NTG, a time scaling
is required to make the evaluation of the B-spline
polynomials accurate. In order not to interfere with
the absolute precision of the software package, a time
scale was also applied. It turned out that the follow-
ing scalings worked particularly well for our problem

s

The time was scaled by S; so that an orbit was ap-
proximately one time unit. The inertial positions ¢
were scaled by the radius of the earth R. and the
mass m was scaled by .S, to unity.

4  OpPTIMAL CONTROL PROBLEM

Parameterizing the trajectory of the micro-satellites
over large periods of time would require prohibitively
many variables, rendering real-time computation im-
possible. Therefore, in order to make the real-
time computation tractable, we solve optimal con-
trol problems over a finite horizon [0, T]. We take T
equal to the approximate period of the orbit (with-
out control) and thus solve the optimal control prob-
lem for one orbit. Then we take the ending point of
this optimal trajectory as a new starting point and
solve the optimal control problem over the horizon
[T, 2T, etc. This methodology, though sub-optimal
when compared to the optimal control solution over
the whole mission, is numerically tractable and very
efficient. Furthermore, it may be necessary to adopt
such a strategy to handle unmodeled dynamics and
perturbations. All the results given in Section 5 were
obtained by this method.

4.1 Station-keeping with guaranteed earth coverage

The instantaneous fuel consumption of each micro-
satellite can be represented as |uf [+|ul}|+|uZ].
This non-differentiable function would make our nu-
merical solver behave poorly. To overcome any trou-
ble with the evaluation of the gradient of the cost,
we substitute to this cost a classical quadratic cost
(uB)? + (u})? + (uf)?. Though this does affect
the formulation of the optimal control, the solution
obtained provides a very low |u |+|uyB|+|uzB\ cost.
Moreover, the mapping from u? to u! is such that
l[uB||= ||uf|| (see Section 2), which is very conve-
nient for numerical resolution.

Let T' > 0 be the finite horizon over which we
want to solve the optimal control problem. The posi-
tions of the three micro-satellites will be denoted by

q1 = (Jil,yl,zl), g2 = ($2,y2,Z2), q3 = (133,y3,23)
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and the thrusts by uf = Tor(ul,,ul ,ul), uf =

Tor(ul,, ul,,ul)), uf = Tor(ul,,ul, ul,).

We will now cast the requirements for imaging and
communications into nonlinear constraints. Deter-
mining these constraints are likely to be mission spe-
cific. The constraints chosen are purely for illustra-
tion to show that complicated nonlinear constraints
can be handled with our methodology.

The first constraint we will consider can be written
as

la:(t) — a5 (D)< d,

vt €[0,T],v(i,j) €{1,2,3}L,i#j.  (2)

We will interpret this as a communication con-
straints, that is, we desire the micro-satellites to stay
close together so that communication between the
micro-satellites is possible.

The second constraint we will consider is an imag-
ing constraint. We will require that the area pro-
jected on the earth be above some threshold. For
sake of simplicity and computational efficiency, we
chose not to compute the exact surface of the pro-
jection of the triangle defined by the three micro-
satellites on the earth. Instead we computed the
projection on the earth as if the earth was locally a
plane, which is a relevant approximation for areas as
small as 1000m?.

This “projected” area is, up to an arbitrary choice
of orientation

A(t) = gn(t) - m()

where

m(t) =(qu(t) + q2(t) + q3(1))/[1q2(t) + q2(t) + g3 ()]
n(t) =(qu(t) — g3(t)) x (q1(t) — g2(t))
Ma1(t) = g3(t) x (g1 (t) = g2(8))]]-

The projected area is depicted in Figure 2. The
imaging constraint is

A(t) > S, Vit € [0, 7). (3)

Finally, we solve the following optimal control
problem.

Problem 1 (Station-keeping) Given initial val-
ues for the positions and velocities of the three
micro-satellites ¢q1, ¢2, g3, p1, P2, p3, we look for
a minimum of

B | B B)

T
J(uy, uy , ug /0 (g’ [P’ [+ g | ) dt

(4)
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Figure 2: Station keeping with guaranteed earth coverage

subject to the dynamics (1) and the constraints (2),

(3).
4.2 Formation reconfiguration and deconfiguration

Given any initial position and velocity of each micro-
satellite, we require the three micro-satellites to
change their positions and velocities so that the fol-
lowing constraints are satisfied after two orbits:

e the relative distances of the three micro-
satellites must be less or equal to a prescribed
value

e the projected area on the earth must be no less
than a certain value.

These requirements give the following optimal con-
trol problem.

Problem 2 (Reconfiguration) Given initial val-
ues for the positions and velocities of the three
micro-satellites g1, q2, g3, p1, p2, p3, we look for
a minimum of

J(uf’ uy’ ug)

T
= [ (PIP+aB 1P+l 1?) e
()
subject to the dynamics (1) and the constraints
l6:(T) = ¢;(T)I|< dy
A(T) Z af.
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Moreover, we also solve the inverse problem.
Starting from a given triangular configuration, we
can compute the thrusts required to go to any pre-
scribed positions and velocities. This can be very
useful when imaging of the earth is not necessary.
We can ask the micro-satellite to go and wait in a
“parking” orbit where they do not burn any fuel. For
example, if the satellites were to follow one another
on the same free orbit they would not burn fuel or
pull apart under Jo perturbations. When imaging of
the earth is necessary, we can reconfigure the micro-
satellites into a triangular formation facing the earth
and either drift or station keep the formation. These
requirements provide the final optimal control prob-
lem.

Problem 3 (Deconfiguration) Given initial and
final values for the positions and velocities of the
three micro-satellites q1, g2, g3, p1, P2, pP3, we look
for a minimum of

T
J(uy’ vy, ug) :/0 ([P’ [[ g |[?) it
(6)
subject to the dynamics (1).

5 NUMERICAL RESULTS

The parameterization of the variables of the system
mentioned in section 3 was achieved by using for
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each output 10 polynomials or order 9, with 4 reg-
ularity conditions at each knot point. This makes a
total of 486 coefficients. 70 breakpoints were used to
enforce the constraints and evaluate the cost. Orbits
without control were used as initial guesses.

The runs were done on several platforms includ-
ing a Sun computer, a PC using Linux (Red hat 6.2)
and a PC running Windows 2000. For the station-
keeping problem within one orbit, runs take about
120 seconds, while reconfiguration problems within
one orbit take approximatively 5 seconds to run.
The orbits are approximately 6000 sec. The large
difference in computation times is due to the fact
that we are enforcing difficult nonlinear trajectory
constraints for the station-keeping problem and only
a nonlinear final time constraint for the reorientation
problem.

5.1 Results to problem 1: Station-keeping under
constraints

Let S denote the desired projected surface area and
d the maximum distance between allowed between
the micro-satellites.

Results for the projected surface area S = 100 m?,
and the distance between the satellites d = 500 m are
reported in Figure 3 and Figure 4. Figure 5 depicts
the difference in projected area with and without
control.

Initial conditions were chosen by perturbing nom-
inal values of orbital elements. The idea being that
up to first order the formation should not pull apart
if the eccentricity and semi-major axis are chosen
the same for all micro-satellites. For instance, we
chose a = 7138 km, e = 0.1, i = 45 deg, w = 2 rad,
Q = 0.1 rad, M = 0.1 rad where a is the semi-
major axis, e the eccentricity, ¢ the inclination, w
agrument of periapsis, €2 the longitude of the as-
cending node, and M the mean anomaly, respec-
tively. And then perturbed this nominal set by Ay =
(0 km, 0, 0 deg, —1le—3deg, 3.5e—4 deg, 0 deg),
Ay = (0 km, 0, 0 deg, 5e — 4 deg, 0 deg, 0 deg)
and As = (0 km, 0, 0 deg, —le—3 deg, — 3.5¢ —
4 deg, 0 deg) for satellite 1,2 and 3 respectively.
There is no particular reason for choosing these ini-
tial conditions except that they nominally satisfied
the station-keeping constraints.

For this trajectory ¢ = 45 deg, and the resulting
AV = 104 m/s/year. Table 1 contains results of
trade studies with eccentricity, inclination, projected
surface area S and the maximum distance between
satellites d. Many of these results meet a reasonable
requirement of a AV < 20 m/s/year. The 90 deg

6

inclination seems easier to control. While the Js
effect is more important than in the other cases, the
differential Jo, which really matters, is lower. The
controls in the body frame were within +30 mN for
all cases under consideration.

5.2 Results to problems 2 and 3: Going in and out
of triangular formation

We choose to compute optimal reconfiguration
within 2 orbits and studied various cases consistent
with the station-keeping cases. A typical micro-
satellite reconfiguration maneuver is depicted in Fig-
ure 6. While the cost of going into a triangular for-
mation decreases with the size of the triangle (con-
straints are in fact weaker), the cost to come from
a triangular formation to a given control-free tra-
jectory increases (the configuration gets harder to
recover).

The “parking” strategy seems relevant to useful
for mission design. A typical deconfiguration ma-
neuver is depicted in Figure 7. It can be seen in
Table 2 that the AV cost of a typical “going out
of formation” then “going into formation again” is
about 0.1 m/s.

The reconfiguration maneuver can be used for a
variety of different mission requirements. Reconfig-
uration of a micro-satellite formation to view a spe-
cific region of the earth is one possibility. Another
possible using of configuration is to move the forma-
tion in a configuration such that it can drift while
imaging. When the formation drifts apart, the for-
mation can be reconfigured to drift again.

6 CONCLUSION AND FUTURE WORK

Many perturbations were not taken into account in
this work such as solar pressure, aerodynamics drag,
etc. Depending on the orbit other perturbations
(such as aerodynamic at very low earth orbits) may
be dominant. The technique we presented may be
generalized to include any perturbation that can be
modeled as a function of the positions and their time
derivatives since the model remains flat.

The choice of initial conditions seems also a crit-
ical issue. Using tools from dynamical systems the-
ory, Koon et al.® showed that some regions of space
offer better initial conditions than others for the
station-keeping problem. Starting from these re-
gions of space, we may expect even lower fuel con-
sumptions with the same requirements.

The main result of this work is to report that it is
possible to solve problems of engineering interest for
micro-satellite formation flying missions by a trajec-
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Table 1: Station-keeping. Top: effect of S for a given d. Bottom: effect of e for a given S.

i =0 dog 5 =100 m? 5 =200 m? 5 =300 m2

d<500m | AV =25.6 m/s/year | AV =47.8 m/s/year | AV = 67.3 m/s/year

i = 45 deg S = 100 m? S = 200 m? S =300 m2

d<500m | AV =10.4 m/s/year | AV =17.0 m/s/year | AV = 26.8 m/s/year

i =90 deg S =100 m? S =200 m? S =300 m?

d<500m | AV =8.69 m/s/year | AV =21.4 m/s/year | AV = 27.4 m/s/year
1 =0 deg e=10 e=0.1

S > 100 m?, d < 500 m
S > 100 m2, d < 300 m

AV = 25.6 m/s/year
AV =34.2 m/s/year

AV =36.7 m/s/year
AV = 33.2 m/s/year

1 =45 deg

e=20

e=0.1

S > 100 m?, d < 500 m
S > 100 m2, d < 300 m

AV =104 m/s/year
AV =37.0 m/s/year

AV =26.0 m/s/year
AV =34.2 m/s/year

i=90 deg

e=20

e=0.1

S > 100 m?, d < 500 m
S > 100 m2, d < 300 m

AV = 8.69 m/s/year
AV =21.7 m/s/year

AV =26.1 m/s/year
AV = 28.9 m/s/year

Table 2: Reconfiguration AV for various objectives.

Projected area objective (m?) 150 200 300 400 500 600
Bound on relative distances (m) 150 200 300 400 500 600
Going in formation 1.49e-1 | 1.09e-1 | 7.04e-2 | 4.25e-2 | 1.20e-2 | 9.44e-3
AV (m/s)
Going out, of formation 1.23e-2 | 1.02¢-2 | 1.32e-2 | 2.62¢-2 | 3.07e-2 | 4.89¢-2
AV (m/s)
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