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Abstract— This paper exposes a method to handle
inaccurate modeling and/or initial state errors during
the Powered Descent Guidance (PDG), a critical
phase of atmospheric rocket landing. For this, we de-
velop a replanification method having reliable online
computational capabilities. From a reference descent
scenario, an optimal correction problem is formulated.
After revisiting results on Non Linear Programming
sensitivity for degenerate optimization problems, we
conclude that Quadratic Programming (QP) provides
a local solution to the replanification problem. Using
three illustrative PDG scenarios, we stress degeneracy
and show how QP is used to evaluate the upper
Dini derivatives at stake. Further, we discuss to what
extent QP also provides a quantitatively reasonable
solution outside a small neighboorhood of the refer-
ence scenarios.

I. Introduction

Due to its critical nature, Powered Descent Guidance
(PDG), the final phase of atmospheric rocket landing, is
often addressed as an Optimal Control Problem (OCP)
having many parameters such as initial states, aerody-
namic coefficients and engine efficiency [1], [2]. No known
analytic solution is available for the general optimal
atmospheric PDG problem. Generating a numerical solu-
tion in real-time is challenging, especially with nonlinear
dynamics and multiple constraints [3]. To this purpose, it
is of interest to explore a parametric problem description
and perform first-order extrapolations in the vicinity of
reference solutions.

Sensitivity of parametric OCPs have been studied for
a long time [4]. Assuming that one knows a solution
for some prescribed parameter value, the idea is to
deduce the neighboring solutions for small parameter
variations [5]. Due to the practical drawbacks of indirect
methods [6, Sec. 4.3], we will focus on solving OCPs
via direct methods: OCPs are described, or at least
approximated, using finite-dimensional variables, and
then solved using Nonlinear Programming (NLP) [6]–
[8]. Therefore, sensitivity analysis boils down to studying
parametric NLP.

Classical results state under mild conditions that if,
for the reference parameter, the multipliers are (strictly)
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positive, then the optimal solution is continuously dif-
ferentiable [9]. Such problems are called non-degenerate.
Computing the first order expansion of their solution
only requires to invert a linear system, resulting from
the application of the Implicit Function Theorem (IFT)
on the Karush-Kuhn-Tucker (KKT) conditions [9, Thm.
3.2.2], [10]. This is a powerful result, with many applica-
tions [11], [12]. However, this positive multiplier assump-
tion is not always satisfied, and degenerate problems with
non-differentiable solutions are often encountered1.

This paper focuses on two elements. First, it revisits
a method to handle sensitivity analysis at degenerate
points, for which weaker kind of differentiability is avail-
able - namely, existence of the upper Dini derivative -
and details how to compute it. Second, it reports the
key observation that PDG scenarios can be degenerate.

The paper is organized as follows. First, in Section II, a
general class of OCP is formulated and then discretized.
Secondly, in Section III, NLP sensitivity results are
recalled and several computational aspects are discussed.
Then, this framework is applied to rocket landing in Sec-
tion IV. A rocket model is introduced and the necessity to
be able to handle degenerate scenarios is proved. Also, a
way to assess the proper reference parameter vicinity - ie.
where the corrections remain valid - is presented. Finally,
comments and extensions are provided in Section V.
Notations

Vector inequalities must be understood element-wise.
For any map h : Rp → Rq, denote its jacobian hx :=

∂h
∂x ∈ Rq×p. When it exists, the upper Dini derivative of
h at x in the direction d is denoted by

D+
d h(x) := lim

t↓0

h(x + td) − h(x)
t

∈ Rq.

II. Optimal Control Problem
First, a class of optimal control problems is introduced,

and then discretized via a direct approach.
A. General correction problem

Consider a controlled system defined by its dynamic
function f . For a control u : [0, 1] → Rm, a parameter
p ∈ RNp , and for t ∈ [0, 1], the flow Φf of f is defined such
that Φf (t, x0, p; u) = x(t) where the state x of dimension
n satisfies the Initial Value Problem (IVP)

x(0) = x0 and ẋ = f(x, u, p). (1)

1A simple example being minimizing z2 such that z ≥ p, whose
solution is z = 0 for p < 0 and z = p for p ≥ 0.



If f is twice differentiable, so is Φf [13, Prop. 2.46].
Define a parametric control u(z1, t) where z1 ∈ RN1 is

the parameter, such that u(0, .) ≡ 0 over [0, 1]. Typically,
u can denote piecewise polynomial functions in t with
linear dependency on z1 [7, Sec. 3]. Also, denote the
vector z2 ∈ RN2 s.t. z = (z1, z2) ∈ RN . Provided a
reference control ū, we are interested in the following
optimal control problem

min
z∈RN

J(z, p) (2a)

s.t: ẋ(t) = f(x(t), ū(t) + u(z1, t), p), ∀t ∈ [0, 1] (2b)
x(0) = h(p, z2) (2c)
g(x(t), ū(t) + u(z1, t)) ≤ 0, ∀t ∈ [0, 1] (2d)
Ψ(x(1)) = 0 (2e)

where J , h, g, Ψ are twice-differentiable.
Remark 1: To handle problems with a final time tf

other than 1, it is sufficient to consider the scaled time
t̃ = t/tf and multiply the dynamic equation by tf . For
free-final time problems, also add tf as an extra state of
trivial dynamic in f , as shown later in Section IV-B.

We assume that ū, a reference control, is such that:
Assumption 1: If p = 0, then z = 0 satisfies the

mixed state-control constraints (2d) and the terminal
constraints (2e).

It is important to note that (2) is a correction problem.
Indeed, ū does not need to be the solution of any
optimization problem. It can be whatever control that
steers the system from x0 to the condition Ψ(x(1)) = 0,
while enforcing g(x, ū) ≤ 0. Naturally, the choice of ū has
a direct impact on the sensitivity analysis that follows.

Also, note that J is general enough to convey a Mayer
cost [7] by considering a map ϕ : Rn → R and

J(z, p) = ϕ (Φf (1, h(p, z2), p; u(z1, .))) . (3)

From a practical perspective, computing the double
derivative of (3) requires to evaluate the second deriva-
tive of f (see eg. [13, Sec. 3.2]) which may require
a significant analytical and numerical efforts in non-
trivial contexts. To simplify this matter, J may be taken
directly quadratic in z and mixed linear in p and z s.t.

J(z, p) = 1
2z⊤Wz + p⊤Qz (4)

for some weighting matrices W (symmetric) and Q.

B. Discretization and NLP

To obtain a finite dimensional optimization problem
with a finite constraint number, (2d) can be discretized
following the direct collocation approach [6].

Denote by 0 = t0 < t1 < . . . < tNt
= 1 an

arbitrary subdivision of [0, 1] in Nt intervals. We choose
to enforce (2d) only at those prescribed time instances.

Consequently, Problem 2 writes as a nonlinear program

NLP(p) := min
z∈RN

J(z, p) (5a)

s.t: G(z, p) ≤ 0 (5b)
H(z, p) = 0 (5c)

where xk(z, p) := Φf (tk, h(p, z2), p; u(z1, .)) fully conveys
the dynamics equation and

G(z, p) :=

 g(x0(z, p), ū(t0) + u(z1, t0))
...

g(xNt(z, p), ū(tNt) + u(z1, tNt))

 , (6a)

H(z, p) := Ψ(xNt(z, p)). (6b)

We will now focus on NLP(p).

III. Sensitivity Analysis Results
The shape of NLP(p) is classic [14]. Provided a solu-

tion z0 corresponding to a parameter p0, the goal is to
approximate the optimal value z∗(p) near p = p0.

In this section, results defining the first order expan-
sion of z∗ at p0 are recalled, and a method to effectively
compute it is discussed. Without loss of generality, as-
sume p0 = 0 and z0 = 0.

A. Directional differentiability
For multipliers η and λ, introduce the Lagrangian

L(z, η, λ, p) := J(z, p) + η⊤G(z, p) + λ⊤H(z, p). (7)

Recall that a tuple (z, η, λ, p) is said to satisfy the KKT
conditions if η ≥ 0 and

Lz(z, η, λ, p) = 0, H(z, p) = 0, η⊤G(z, p) = 0. (8)

At p0, the multipliers satisfying the KKT conditions
are denoted η0 and λ0. The goal is to highlight general
conditions under which the following (directional) expan-
sion is defined

z∗(p) = z0 + D+
p z∗(0) + o(∥p∥). (9)

Strict Complementarity Slackness (SCS), ie. η0 > 0,
is often assumed to prove local uniqueness and differ-
entiability of z∗, by applying the IFT on the KKT
conditions [9]. However, this assumption does not nec-
essarily hold, even on simple examples, as shown in the
introduction. To circumvent this limitation, one can use
Strong Second Order Sufficiency Conditions (SOSC)2, as
expressed in [15].

Definition 1 (Strong SOSC): There exist a > 0 s.t.

ν⊤Lzz(z0, η0, λ0, p0)ν ≥ a∥ν∥2 (10)

for all ν ∈ RNz s.t. Hz(z0, p0)ν = 0 and Gj
z(z0, p0)ν = 0

for every component j s.t. Gj(z0, p0) = 0 and (η0)j > 0.
As shown by Jittorntrum [15], relaxing the SCS using

Strong SOSC instead eventually leads to directional
differentiability properties, in the sense of the upper

2For a useful interpretation of this condition, see [10, Sec. 2.3].



Dini derivative. For any direction p, consider problem
NLP(tp), where t ≥ 0 is a scalar.

Theorem 1 (From [15, Thm. 3-4]): Assume that at z0

(i) the linear independence condition holds (ie. the
columns of Hz(z0, p0) and Gj

z(z0, p0) for the active
constraints j are linearly independent),

(ii) Strong SOSC holds,
(iii) J , G, and H are twice continuously differentiable

in a neighborhood of z0.
Then, there exists a unique continuous function t →
(z∗(tp), η∗(tp), λ∗(tp)) as the (local) solution of NLP(tp),
for t ≥ 0, such that z∗(0) = z0, η∗(0) = η0 and
λ∗(0) = λ0. Furthermore, its right-hand derivative exists.

Thus, for any p and since z0 = 0, the following holds

z∗(tp) = D+
p z∗(0)t + o(t). (11)

Remark 2: Directional differentiability results also ex-
ist via the indirect approach for parametric OCP [16].

B. Computation method
When SCS is assumed, computing the expansion of

z∗ only requires to invert a linear system [9]. However,
this system becomes singular when SCS is not satisfied
and the correction cannot be computed, hence the need
for the above-mentioned tools, and the computational
method detailed below. Jittorntrum’s proof for Theo-
rem 1 relies on a side Quadratic Program (QP) to serve
intermediate theoretical purposes, which actually has
powerful practical use.

Proposition 1 (Adapted from [15, Eq. 24]): Solving3

QP(p) := min
∆z∈RN

1
2∆z⊤Lzz[0]∆z + p⊤Lpz[0]∆z (12a)

s.t: G[0] + Gz[0]∆z + Gp[0]p ≤ 0 (12b)
Hz[0]∆z + Hp[0]p = 0 (12c)

provides the value of ∆z := D+
p z∗(0).

Similar methods can be found in more recent work as
well, see e.g. Bonnans & Shapiro [17, Sec. 5.2].

The primary goal of QP(p) is to compute an ap-
proximation of z∗(p) in the direction p, which works
locally according to Theorem 1. However, inequality
constraints that are inactive at z0 can become active
when p increases (in norm). Provided that the approxi-
mation (12b) represent well the constraints, it will help
QP(p) to provide reasonable approximations of NLP(p).
In other words, QP(p) manages non-local constraints
using first-order constraint approximations [10].

The main advantage of solving QP(p) instead of
NLP(p) is that one can rely on fast, mature and depend-
able4 QP solvers [18], [19], and thus can use it for real-
time applications. However, note that QP(p) cannot be
used as a brick for Successive QP, as the intermediate
matrices would take too much time to compute.

3The compact notation L[0] = L(z0, η0, λ0, p0) is used through-
out the paper. Similar notation is used for H and G.

4Not suffering from initial guess sensitivity to converge.

As a summary of the preceding discussion, provided a
reference control ū for Problem 2, computing in advance
J , G, H, their first and second derivatives at (z0, p0),
and checking the assumptions of Theorem 1, one is
able to reliably compute the expansion (11) with low
computational effort using QP(p).

A useful simplifying aspect should be noted. If J is
of the form (4), Assumption 1 implies that η0 = 0
and λ0 = 0 necessarily hold. Indeed, z = 0 globally
minimizes z → J(z, 0) and z = 0 satisfies the constraints.
Therefore, considering that the second order derivatives
of G and H only appear in the cost of QP(p), computing
QP(p) requires only the first order derivatives of G and
H. Thus, (12a) boils down to (4). This remark actually
remains valid for general J provided that Jz(z0, p0) = 0.

IV. Application to Rocket Landing
The preceding results are now applied to the PDG

problem. First, a rocket model and the choices corre-
sponding to Problem (2) are described. Then, three ex-
amples showing the importance of the above-mentioned
results are discussed. To alleviate the writing, variable
dependencies are only written when truly necessary to
avoid ambiguity.

A. Rocket model
The approach is applied to PDG with a planar rocket

model [20], [21], pictured in Figure 1. For h ≥ 0 the
altitude, vh < 0 the vertical speed, z the horizontal
position, vz the horizontal speed and m ≥ mdry the total
mass of the rocket, the dynamic equations are ḣ = vh,
ż = vz and

v̇h = −g + 1
m

(FL sin θ + (T − FD) cos θ) (13a)

v̇z = 1
m

(FL cos θ − (T − FD) sin θ) (13b)

ṁ = −q (13c)

where q is the engine flow, θ the attitude, and

(Thrust) T := gISPq − Patm(h)SE , (14a)

(Speed) Vr :=
√

v2
h + (vz − w(h))2, (14b)

(Drag) FD := 1
2ρ(h)V 2

r SRCD(Ma, α), (14c)

(Lift) FL := 1
2ρ(h)V 2

r SRCL(Ma, α), (14d)

(Mach) Ma := Vr/SSP (h), (14e)

(Incidence) α := arctan
(

vz − w(h)
|vh|

)
− θ. (14f)

Here, g denotes the gravity, ISP the engine specific
impulse, Patm and ρ the atmospheric pressure and den-
sity, CD and CL the drag and lift coefficients, SSP the
sound speed, w the horizontal wind and SR and SE

characteristic rocket surfaces. The pressure bias in the
thrust expression conveys the air flow envelop effect on
the rocket when landing. When the rocket goes down



vertically with no wind, α = θ = 0. The wind profile is
assumed to be piece-wise affine, null at h = 0 and defined
by its values w1 at 5 km and w2 at 10 km.

B. OCP and NLP
The elements needed to build Problem 2 and NLP(p)

are presented here. The state x is (h, vh, z, vz, m)⊤ and
the control u is (q, α)⊤. Depending on the examples
presented below, p may convey any set of parameters
describing the rocket model or its initial condition. It
yields a dynamic equation ẋ = f(x, u, p).

The terminal condition (2e) here corresponds to
h(tf ) = z(tf ) = vz(tf ) = 0 and vh(tf ) = −εf where
εf > 0 denotes a non-zero small landing speed. For any
time t, the constraints (2d) correspond to

qmin ≤ q(t) ≤ qmax, αmin ≤ α(t) ≤ αmax. (15)

Since the terminal condition implicitly determines the
free final-time tf , we add it to the dynamics as an extra
state x̃ := (x⊤, tf )⊤. Thus, for all s in [0, 1], it yields

˙̃x(s) = f̃(x̃(s), u(s), p) :=
(

tf (s)f(x(s), u(s), p)
0

)
. (16)

For the next examples, consider Nt = 4 and a para-
metric correction conveyed by a Cubic Spline [7], which
requires the knowledge of u at each time t0, . . . , tNt

(taken uniformly distributed) and its slopes at t0 and
tNt

. Thus, z equals

z := (u(t0)⊤, . . . , u(tNt)⊤, u̇(t0)⊤, u̇(tNt)⊤, τ)⊤ (17)

where u(tk) := (q(tf ), α(tk))⊤, τ denotes the free-final
time change and N = 2(Nt +3)+1 = 15. The cost (2a) is
then taken quadratic in z, where W from (4) is diagonal,
with only positive scaling weights wq (resp. wα and wtf

)
on components associated to the flow (resp. the incidence
and the final time), ie. J(z, p) = 1

2z⊤Wz and

W = Diag
(
wq, wα, wq, wα, . . . , wtf

)
. (18)

After having specified the framework for Problem 2
and NLP(p), let us focus on the reference control ū
that will be used below. Consider a reference scenario
of trajectory x̄, shown in black in Figure 3-(e), starting
at x0, flying for tf , with a constant engine flow q̄ ≡ qcst.
The reference incidence control ᾱ is such that it switches
once between negative and positive values, as shown in
Figure 3-(a) in black. ᾱ is build such that it reaches its
maximum value αmax at some time t2, and remains far
from its minimum value αmin = −αmax on the other side.

The assumptions of Theorem 1 are satisfied. First, the
linear independence assumption is checked numerically,
on the terminal condition and the only active inequality
constraint, namely α(t2) = αmax. Second, as noted at the
end of Section III, such a quadratic cost J leads to null
multipliers for p = 0 (even though one control constraint
is active). Thus, Lzz[0] = W is positive definite, showing

Fig. 1. Forces and angles at stake.

Fig. 2. Sensitivity of the terminal horizontal position with respect
to variations of the ISP. In red is z(tf ) when no correction is applied
to ISP variations. In dashed orange is the first order estimation of
the red curve, extracted from the problem linearization. In blue is
z(tf ) when applying the corrections given by QP(∆ISP). Terminal
condition (2e) is thus locally well satisfied after correction.

that Strong SOSC holds. It also shows that SCS is not
satisfied since η0 = 0.

In practice, QP(p) has been implemented using
cvxopt [18], and the flow derivatives required in (6) using
material from [13]. We can now dive into the examples.

C. Direct application to ISP error correction
The first example aims at showing that in some

neighborhood of the reference parameters, the expected
expansion (11) provides accurate corrections enforcing
the terminal constraints.

In this example, let us consider a single parameter :
the error on the engine specific impulse p = ∆ISP :=
ISP − I0

SP, where I0
SP is the reference value.

Due to the terminal constraints, the four first states,
namely h, vh, z, vz are expected to be null at the final
time (except vh(tf ) = −εf ). If the landing occurs with
p ̸= 0, but without correcting it, non-zero values are



Fig. 3. Illustration of the non-differentiability of the optimal correction on a standard scenario. The landing trajectory is shown in (e).
The landing trajectories have been re-played on the nonlinear system, after using the correction from QP(p). Blue features correspond to
negative parameter values ∆z0 < 0 and red features to ∆z0 > 0. The focus is mainly on the incidence correction coefficient ∆α(t2). Its
greatest magnitude value, defined in (b), is denoted α̃. The non-smooth behavior of ∆α(t2) w.r.t. parameter changes is clearly seen in (d).

expected to appear. However, if the change in parameter
is corrected using Proposition 1, the terminal constraints
are assumed to be locally satisfied.

These two behaviors are well seen in Figure 2, repre-
senting the terminal horizontal position z(tf ). The other
terminal constraints on h, vh and vz have voluntarily
been omitted, as their correction curve is much flatter
than for z. In other words, it means that even though
this terminal constraint component has the “worst” cor-
rection curve, it still demonstrates that the first order
corrections brought by QP(p) work well in a non-trivial
neighborhood of p = 0 in practice.

D. Non-smooth sensitivity to initial horizontal position
The second example aims at showing that the optimal

solutions of NLP(p) are indeed only Dini-differentiable
and not smooth, even in a standard landing scenario.

Let us consider a single parameter, the error in initial
horizontal position p = ∆z0 := z0 − z̄0.

The directional-derivatives of α at the middle point
t2 in the directions ∆z0 = 1 and ∆z0 = −1 differ, as
shown in Figure 3-(d). This behavior has a real-world
interpretation. When ∆z0 > 0, using more incidence on
α(t2) is not an option as the constraint is already active
and becomes strictly active (the associated multiplier
becomes positive when ∆z0 > 0). However, when ∆z0 <
0, lowering α(t2) is possible, allowing the corrections
presented.

E. Non-local ISP and initial horizontal position error
correction

This last example focuses on assessing whether the
corrections from QP(p) can be used non-locally.

Let us first define a metric that assesses a correction
correctness. When a parameter p ̸= 0 is estimated, a
correction is computed using QP(p), and then used on
the non-linear system in an open-loop fashion. The first-
order changes in the terminal constraint is supposed
to be null locally near p ̸= 0. However, for significant
values of p, nonlinear behavior will eventually make the
corrections fail. Thus, we seek a performance function Γ
s.t. Γ(p) ≤ 1 if and only if the terminal constraints are
acceptable. Given some scaling factors wh, wvh

, wz, wvz
,

consider the map

µ(x) := max
{

|h|
wh

,
|vh + εf |

wvh

,
|z|
wz

,
|vz|
wvz

}
. (19)

When µ is applied on the final state x(tf ), the scaling
factors define what terminal constraint errors are ac-
ceptable. Thus, using the notations from (6), a suitable
performance function is given by evaluating the terminal
point

Γ(p) := µ
(
xNt

(
D+

p z∗(0), p
))

. (20)

Then, building upon the two previous example, con-
sider the two-dimension parameter p = (∆z0, ∆ISP)⊤.
Evaluating Γ on a square grid of 51 × 51 elements, it
yields the level-set map shown in Figure 4. It shows a
non-trivial area where first-order corrections from QP(p)
implies acceptable terminal condition satisfaction on the
the true nonlinear system.

Note that this kind of green valleys that extend on the
figure corners, or “cross pattern”, conveys the fact that
some errors compensate each other in a constructive way.
Also, the non-smooth behavior of the contours at the



Fig. 4. Level sets for the performance function defined in (20). The
contours in green denotes values lower than 1, where the parameter
changes are corrected by QP(p) within an acceptable tolerance. In
orange shades are the values greater than 1.

bottom of Figure 4 correspond to the activation of one
engine flow control constraint, hence this sharp rupture.

V. Extensions and discussions
First, note that the choice of parameters in Section IV

is arbitrary, and the number of parameters was chosen
small for visualization purposes. It does not change the
approach to add a great number of parameters (e.g.
detailed atmospheric profiles, non-linear gravity model).

Second, linear parametric corrections u are advanta-
geous. Indeed, if u(z, t) is taken linear in z (e.g. Cubic
Splines or Hermite polynomials [7]) and if ū is described
the same way, then the linearization (12b) of bounded
control constraints, such as (15), is actually exact.

Moreover, more intricate mixed state-control con-
straints are under investigation (e.g. acceleration
bounds), and will be the matter of future publications.

Finally, consider an offline/online procedure consisting
in first computing a library of reference trajectories and
its sensitivities before the flight, and then using QP(p)
on the closest reference trajectory during the flight. Such
an approach has already been described in previous
works [10] and used in robotics [12] for example. The
need to be able to guarantee that the pre-computed
trajectory library is rich enough to cover all needs is
crucial for critical applications [22]. Thus, checking that
the union of acceptable level sets for every reference
trajectory - as in Figure 4 - represents a finite-covering of
the possible inputs would demonstrate the completeness
of the approach.

VI. Conclusion
This paper has revisited useful results from the liter-

ature, regarding sensitivity analysis for optimal control
problem. Its application to Powered Descent Guidance
proved the need and how to circumvent the strict comple-
mentarity slackness assumption. Practical methods have
been illustrated to assess the quality of the approximated
corrections on the true nonlinear system.

References
[1] B. A. Steinfeldt, M. J. Grant, D. A. Matz, R. D. Braun, and

G. H. Barton, “Guidance, Navigation, and Control System
Performance Trades for Mars Pinpoint Landing,” Journal of
Spacecraft and Rockets, vol. 47, pp. 188–198, Jan. 2010.

[2] L. Blackmore, “Autonomous Precision Landing of Space Rock-
ets,” The Bridge, 2016.

[3] M. Szmuk and B. Acikmese, “Successive Convexification for
6-DoF Mars Rocket Powered Landing with Free-Final-Time,”
in 2018 AIAA Guidance, Navigation, and Control Conference,
American Institute of Aeronautics and Astronautics, 2018.

[4] A. Bensoussan, Perturbation methods in optimal control,
vol. 5. Wiley, 1988.
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