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Abstract

We consider a tank containing a fluid. The tank is subjec-
ted to a one-dimensional horizontal move and the motion
of the fluid is described by Saint-Venant’s equations. We
show how to parameterize the trajectories of the linearized
system thanks to the horizontal coordinate of a particu-
lar point in the system – the “flat output”, see figure 2–
and a periodic function. The motion planning problem of
the linearized model is solved in the general case of joi-
ning two steady states. Next we provide an algorithm,
based on Godunov scheme, with a dedicated way of dea-
ling with boundary conditions, to numerically simulate
the evolution of the nonlinear system. Nonlinear simula-
tions provide a way of checking the accuracy of the motion
planning based on the tangent linear system.

1 Introduction

The following problem is derived from an industrial pro-
cess control problem where tanks filled with liquid are to
be moved to different workbenches as fast as possible.

To move such a tank horizontally, one has to take the
motion of the liquid into account in order to prevent any
overflowing. We show that the corresponding non-linear
model has solutions that can be approximately paramete-
rized by using the linearized model.

This allows us to plan moves without overflowing, and
gives a full description of the corresponding motion of the
fluid. We provide comparisons with Godunov scheme si-
mulations of the non-linear model and conclude that rea-
listic moves can be computed with this method.

This work has been inspired by fruitful discussions with
K.J. Åström from the Department of Automatic Control
of the Lund University at the time of a visit organized
by the Conférence des Grandes Ecoles. We also thank J-
M. Coron from the Orsay University for his advice and
reference [7].

Figure 1: tank of length l containing a perfect fluid.

2 The physical non-linear model

Neglecting superficial tension and viscosity, we get the
following system of conservation laws –see [8] for instance:
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where h(t, x) denotes the height of the liquid and v(t, x)
denotes the horizontal speed of the fluid in the absolute
referential.

2.1 Riemann invariants [8]

The preceding PDEs writes:
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Its eigenvalues are λ1 = v −
√
gh , λ2 = v +

√
gh

and its eigenvectors are: r1 =
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√
gh

)
and r2 =(

1
v +

√
gh

)
. Let J1 = v+2

√
gh , J2 = v−2

√
gh. Then

J1 is an 1-Riemann invariant since ∇J1.r1 = 0 and J2 is
an 2-Riemann invariant since ∇J2.r2 = 0. So:
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t
x

)
�→
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t
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)
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Let

J+(t, z) = J2(t, z + D(t)) , J−(t, z) = J1(t, z + D(t)),

while

J2(t, x) = J+(t, x − D(t)) , J1(t, x) = J−(t, x − D(t)).

Then ∂J−
∂z = ∂J1

∂x , ∂J−
∂t = ∂J1

∂t + Ḋ ∂J1
∂x . Which means:
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∂J+
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Likewise:

∂J−
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∂J−
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The boundary conditions are:

J+ + J−
2

(t,− l

2
) =

J+ + J−
2

(t,
l

2
) = Ḋ(t), ∀t ∈ R. (4)

3 Study of the linearized model

3.1 The delay system

In the following we linearize equations (2) and (3) in
order to solve them by the method of characteristics.
Near (h, hv) = (h, 0), we study δJ+ = J+ − J+ with
J+ = −2

√
gh and δJ− = J− − J− with J− = 2

√
gh.

Assuming that ‖Ḋ − v‖ <<
√
gh, the first order equa-

tions derived from (2) and (3) are:
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−
√
gh

∂ (δJ+)
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∂ (δJ−)
∂t

+
√
gh

∂ (δJ−)
∂x

= 0.

Let c =
√
gh, then the characteristics method gives:

δJ+(t, x) = ϕ+(t+
x

c
) , δJ−(t, x) = ϕ−(t− x

c
).

The two boundary conditions (4) are equivalent to:

ϕ+(t− ∆
2
) + ϕ−(t +

∆
2
) = 2Ḋ(t) (5)

ϕ+(t+
∆
2
) + ϕ−(t − ∆

2
) = 2Ḋ(t) (6)

with ∆ = l
c .

3.2 Noncontrollability

Using the module theoretic framework, we consider the
last system of delay equations (5,6) as a finitely generated
module over the ring R[s, δ = e−s ∆

2 ] (see [10] or [6] for
details). This module has a torsion element, namely ϕ+−
ϕ− since:

(δ2 − 1)(ϕ+ − ϕ−) = 0. (7)

So the system is not controllable.
Roughly speaking, it is possible to steer the system bet-

ween two different points provided that their correspon-
ding torsion elements equations are compatible. As we
will show next, this is the case between two steady states.

3.3 Explicit parameterization

Let us restrict ourselves to the set of moves of the tank
such as Ḋ admits a compact support. Then exists V such
as:

2D(t) = V(t + ∆
2
) + V(t − ∆

2
). (8)

Then:

ϕ+(t+ ∆)− ϕ+(t−∆) = V̇(t+ ∆)− V̇(t−∆).

From this last functional equality one can deduce that:

ϕ+(t) = V̇(t) + π(t) (9)

where π is a 2∆-periodic function. Similarly

ϕ−(t) = V̇(t)− π(t+ ∆). (10)

These last two equations allow us to compute h(t, x) and
v(t, x). First:

v(t, x) =
J+(t, x−D(t)) + J−(t, x−D(t))

2

=
1
2
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c
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c
) . . .
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c
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c

)
]
.

(11)

Second:
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1

16g
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c
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c
)

− V̇(t+
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c
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x−D(t)
c

)
)]2

.

(12)

Equations (8) (11) and (12) show that all the quantities
of the systems can be expressed in terms of V and π a
2∆-periodic function. In the following we show that, in
particular cases, we can get rid off π.



3.4 Motion planning between two steady
states

Let

V(t) =




0 t < ∆
2

σ(t) ∆
2 ≤ t ≤ T + ∆

2

1 t > T + ∆
2 .

Let us start from the following initial conditions:

h(0, x) = h
v(0, x) = 0

}
∀x ∈ [−∆

2
,
∆
2
].

According to (11) and (12), these initial conditions imply
that:

V̇(−s) + π(−s) − V̇(s) + π(∆ + s) = 0
V̇(−s) + π(−s) + V̇(s) − π(∆ + s) = 0

}
∀s ∈ [−∆

2
,
∆
2
].

So:
V̇(s) = −π(s)

V̇(s) = π(∆ + s)

}
∀x ∈ [−∆

2
,
∆
2
].

By construction, V(s) = 0 for s < ∆
2
. So

π(s) = 0
π(∆ + s) = 0

}
∀x ∈ [−∆

2
,
∆
2
].

This means that π(s) = 0 for s ∈ [−∆
2
, 3∆

2
]. Yet π is 2∆-

periodic, so
π = 0.

Parameterization of the motion Every quantity of
the system writes in terms of V and V̇ . Thus V is a “flat
output” – see [5] and [9] for details. At first order:

D(t) =
1
2

[
V(t + ∆

2
) + V(t − ∆

2
)
]

(13)

v(t, x) =
1
2

[
V̇(t+
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]
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√
h

2
√
g

(
V̇(t− x−D(t)

c
)− V̇(t+

x−D(t)
c

)
)
.

(15)

These last equations arise from the parameterization of
the solutions of the linearized model. In fact they are first
order approximations to the solutions of the non-linear
model.

Physical meaning of the “flat output” An easy cal-
culus leads to:

V(t) = D(t) +
L

2
M+ −M−

M+ +M− (16)

where

M+ =
∫ D(t)+ L

2

D(t)

h(t, s)ds , M− =
∫ D(t)

D(t)−L
2

h(t, s)ds.

Thus V(t) is the horizontal coordinate of a point close to
the middle of the tank – but slightly different from the

Figure 2: locus of the “flat output” V.

projection of the gravity center of the fluid. As shown on
figure 2, this point corresponds to the gravity center two
ponctual masses, M− andM+, located on the boundaries,
−l/2 and +l/2, respectively. Thus V coincides with the
middle of the tank at the beginning and at the end of the
move.

4 Nonlinear numerical scheme

In the following, we describe the techniques we use to
simulate the behavior of the tank when subjected to move
when t �→ D(t) is given by (13).

The set of Saint-Venant (or shallow water) hyperbolic
conservation laws

∂U

∂t
+

∂

∂x
f(U) ≡ ∂

∂t

(
h
hv

)
+

∂

∂x

(
hv

hv2 + 1
2gh

2

)
= 0

(17)

is considered in the following space-time domain :

t ≥ 0, D(t) − l

2
≤ x ≤ D(t) +

l

2
.

We introduce an integer N (N = 50 in the computations)
and discretize system (1) with space step ∆x = l

N and
time step ∆t with the finite volume method. We denote
by Dn the mean value of the tank position at time step
tn = n∆t : Dn = D(n∆t) and introduce the mean
velocity un+1/2 between two time steps

un+1/2 =
D(tn +∆t)−D(tn)

∆t
.

We denote by

W
n+1/2
j+1/2 (ξ) ≡

(Hn+1/2
j+1/2 , H

n+1/2
j+1/2 V

n+1/2
j+1/2 )T

(
hn

j , v
n
j ; ξ ; hn

j+1, v
n
j+1

)
(18)

the state W
n+1/2
j+1/2 (ξ), the height H

n+1/2
j+1/2 (ξ) and the ve-

locity V
n+1/2

j+1/2 (ξ) of the self similar solution ( ξ = x
t ) of

the Riemann problem for shallow water equations (1) as-
sociated with the initial conditions

U(0, x) = (hn
j , h

n
j v

n
j ) for x < 0

and U(0, x) = (hn
j+1, h

n
j+1v

n
j+1) for x > 0.



Figure 3: space-time control volume.

We define the moving flux f
n+1/2
j+1/2 at velocity un+1/2 bet-

ween two cells by the relation derived e.g. in [2] :

f
n+1/2
j+1/2 = f(Wn+1/2

j+1/2 (un+1/2))− un+1/2W
n+1/2
j+1/2 (un+1/2).

(19)

4.1 Godunov scheme and Galilean inva-
riance

The Godunov scheme can be explicited as follow. We
integrate the conservation law (1) in each space-time cell
defined by figure 3 or by the following algebraic relations

tn ≤ t ≤ tn +∆t, (20)

(j − 1)∆x ≤ x−
[
Dn − l

2
+ un+ 1/2(t− tn)

]
≤ j∆x.

(21)

The iteration of the scheme is simply a consequence of
integrating by parts the conservation law (17) in the space-
time domain (21) :

1
∆t

(Un+1
j − Un

j ) +
1

∆x
(fn+1/2

j+1/2 − f
n+1/2
j−1/2 ) = 0, (22)

for j = 1, . . . , N, n ≥ 0. (23)

This first order scheme is explicit and usual Courant Frie-
drichs Lewy condition constrains time step ∆t. We ob-
serve (see Annex or [3]) that due to the Galilean invariance
of the model (17), we have the following property :

H(hn
j , v

n
j − u; ξ − u; hn

j + 1, v
n
j + 1 − u)

= H(hn
j , v

n
j ; ξ; h

n
j+1, v

n
j+1), (24)

V (hn
j , v

n
j − u; ξ; hn

j+1, v
n
j+1 − u)

= V (hn
j , v

n
j ; ξ; h

n
j+1, v

n
j+1)− u. (25)

Then flux f
n+1/2
j+1/2 defined in (19) can also be evaluated

according to the expression

f
n+1/2
j+1/2 = (

HV

HV (V + un+1/2) + 1
2gH

2

)
(

hn
j , v

n
j − un+1/2; . . .

. . .0; hn
j+1, v

n
j+1 − un+1/2

)
(26)

Figure 4: partial Riemann problem at the boundary.

obtained by taking ξ = un+1/2 inside relations (24) and
(25). In this manner, the Godunov flux has been adapted
in order to take into account the displacement of the tank.

4.2 Boundary conditions

The treatment of rigid boundary conditions follows the
ideas proposed some years ago [4]. It consists to remark
that the boundary condition takes the physical form

v(D(t) ± l

2
) = un+1/2, t ≥ 0. (27)

We introduce the boundary manifold Bn+1/2 defined by

Bn+1/2 =
{
U = (H,Hun+1/2)T , H ∈ R

}
and solve the last (respectively the first) interface problem
with a partial Riemann problem between state Un

N and
boundary manifold Bn+1/2 (respectively boundary ma-
nifold Bn+1/2 and state Un

1 ) : the 1-wave issued from
Un

N intersects the boundary manifold Bn+1/2 in a state
W

n+1/2
N+1/2

whose velocity is by definition equal to un+1/2

(see figure 4).
The non trivial height H

n+1/2
N+1/2 of state W

n+1/2
N+1/2 de-

fines completely the boundary flux and we have from (25),
(26) and (27) :

f
n+1/2
N+1/2 =

(
0

1
2g(H

n+1/2
N+1/2)

2

)
, n ≥ 0

and an analogous formula for f
n+1/2
1/2

.

5 Linear prediction versus nonli-
near simulation

We check the relevance of our approach by imposing a mo-
tion planned thanks to linearization and comparing the
linear prediction via (13,14,15) to the corresponding be-
havior obtained by simulation of the nonlinear model.

In the following, ∆, which is the required time for
a wave to meet a boundary starting from the opposite
one, is equal to 1. The vertical scale of the figures has
been enlarged by a factor 3 for the reader to see the de-
tails. The Matlab code can be obtained via E-mail at
petit@cas.ensmp.fr or rouchon@cas.ensmp.fr.



Figure 5: snapshots at t=0, t=T/4, t=T/2, t=3T/4, t=T
and t=5T/4. Left: linear prediction. Right: nonlinear
simulation.

Transfer time T=4.0 The prediction of a slow move is
rather close to the numerical results of a Godunov scheme
simulation. Results are shown on figure 5.

Transfer time T=2.5 Yet as the move speeds up the
prediction results get more different from the numerical
simulation. Results are shown on figure 6.

6 Conclusion

We have proved that the linear approximation of (1)
around any steady state is not controllable. Neverthe-
less, the linear model is “steady state controllable”: one
can connect, in the sense of [11], any past trajectory pas-
sing through a steady state to any future trajectory pas-
sing through another steady-state. Is the nonlinear system
controllable? If not, is it “steady-state controllable”?

In [7], it is shown that, for D constant, (1) admits a
unique entropic solution for t ≥ 0 when the initial condi-
tion is closed to steady state. It is also shown that such
solution decays like 1/t to the steady state (here the re-
quired periodicity is automatically satisfied thanks to the
boundary conditions and symmetry arguments). Is it pos-

Figure 6: snapshots at t=0, t=T/4, t=T/2, t=3T/4, t=T
and t=5T/4. Left: linear prediction. Right: nonlinear
simulation.

sible, through active control, to improve the convergence
rate and to achieve exponential stability despite the lack
of controllability of the linear approximation?
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PhD thesis, Université Paris Sud, Orsay, (1995).

[11] J.C. Willems. Paradigms and puzzles in the theory of
dynamical systems. IEEE Trans. Automat. Control,
36:259–294, (1991).

Annex: Galilean invariance and Riemann
problem

• We show in this section that, with the notations intro-
duced previously concerning the solution of the Riemann
problem, the following relations

H(hl, vl − u; ξ − u; hr, vr − u) = H(hl, vl; ξ; hr, vr)

(A1)

V (hl, vl − u; ξ − u; hr, vr − u) = V (hl, vl; ξ; hr, vr) − u
(A2)

hold for each set of left parameters hl and vl, of right
parameters hr and vr , of celerity ξ and velocity u.

• With the notations introduced in [1] for the waves of
the Riemann problem, we know that the 1-wave issued
from state Ul admits a parameterization of the form

v1 = vl − Ψ(h1, hl), h1 > 0. (A3)

On the other hand, the 2-wave of states U2 arriving to
the state Ur have a parameterization given [1] in terms
of the same function Ψ(•, •) :

v2 = vr + Ψ(h2, hr), h2 > 0. (A4)

The intermediate state U∗ between Ul and Ur is defined
by imposing v1 = v2 inside relations (A3) and (A4) ; its
height h∗ satisfies the equation

Ψ(h∗, hl)− Ψ(h∗, hr) = vl − vr. (A5)

Then changing vl and vr into vl − u and vr −
u respectively does not change the variable h∗. In a similar
way due to (A3) and (A4), the velocity v∗ (v∗ = v1 = v2)
becomes v∗ − u when vl and vr are changed in the pre-
vious manner.

• If the 1-wave between Ul and U∗ is a rarefaction (i.e.
h∗<hl), the functions H(•) and V (•) satisfy the rela-
tions

H(hl, vl; ξ; hr, vr) = hl

and V (hl, vl; ξ; hr, vr) = vl if ξ < vl − cl (A6)

V (hl, vl; ξ; hr, vr)− c(H(hl, vl; ξ; hr, vr)) = ξ,

vl − cl < ξ < v∗ − c∗ (A7)

V (hl, vl; ξ; hr, vr) = vl −Ψ(H(hl, vl; ξ; hr, vr),
hl, vl − cl < ξ < v∗ − c∗ (A8)

H(hl, vl; ξ; hr, vr) = h∗

and V (hl, vl; ξ; hr, vr) = v∗ if ξ > v∗ − c∗, (A9)

where c(h) ≡
√
g h is the sound celerity for shallow wa-

ters. When data vl and vr are changed into vl − u and
vr − u respectively, it is clear from the algebraic relations
(A6)-(A9) that relations (A1) and (A2) define a solution
of system (A6)-(A9) associated with the new data in the
domain ξ <v∗ − u for celerity of the waves.

• If the 1-wave between Ul and U∗ is a shock wave (i.e.
h∗>hl), the shock celerity σ∗

1 is computed thanks to the
Rankine-Hugoniot jump conditions :

h∗v∗ − hlvl = σ∗
1(h

∗ − hl) (A10)

h∗v∗
2 +

1
2
gh∗

2 − hlv
2
l − 1

2
gh2

l = σ∗
1(h

∗v∗ − hlvl). (A11)

When vl and v∗ are changed into vl − u and v∗ − u
respectively, the scalar σ∗

1 − u is again solution of system
(A10)(A11), as shown by the following algebra :

h∗(v∗ − u)2 − hl(vl − u)2 +
1
2
g(h∗2 − h2

l )

= σ∗
1(h

∗v∗ − hlvl)− 2 u(h∗v∗ − hlvl) + u2(h∗ − hl)
= (σ∗

1 − u)(h∗v∗ − hlvl)− u(σ∗
1 − u)(h − hl)

= (σ∗
1 − u)[h∗(v∗ − u)− hl(vl − u)].

Then the parameterization of the 1-shock wave

H(hl, vl; ξ; hr, vr) = hl

and V (hl, vl; ξ; hr, vr) = vl if ξ < σ∗
1

H(hl, vl; ξ; hr, vr) = h∗

and V (hl, vl; ξ; hr, vr) = v∗ if σ∗
1 < ξ < v∗

is transformed according to the relations (A1) and (A2)
when vl and v∗ are changed into vl −u and v∗−u. The
proof is analogous for the 3-wave between U∗ and Ur

and the proposition is established.


