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Abstract— This article proposes a methodology for estimating
the attitude of a rigid body from vector measurements only,
i.e. without gyrometers. Classically, two vector measurements
are enough to determine the attitude of a rigid body, through
an algebraic calculation which is sometimes considered as
computationally costly or tedious to implement. Instead, simple
observers are often implemented such as the attitude com-
plementary filter, using the feedback of a (possibly biased)
gyrometer. What we show in this article is that the angular
velocity can be simply estimated with the vector measurements,
thus making the gyro redundant. We propose an adaptation
of the complementary filter that is simple to implement and
gyroless. A proof of convergence is given, and simulation and
experimental results are provided.

INTRODUCTION

Attitude estimation of a rigid body is a central question
in numerous fields of engineering and applied science, es-
pecially those including motion control. It has been vastly
studied and there are many implementation for UAVs [1],
[2], [3], UGVs [4], aerospace systems [5], [6], [7], [8], or
so-called smart objects [9], [10] among others. Classically
(see e.g. [11]), two vectors measurements, usually assumed
to be obtained using accelerometers and magnetometers,
are sufficient to algebraically reconstruct the attitude of
a rigid body. This vastly documented method (see [12],
[13]) has been improved in many applications with multi-
sensor data fusion, adding gyrometers to the set of sensors,
most frequently using Kalman filtering (see e.g. [14]) or,
more recently, complementary filtering as in [15], [16].
This last solution is appealing because of its simplicity of
implementation (relying on a few nonlinear equations that
are readily implemented onboard any embedded system) and
the simplicity of its straightforward tuning procedure (very
few tuning gains being at stake). Gyrometers add robustness
to vector measurements failures, and provide dynamic re-
sponsiveness to the estimation filter. Various experiments and
works [17], [18], [19], [20], [21] [22], [23], [24], [25], [26],
[27], [28] offer alternatives and comparisons of the various
methods implementing the attitude estimation technique from
gyrometers, accelerometers and magnetometers.

In some applications though, gyrometers are unreliable.
This is the case for systems subjected to strong accelerations
or high spinning rates, such as gun-launched ammunitions
(see [29], [30], [31]). Moreover, their high cost and the
improvement of low-cost sensors performance are multiply-
ing the cases where a gyroless approach seems a viable
and desirable alternative. Instead of directly measuring the
angular velocity, some works have developped solutions
for the problem of estimating it (see e.g. [32], [33]). In

1Aurélien Fiot is a PhD candidate at CAS - Centre automatique et
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particular, [34], [35], [36] have offered a way of estimating
the angular velocity from vector measurements, even when
an unknown torque is applied.

As will appear in this paper, the angular velocity estima-
tion technique plays a central role in the attitude estimation
problem. This paper offers a gyroless adaptation of the
complementary filter by [16]. This algorithm is simple to
implement and only requires a minimal number of sensors
(the method being gyroless, only direction sensors are re-
quired).

The paper is organized as follows. In Section I, the
problem statement is formulated. In Section II, the proposed
observer is presented. Its convergence is established. In
Section III, simulation and experimental results are reported.
Finally some perspectives are given in III-B.

I. NOTATIONS AND PROBLEM STATEMENT

A. Notations
Vectors in R3 are denoted with small letters, square

matrices in R3×3 with capital letters. |x| is the Euclidian
norm of x in R3. For any two matrices A, B in R3×3 the
inner product and Frobenius norm are defined by

〈〈A,B〉〉 = Tr(ATB), ||A|| =
√
〈〈A,A〉〉

For z ∈ C, <(z) is the real part of z ; for any matrix M ∈
R3×3, the anti-symmetric part of M is defined by

Pa(M) =
1

2
(M −MT )

For any two matrices A, B in R3×3, one notes [A,B] =
AB − BA ; finally for x in R3, [x×] is the skew-
symmetric cross-product matrix associated with x, i.e. ∀y ∈
R3, [x×]y = x× y. Namely,

[x×] =

(
0 −x3 x2
x3 0 −x1
−x2 x1 0

)
where x1, x2, x3 are the coordinates of x in the standard
basis of R3.

B. Problem statement
Consider a rigid body whose inertia matrix J is known,

which is subjected to a slowly-varying torque τ , and which
is equipped with two embedded vector sensors producing
measurements

vi = RT v̊i, i = 1, 2 (1)

where R is the rotation matrix describing the rigid body
attitude w.r.t. a set inertial frame, and v̊1, v̊2 are two constant
vectors expressed in the inertial frame. Without loss of
generality, the vectors v̊1, v̊2 are unit vectors 1. They are

1in practical applications these vectors corresponds to fixed directions,
e.g. direction to the Sun, or to the center of the Earth, local magnetic field,
among others.
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assumed to be non-colinear, i.e. v̊T1 v̊2 6= 0. The dynamics of
each vi, the angular velocity in the body frame ω and the
attitude matrix R are the following

Ṙ = R[ω×]

v̇1 = v1 × ω
v̇2 = v2 × ω
ω̇ = J−1(Jω × ω + τ)

(2)

The equation governing ω is a forced Euler equation. For
simplicity, we note

E(ω) , J−1(Jω × ω), p , J−1τ

so that the Euler equation rewrites (using p as the (normal-
ized) torque) as

ω̇ = E(ω) + p

The problem we adress in this paper is the estimation
of the attitude matrix R from the measurements (1), and
the model (2). The main assumption we formulate is the
following.

Assumption 1: The torque p is slowly varying ; it is not
known but it generates a rotation which remains bounded so
that |ω| ≤ ωmax for all t ≥ 0.
This assumption will be instrumental in the convergence
analysis and the practical use of the observer we propose.
The fact that the torque p is unknown is very useful for
applications, as this variable is difficult to directly measure.
In numerous cases, the observer we propose can be used
with the purpose of estimating this quantity2. The “slowly-
varying” assumption will be used to model p as (piece-wise
w.r.t. time) constant vector, as is often done in linear observer
design, following the ideas of [37]. Mathematically, we will
consider that Assumption 1 yields

τ̇ = 0, ṗ = 0 (3)

Here “slowly-varying” means with respect to “fast-varying”
variables which are the other variables (attitude, directions,
angular velocity), in the mathematical sense of singular
perturbations of [38], e.g.

The boundedness of the angular velocity formulated in
Assumption 1 is in fact a very mild assumption. Its practical
necessity is easily imagined as direction measurements most
likely do not produce any insight if the rigid body is rotating
at infinite angular velocity.

II. OBSERVER DESIGN AND PROOF OF CONVERGENCE

Our observer aims to estimate the extended state
X = (R v1 v2 ω p). Following a direct inspiration
from [16], [36], we design the following observer

˙̂
R = R̂ ([(ω̂)×] + kP [σ×])

σ = k1v1 × (R̂T v̊1) + k2v2 × (R̂T v̊2)
˙̂v1 = v1 × ω̂ + k(v1 − v̂1)
˙̂v2 = v2 × ω̂ + k(v2 − v̂2)
˙̂ω = E(ω̂) + p̂+ k2(v1 × v̂1 + v2 × v̂2)
˙̂$ = E($̂) + p̂+ γ1

√
k(ω̂ − $̂)

˙̂p = γ2k(ω̂ − $̂)

(4)

2in space applications, e.g., the study of anomalies of rotation boils
down to estimating external torques and identifying them among a list of
possible sources (impact of micrometeorites, solar wind, gazeous ejection,
eddy currents, among others).

where k, kP , γ1 and γ2 are constant positive tuning param-
eters.

By introducing the scaled errors

R̃ = R̂TR ∈ R3×3 (5)

X =

v1 − v̂1v2 − v̂2
ω−ω̂
k

 ,

(
X1

X2

X3

)
∈ R9 (6)

Y =

(
$−$̂
k
p−p̂
k
√
k

)
,

(
Y1
Y2

)
∈ R6 (7)

we obtain, using (3),

˙̃R = [R̃, [ω×]]− kP [σ×]R̃+ [(ω̃)×]R̃

Ẋ1 = −kX1 + kv1 ×X3

Ẋ2 = −kX2 + kv2 ×X3

Ẋ3 = k(v1 ×X1 + v2 ×X2) + E(ω)−E(ω̂)
k +

√
kY2

Ẏ1 = −γ1
√
kY1 +

√
kY2 + γ1

√
kX3 + E(ω)−E(ω̂)

k

Ẏ2 = −γ2
√
kY1 + γ2

√
kX3

(8)
The proposed observer (4) is a cascade of two pre-existing

observers, found in [16] and in [36] respectively. This will
be instrumental in the convergence analysis. As will appear,
the linearized interconnection of the three variables R̃,X, Y
is organized as pictured in Fig. 1. Interestingly, the (X,Y )
dynamics (which are coupled together) are cascaded onto the
R̃ dynamics without any feedback.

ξ(
√
k,X, Y )

ζ(
√
k,X)

Ẋ = kA1(t)X + ξ

Ẏ =
√
kA2Y + ζ

ρ(X) = X3

˙̃R = f(R̃, ρ)

X

X

ρ

ζY

ξ

Fig. 1. Interconnection of systems

The main result of this paper is that the three subsystems
R̃,X, Y are exponentially stable, with X and Y converging
to zero and R̃ converging to the identity matrix. This
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implies that the observer state (R̂, v̂1, v̂2, ω̂, $̂, p̂) converges
to (R, v1, v2, ω, ω, p). We prove this result (formulated in
Theorem 3) in the following.

A. Recalls

The proposed result is actually a combination of two
distinct convergence results, Theorem 1 and Theorem 2.

Theorem 1: [Angular velocity and torque observer [36]]
Under Assumption 1, for any choice of γ1, γ2 > 0, the
observer defined by

˙̂v1 = v1 × ω̂ + k(v1 − v̂1)
˙̂v2 = v2 × ω̂ + k(v2 − v̂2)
˙̂ω = E(ω̂) + p̂+ k2(v1 × v̂1 + v2 × v̂2)
˙̂$ = E($̂) + p̂+ γ1

√
k(ω̂ − $̂)

˙̂p = γ2k(ω̂ − $̂)

(9)

defines an error which, for sufficiently large k > 0, converges
locally uniformly exponentially to zero.

Theorem 2: [Explicit complementary filter [16]] The filter
defined by

˙̂
R = R̂

(
[(ωy − b̂)×] + kP [σ×]

)
˙̂
b = −kIσ
σ = k1v1 × (R̂T v̊1) + k2v2 × (R̂T v̊2)

(10)

where ωy = ω + b is the measurement from an embedded
gyro assumed to be corrupted with a constant bias b, and
where kI and kP are constant positive tuning parameters,
has three unstable equilibria characterized by

(R̂?i, b̂?i) , (U0DiU
T
0 R, b), i = 1, 2, 3

where D1 = diag(1,−1,−1), D2 = diag(−1, 1,−1) and
D3 = diag(−1,−1, 1), and U0 ∈ SO(3) such that

M0 ,
2∑
i=1

kiv̊iv̊
T
i = U0ΛUT0

with Λ a diagonal matrix. Its error (R̃(t), b̃(t)) is locally
exponentially stable to (I, 0) and for almost all initial
conditions (R̃0, b̃0) 6= (R̂T?iR, b) the trajectory (R̂(t), b̂(t))
converges to the trajectory (R(t), b).

We will now show that replacing the gyro in Mahony’s
explicit complementary filter by the estimation provided
by (9), provides the desired convergence properties, yielding
the following result.

Theorem 3 (Main Result): Under Assumption 1, given
kP > 0, for any γ1, γ2 > 0, the filter whose dynamics are
defined by (4) defines an error (8), which, for k large enough,
converges locally exponentially to (I, 0, 0) for almost all
initial conditions R̃0 6= R̂T?iR.

B. Asymptotic behavior of the (X,Y )-subsystem

We reproduce, in a summarized way, some calculus from
[36], for self-containment purposes. Following (Khalil, 1996,
Th. 3.13 [39]), we establish the exponential stability of
the linearization about the origin (X,Y ) = (0, 0) and
conclude on the nonlinear dynamics of the subsystem (X,Y).
Linearization gives

{
Ẋ = kA1(t)X + ξ

Ẏ =
√
kA2Y + ζ

(11)

with

A1(t) ,

( −I 0 [a(t)×]
0 −I [b(t)×]

[a(t)×] [b(t)×] 0

)
,

ξ ,

 0
0

∇E(ω)X3 +
√
kY2


A2 ,

(
−γ1 1
−γ2 0

)
, ζ ,

(
γ1
√
kX3 +∇E(ω)X3

γ2
√
kX3

)
.

Thus the linearized error dynamics (11) can be rewritten
as the interconnection of the two systems

Ẋ = kA1(t)X (12)

Ẏ =
√
kA2Y (13)

which are actually disturbed by the input terms ξ and ζ
defined above.

A detailed analysis of the time varying matrix A1(t)
presented in [34] establishes the existence of a Lyapunov
function V1(t,X) and two constants

0 < α1 ≤ β1 (14)

depending only on the (constant) value of the scalar product
v̊T1 v̊2 6= 0, such that for all (t,X), along the trajectories of
system (12), one has

α1|X|2 ≤ V1(t,X) ≤ β1|X|2, |∇V1(t,X)| ≤ 2β1|X|

V̇1(t,X) = −k|X|2

For any choice of γ1, γ2 > 0, the eigenvalues λ1, λ2 of
A2 have strictly negative real parts. Further, with γ21 6= 4γ2
one has λ1 6= λ2. Note e1, e2 two associated eigenvectors,
P = [e1 e2] the corresponding invertible matrix and λ =
−max(<(λ1),<(λ2)) > 0. We have, for all Y ,

e
√
kA2tY = P

(
e
√
kλ1t 0

0 e
√
kλ2t

)
P−1Y

from which we deduce |e
√
kA2tY | ≤ ||P ||||P−1||e−

√
kλt|Y |.

Defining V2 as

V2(Y ) ,
√
k Y T

∫ ∞
0

e
√
kAT

2 te
√
kA2tdt Y

=
√
k

∫ ∞
0

|e
√
kAT

2 tY |2dt

we have, for all Y ,

α2|Y |2 ≤ V2(Y ) ≤ β2|Y |2 (15)

with α2 , 1
2||A2|| ,

||P ||2||P−1||2
2λ , β2. Finally, by upper-

bounding the gradient of V2, we obtain |∇V2(Y )| ≤ 2β2|Y |.
Moreover, using (13), one gets

V̇2(Y ) = −
√
k|Y |2.
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We now investigate the convergence of the interconnection
(X,Y ). Consider the candidate Lyapunov function

V (t, (X,Y )) , V1(t,X) + V2(Y ).

Note

α , min(α1, α2), β , max(β1, β2), Z ,

(
X
Y

)
We have

α|Z|2 ≤ V (t, Z) ≤ β|Z|2

and the derivative of V along the trajectories of (8) satisfies

V̇ (t, Z) = −k|X|2 +∇V1(t,X)ξ −
√
k|Y |2 +∇V2(Y )ζ.

A direct calculation gives

||∇E(ω)|| ≤
√

2ωmax.

Hence, the coupling terms can be bounded as

|ξ| ≤
√

2ωmax|X|+
√
k|Y |

|ζ| ≤
(√

2ωmax + (γ1 + γ2)
√
k
)
|X|.

It directly follows that

V̇ (t, Z) ≤ −k|X|2 + 2β1
√

2ωmax|X|2 (16)

+ 2
√
kβ1|X||Y | −

√
k|Y |2

+ 2β2

(√
2ωmax + (γ1 + γ2)

√
k
)
|X||Y |

=
√
kZT

(
−
√
k β1 + β2(γ1 + γ2)

β1 + β2(γ1 + γ2) −1

)
Z

+ 2β1
√

2ωmax|X|2 + 2β2
√

2ωmax|X||Y |. (17)

In this last expression, the bilinear terms can be shown to
be dominated by the quadratic terms. Indeed, for sufficiently
large k, the symmetric matrix

M ,

(
−
√
k β1 + β2(γ1 + γ2)

β1 + β2(γ1 + γ2) −1

)
is definite negative. Therefore, by choosing a sufficiently
large k, the first term in (17) is made dominant over the other
terms that are not scaled by

√
k. Under these conditions,

V̇ is definite negative and the system (8) is uniformly
exponentially stable.

As a result we deduce the following inequality (this will
be instrumental in the connection of the full error system):
there exists C > 0 and λ > 0 such that :

|ω̃(t)| < Ceλ(t−t0) (18)

C. Asymptotic behavior of the R̃ subsystem
In this part we are considering the error dynamics (10).
Let us define M as

M , RTM0R with M0 ,
2∑
i=1

kiv̊iv̊
T
i

In [16], it is showed using W ,
∑2
k=1 ki(1−〈vi, R̂T v̊i〉)

that the norm of the anti-symmetric part of R̃M has to
converge asymptotically to zero, and that a consequence of

this fact implies either R̃ = I or Tr(R̃) = −1.

Further, [16] showed this implies the filter has one ex-
ponentially stable equilibrium R̂ = R and three unstable
equilibria characterized by R̂∗i = U0DiU

T
0 R, with Di being

diagonal matrices with a 1 on position i and -1 elsewhere,
and U0 ∈ SO(3) such that M0 = U0ΛUT0 with Λ a diagonal
matrix (this is the result stated in Theorem 2).

D. Connecting the subsystems
Following the preceding recalls, let us consider the func-

tion

W ,
2∑
k=1

ki(1− 〈vi, R̂T v̊i〉) = k1 + k2 − Tr(R̃M)

which is analogous to the candidate Lyapunov function
in [16] for the subsystem R̃ ; it will not be a proper
Lyapunov function since it is not always decreasing, as
expected due to the external forcing term appearing in the
interconnection pictured in Figure 1, but we can use it to
show that ||Pa(R̃M)|| converges to zero.

Using (8), the derivative of W is given by

Ẇ = −Tr
(

˙̃RM + R̃Ṁ
)

= −Tr
(
−kP [σ×]R̃M + [R̃M, [ω×]] + [ω̃×]R̃M

)
= kP Tr

(
[σ×]Pa(R̃M)

)
− Tr

(
[ω̃×]R̃M

)
which yields

Ẇ = −kP ||Pa(R̃M)||2 − Tr([ω̃×]R̃M)

Integrating this relation from 0 to t gives∫ t

0

−kP ||Pa(R̃M)||2dt = W (t)−W (0)+

∫ t

0

Tr([ω̃×]R̃M)

(19)
Cauchy-Schwarz inequality ensures that

Tr
(

[ω̃×]R̃M
)
< ||[ω̃×]|| × ||R̃M ||

Stemming from the fact that ||R̃M || = ||R̂TM0R|| is less
than the product of the norms of those three matrixes, with
the Frobenius norm of M0 and any rotation matrix all being
non-varying, and the exponential convergence of ω̃ to zero
(from (18)) is the existence of a strictly positive number C ′
such that

Tr
(

[ω̃×]R̃M
)
< C ′e−λ(t−t0) (20)

As a result Tr([ω̃×]R̃M) is integrable. Consequently, the
left-hand side integral of (19) is not only decreasing over
time, but it has a lower bound (note that W is positive
definite). Then, the function t 7→

∫ t
0
−kP ||Pa(R̃M)||2dt

converges when t goes to +∞ . Once it is shown that
the integrand is uniformly continuous, Barbalat lemma will
ensure that the integrand has to converge to zero.

Indeed, the function t 7→ −kP ||Pa(R̃M)||2 is uniformly
continuous, because, thanks to Assumption 1, ω is bounded,
and R̃M = R̂TM0R with Ṙ and ˙̂

R bounded.
As a result limt→+∞ Pa(R̃M)(t) = 0. The conclusion

follows along the lines of [16].
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III. VALIDATION OF THE GYROLESS ATTITUDE OBSERVER

A. Simulation data
Our proposed gyroless observer (4) has been tested on

simulation data, with various inertia matrices and applied
torques ; below are examples of estimation of angular
velocities, torques and attitudes.

Figure 2 reports estimates of angular velocities during
a simulation where a triangle signal torque is applied to
the third axis of inertia. None of the values of the three
torques are known to the observer which is able to estimate
them, as reported in Figure 3. In this figure, it is worth
noting that the assumption of slowly varying torque is
reasonable, but prevents the observer to truly estimate the
value of the triangle signal (some lag in the estimate is
present, as expected). Interestingly, the coupling term ω̃ is
not completely vanishing, but it is kindly attenuated in the
attitude estimate as reported in Figure 4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4
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0.6

0.8

1
Angular Velocity Estimation
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Fig. 2. Estimation of the angular velocity [simulation results] (zoom-in
view)
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Fig. 3. Estimation of the torques [simulation results]
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0.8

1

1.2

1.4

1.6

1.8
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Attitude error

Fig. 4. Norm of the attitude error matrix [simulation results] (zoom-in
view)

B. Experiments

The gyroless attitude observer (4) was also tested on
experimental signals obtained using the low-cost sensors
of smartphone. The direction sensors of the smartphone
(magnetometer and accelerometer) are used. Only those
measurements are used in the implementation of (4). The
angular velocitys readings are used in an implementation of
the filter (10) for comparisons.

The smartphone under consideration is a Blackberry KEY-
one™Android smartphone which embeds a tri-axis gyro, a
tri-axis accelerometer and a tri-axis magnetometer. The data
are streamed, using a local Wifi connection, to a laptop
PC implementing the observers in discrete-time under the
form of Matlab scripts. The data are received at a rate of
approx. 100Hz. The inertia matrix J is roughly estimated
using the exterior dimensions of the device. Comparisons
of the attitude, decomposed into three usual Euler-angles are
reported in Figure 5. During the experiments, the smartphone
is gently reoriented and the two observers (4) and (10)
produce concurring estimates, as is reported in Figure 5.
Although no absolute truth can be assessed in the abscence
of a reference attitude, it is expected that (10) captures more
directly the transients (which are directly measured by the
gyros) than (4) which has to estimate them. The results
reported in Figure 5 stress this fact. They also stress that
the proposed observer is actually working, producing smooth
estimated of the attitude without any gyro, but by filtering
through several layers of model dynamics the measurement
of the direction sensors.

CONCLUSION

This paper offers a simple alternative to the classic
complementary filter of [16] for attitude filtering. The
proposed alternative observer is gyroless, and features the
appealing simplicity of the complementary filters (compared
to state of the art Kalman filters, and directe resolution
of Wahba’s problem). Even though gyros arguably add
robustness in case of one measurement failure, gyroless
approaches remain of interest for low-cost applications or
extreme conditions common gyros cannot handle (strong
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Fig. 5. Estimated angular velocitys compared against gyroscope readings
[experimental results]
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Fig. 6. Estimated Euler angles of the proposed gyroless observer compared
against the complementary filter [experimental results]

acceleration, saturating spinning rates).

An interesting extension of this work would be a gyroless
attitude observer with one direction sensor only (this may
prove useful for example when magnetic disturbances are
occurring, or in free-flight, when accelerometers do not
provide a measurement of the gravity field). The classic
complementary filter of [16] is known to partially converge
when one single vector measurement is used (the rotation
around the measured vector being unobservable). Concerning
angular velocity, [40] has shown that it can still be estimated
with one vector measurement, through a simple assumption
of persistent excitation (being almost always satisfied, in
particular in free-rotation). An analogous proof to the main
result of this paper shows the (legitimate) angular velocity
observer can still be used in the attitude matrix observer
(since the former remains exponentially stable), thus provid-
ing a partial estimation of the attitude matrix. In the end,
this adaptation of the gyroless observer works with a single
direction sensor, and partially gives the attitude of a rigid

body, which may prove useful in various application (ballistic
free-flight or heavily disturbed magnetic environments).
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