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Abstract— We develop a method to reconstruct the rotation
motion of a satellite from Sun sensor measurements. Mathe-
matically, the estimation objective is formulated as the problem
of phase reconstruction for a 2-dimensional periodic function.
A computationally straightforward solution is proposed. The-
oretical developments allow to assess the robustness to model
imperfections, sampling and noise. Simulation results illustrate
practically obtainable performance..

I. INTRODUCTION AND PROBLEM STATEMENT

Consider a satellite orbiting around the Earth in a re-
gion where its motion is governed by gravitational forces
and actuators which generate its spin motion. The body
frame of the satellite is assumed to rotate with respect to
an inertial frame of reference such that the spin rotation
is relatively slow but not negligible. The problem treated
in this contribution is to estimate this spin motion from
Sun sensors. This question is motivated by recent works
[1] in the aerospace area. Typically envisioned cases of
application encompass deployment of micro-satellite from
the ISS (International Space Station), attitude monitoring of
spin or dual-spin satellite, early detection and diagnosis of
attitude instability, among others. While several estimation
techniques have been considered earlier, including video
processing, inertial navigation, magnetometry attitude deter-
mination [2], the data produced with these techniques have
to be consolidated using another source of information. Sun
sensors, which are commonly available [3], seem like a
promising solution. Usually, the Sun sensors are used directly
in the attitude determination to complement measurement
from magnetometers [4], and star cameras [5], see also [6].
In this paper, we propose a method that uses the Sun sensors
alone, in an innovative way.

The energy deposited in a photocell being proportional
to the cosine of the angle of incidence of solar radiation,
the output signal of a Sun sensor is, roughly speaking, a
cosine function of this angle1. Yet, the cosine description
model is incomplete [7], [8] as it does not account for
sensor discrepancies (nonlinearities, noise) and various other
effects (interferences, reflection from surrounding structures
and celestial bodies among others).

To determine without any ambiguity the angular position
of the Sun with respect to the satellite body frame and to
guarantee all time visibility of the Sun, several sensors are
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1for this reason, Sun sensors are frequently called cosine detectors

placed onto the rigid body. The approach we advocate in
this article is to use the information arising from these several
sensors, simultaneously, to reconstruct an estimate of the spin
angle. Interestingly, the method does not use any other sensor
such as gyrometer [9], gravimeter or accelerometer, and can
therefore produce a stand-alone robust and redundant source
of information for guidance, navigation and control purposes.

Fig. 1. For 0 ≤ θ ≤ π
2

, photocells 3 and 4 lie in the shadow of the
satellite. The output currents of photocells 1 and 2 are roughly proportional
respectively to cos θ and sin θ.

In details, we consider a satellite equipped with four
Sun sensors homogeneously distributed on its circumference
and pointing (almost) orthogonal directions, see Fig. 1. At
all times, exactly two sensors produce a nonzero signal
(corrupted by noise) generated by the perceived sunlight, the
other two sensors being in the shadow of the satellite. Typical
signals are represented on Fig. 2.
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Fig. 2. Typical variation of the output current of the photocells with respect
to the satellite orientation.
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At a given time t, we note θ(t) the rotation angle of the
satellite with respect to a reference initially aligned with the
Sun. The set of sensors provides two signals proportional
respectively to cos θ(t) and sin θ(t), up to the previously
discussed model errors and nonlinearities. Instead of sepa-
rately inverting the two measurements to get two independent
estimates of θ(t), we propose the following approach. We
gather the two signals in a single 2-dimensional vector and
determine its argument (angle with respect to an axis of ref-
erence). This direct approach gives a straightforward solution
to the problem under consideration, yet its implementation
needs investigations, covering the various practical issues
that can be expected and which are modeled here under the
form of additive noise and sampling.

Mathematically, we recast the problem of estimating θ(t)
as the phase estimation of a 2-dimensional vector. Such a sig-
nal can be written as f(θ(t)), where f is a 2π−periodic com-
plex function. The signal is sampled at frequency νs = 1

∆t
and corrupted by the aforementioned noise. To sum up, we
consider the following problem.

Problem 1: Knowing N measurements

y[k] = f(θ[k]) + n[k] ∈ C, 1 ≤ k ≤ N (I.1)

where
• f is an (unknown) 2π-periodic function valued in C (or

equivalently in R2)
• θ[k] = θ(k∆t) with θ[1] = 0
• n[k] is a measurement noise

find an estimate θ̂[k] of θ[k].

The paper proposes a solution to this problem. It is
organized as follows. In Section II, we first consider an
idealized version of Problem 1 where no noise is present.
Starting with a continuous phase description, and introducing
sampling, we lay the basis of the solution method and
provide a bound on the estimation error. In Section III,
we take the noise into account and quantify its impact
on the estimation algorithm. Solutions to Problem 1 are
summarized and simulation results are provided in Section
IV. Conclusions and perspectives are given in Section V.

II. ESTIMATION PRINCIPLE

In this section we consider Problem 1 without any noise.
We start by introducing some notations and defining the
phase variation of f around an origin in section II-A. In
section II-B we see how this phase variation gives an estimate
of θ as θ varies continuously. Finally, we build the estimate
of the sampled θ[k] in Section II-C.

A. Preliminaries and notations

We introduce handy notations and recall some basic com-
plex analysis results (as exposed in details in [10] e.g.).
The ambient space is the complex plane C counterclockwise
orientated, its origin is noted O.

We assume that f is C1. For any θ1, θ2, we note C[θ1,θ2]

the curve described by f(ϕ) for ϕ ∈ [θ1, θ2].

The closed curve C[0,2π] is simply noted C. To simplify, we
assume that C is a Jordan curve, i.e. is non-self-intersecting.
Thus, by the classic Jordan curve theorem, C separates C in
two regions (connected components). We note I the bounded
one (i.e. interior).

For any θ ∈ R and any z0 ∈ C\C, the phase variation of
f(ϕ) with respect to z0 as 0 ≤ ϕ ≤ θ is defined as:

R(θ, z0) = =
∫
C[0,θ]

dz

z − z0
, =

∫ θ

0

f ′(ϕ)

f(ϕ)− z0
dϕ (II.1)

where = designates the imaginary part. This definition is il-
lustrated on Fig. 3. By definition, R(2π, z0) is equal to 2πIz0 ,

Fig. 3. Phase variations around origins z0 or z1 when f(ϕ) describes
C[0,θ].

where Iz0 ∈ Z is the algebraic number of counterclockwise
rotation of C around z0. Namely, Iz0 6= 0 if and only if
z0 ∈ I, and then it equals to 1 or −1. By assumption, we
consider that Iz0 = 1 for all z0 ∈ I throughout the paper,
that is C is positively oriented.

Remark 1: For an oriented segment [z1, z2] and
z0 /∈ [z1, z2], we have:

=
∫

[z1,z2]

dz

z − z0
= arg−π

z2 − z0

z1 − z0

where arg−π designates the argument determination in
]− π;π[. We will abundantly use this result in the following.

B. Estimate of a continuous phase

We take z0 ∈ I. We will see that R(θ, z0) gives an
estimate of θ under some assumptions on f . For now, let
us note the estimation error

ez0(θ) = R(θ, z0)− θ (II.2)

and derive bound for it. Let {cn}n∈Z be the coefficients of
the Fourier expansion of f . We define

g(ϕ) , exp(−iϕ) (f(ϕ)− z0)

which gives

g(ϕ) = c1 +
∑
n 6=0,1

cne
i(n−1)ϕ + (c0 − z0)e−iϕ
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Using this new function, we can directly prove the following
result.

Proposition 1: For any z0 ∈ I,

ez0(2nπ) = 0, ∀n ∈ Z (II.3)

and ez0(θ) is bounded by:

|ez0 |∞ = max
0≤ϕ≤2π

|=
∫ ϕ

0

g′(τ)

g(τ)− z0
dτ | (II.4)

Proof: For any θ ∈ R, we have

R(θ, z0) = =
∫ θ

0

(i+
g′(ϕ)

g(ϕ)
) dϕ

= θ + =
∫ θ

0

g′(τ)

g(τ)− z0
dτ

For the particular value θ = 2π, the last integral equals zero.
Then, using this fact, for any θ = 2nπ + ϕ with n ∈ Z and
0 ≤ ϕ ≤ 2π, we directly get

ez0(θ) = =
∫ ϕ

0

g′(τ)

g(τ)− z0
dτ

The result follows immediately.
Equation (II.3) means that the estimate matches θ, at least
once every cycle. The error bound (II.4) is of theoretical but
not of practical value. To derive more concrete bounds, we
need to make further assumptions on g.

Let us assume that there exists r < |c1| such that the
set {g(ϕ), ϕ ∈ [0; 2π]} lies in the closed circle D(c1, r) of
center c1 and radius r. Then, as is illustrated in Fig. 4, for
any ϕ the angle ∠g(0)Og(ϕ) is included in ∠AOB, whose
value is 2 arcsin r

|c1| . Thus, ez0(θ) is bounded by

|ez0 |∞ ≤ 2 arcsin
r

|c1|

Fig. 4. Bound on the estimation error when O lies outside a disk containing
the curve of g

This inequality allows us to directly derive the following
result, obtained with r = |g − c1|∞

Proposition 2: If f is such that its Fourier expansion
satisfies

|c1| >
∑
n6=0,1

|cn|+ |c0 − z0| (II.5)

then one has

|ez0 |∞ ≤ 2 arcsin

∑
n 6=0,1 |cn|+ |c0 − z0|

|c1|
(II.6)

Example 1: Let us consider a positively oriented ellipse
with eccentricity e between 0 and 1

f(θ) = A cos θ + i
√

1− e2A sin θ

In this case, f has only two Fourier coefficients

c1 =
1 +
√

1− e2

2
A

c−1 =
1−
√

1− e2

2
A

As 0 < c−1 < c1, condition (II.5) is met for z0 = O and we
have the bounded error

|eO|∞ ≤ 2 arcsin
1−
√

1− e2

1 +
√

1− e2
=
e2

2
+O(e4)

Even for a flat ellipse with e = 0.99, this estimation error
does not exceed 1

4 -cycle.
The method we developed in this section provides an

estimate of θ, assuming we can compute i) an origin z0 ∈ I,
ii) the integral term (II.1). The latter problem will be ad-
dressed in the next section. The choice of an origin can be
a difficult problem. It is investigated in Section III.

C. Estimate from samples

We now consider the case of discrete time measurements,
a noise-less version of Problem 1. To estimate θ[k], we will
apply the preceding method, to the polygonal line joining the
vertices f(θ[1]) . . . f(θ[k]), which are measured. The case of
noisy measurements will be considered later in Section III.
Here, we will see that the integral term (II.1) can still be
exactly evaluated at each sampling time θ[k] thanks to a
direct formula. To formalize this, let us first introduce a few
notations specific to this section.

For any 1 ≤ k ≤ N−1, we simply note γ̃k = C[θ[k],θ[k+1]]

and γk the oriented segment [f(θ[k + 1]), f(θ[k])], so that
the concatenation γk · γ̃k is a closed curve. We also note Ωk
the unbounded region defined by this closed curve. These
notations are illustrated in Fig. 5.

Fig. 5. Curves γk and γ̃k
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The next result states that, if z0 is chosen in the intersec-
tion of all the Ωk, integral (II.1) can be calculated from the
sampled values.

Proposition 3: Assuming that z0 satisfies

z0 ∈
N−1⋂
k=1

Ωk ∩ I (II.7)

then for all 2 ≤ k ≤ N ,

R(θ[k], z0) =

k−1∑
j=1

arg−π
f(θ[j + 1])− z0

f(θ[j])− z0
(II.8)

Proof: Let k be any 1, . . . , N − 1. The condition
z0 ∈ Ωk implies that:

0 = =
∫
γk

dz

z − z0
+ =

∫
γ̃k

dz

z − z0

Using the formula recalled in Remark 1, we have

=
∫
γ̃k

dz

z − z0
= −=

∫
γk

dz

z − z0
= arg−π

f(θ[k + 1])− z0

f(θ[k]− z0

Similarly, for 2 ≤ k ≤ N , the calculus above is generalized
to

R(θ[k], z0) =

k−1∑
j=1

=
∫
γ̃j

dz

z − z0
=

k−1∑
j=1

arg−π
f(θ[j + 1])− z0

f(θ[j])− z0

Now the definition of our estimate directly follows. For
any 2 ≤ k ≤ N , and any z0 ∈ C, we define the estimate
θ̂z0 [k] as

θ̂z0 [k] =

k−1∑
j=1

arg−π
y[j + 1]− z0

y[j]− z0
(II.9)

and the estimate error ez0 [k] as

ez0 [k] = θ̂z0 [k]− θ[k] (II.10)

Proposition 3 formulated above guarantees that, in the ab-
sence of noise i.e. n[k] = 0 for 1 ≤ k ≤ N , the estimate
error is exactly ez0 [k] = ez0(θ[k]). Hence, the bounds on
ez0 listed in Section II-B still apply on ez0 [k].

III. IMPACT OF MEASUREMENT NOISE

A. Critical value of the noise magnitude

We now consider Problem 1 in its full version, i.e. with
noise. For any 1 ≤ k ≤ N − 1, we note Qk the (non nec-
essarily convex) quadrilateral with ordered vertices f(θ[k]),
y[k], y[k + 1], f(θ[k + 1]). The next result provides a bound
on the error estimate, provided z0 is taken outside all the Qk.

Proposition 4: Assuming that z0 satisfies condition (II.7)
and

z0 /∈ Qk, ∀k ∈ {1, . . . , N − 1} (III.1)

then for all 2 ≤ k ≤ N ,

ez0 [k] = ez0(θ[k]) + arg−π
y[k]− z0

f(θ[k])− z0

− arg−π
y[1]− z0

f(θ[1])− z0
(III.2)

Proof: For any 1 ≤ k ≤ N − 1, note
• γnk the oriented segment [f(θ[k]), y[k]], and γn−k the

opposed oriented segment [y[k], f(θ[k])]
• γ̄k the oriented segment [y[k], y[k + 1]]

These notations are illustrated in Fig. 6.

Fig. 6. Qk’s boundary is the closed curve γnk · γ̄k · γ
n−
k+1 · γk

As z0 /∈ Qk, we have

0 =

∫
γnk

dz

z − z0
+

∫
γ̄k

dz

z − z0

+

∫
γn−
k+1

dz

z − z0
+

∫
γk

dz

z − z0

Let us now consider k ∈ {2, . . . , N} and sum the terms of
this equation for 1 ≤ j ≤ k − 1. This gives

0 =

∫
γn1

dz

z − z0
+

∫
γ̄1·...·γ̄k−1

dz

z − z0

+

∫
γn−
k

dz

z − z0
+

∫
γ1·...·γk−1

dz

z − z0

Integrating dz
z−z0 on the polygonal lines and taking the

imaginary part of the obtained result, we get

θ̂z0 [k] =

k−1∑
j=1

arg−π
f(θ[j + 1])− z0

f(θ[j])− z0
+ arg−π

y[k]− z0

f(θ[k])− z0

+ arg−π
y[1]− z0

f(θ[1])− z0

Under the formulated assumption (II.7), we have

k−1∑
j=1

arg−π
f(θ[j + 1])− z0

f(θ[j])− z0
= ez0(θ[k]) + θ[k]

The result follows immediately.
We want to define a set of allowed origins in the sense
of (II.7) and (III.1) independent of the values of θ[k].
To do so, we introduce ρ the maximum noise amplitude
and ∆ the maximum θ variation between two consecutive
samples such that for all k, |y[k]− f(θ[k])| ≤ ρ and
|θ[k + 1]− θ[k]| ≤ ∆. It is assumed that ∆ < π.
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For any θ, ϕ, let E(θ, ϕ, ρ) be the set defined as

E(θ, ϕ, ρ) =
⋃

z∈[f(θ),f(ϕ)]

D(z, ρ)

We can now define the set of forbidden origins

Fρ,∆ =

2π⋃
θ=0

θ+∆⋃
ϕ=θ−∆

E(θ, ϕ, ρ) (III.3)

which contains all the Qk and Ωck. and the set of allowed
origins

Aρ,∆ = I\Fρ,∆ (III.4)

depending only on ρ and ∆. For z0 ∈ I, we define

d(z0) , min
ϕ
|f(ϕ)− z0|

If df , maxz0∈I d(z0) is less than ρ, then Aρ,∆ is empty,
regardless ∆. The method we propose can only be applied
to measurements with signal-to-noise ratio limited by this
result.

Example 2: For the ellipse of Example 1, we have
df = A

√
1− e2. Hence, regardless sampling, the minimum

signal-to-noise ratio (SNR) allowed is:

SNRmin = 10 log

(
A√

1− e2A

)2

= −10 log(1− e2) [dB]

For eccentricities e = 0.2, 0.7, or 0.99, we have respective
minimum SNR of 0.4, 7, and 39 dB.

B. Study of the set of allowed origins

Proposition 5: If I is a convex set, the set of forbidden
origins can simply be expressed as

Fρ,∆ =

2π⋃
θ=0

E(θ, θ + ∆, ρ) (III.5)

Fig. 7. Useful notations for the proof of Proposition 5

Proof: To lighten the demonstration, we simply note

Eθ = E(θ, θ + ∆, ρ)

By definition of Fρ,∆, we have
2π⋃
θ=0

Eθ ⊂ Fρ,∆

We now prove the reciprocal inclusion. For any θ, any
ϕ ∈ [θ −∆, θ + ∆] and any w ∈ E(θ, ϕ, ρ), one will prove
that w ∈

⋃2π
ψ=0 Eψ .

Case 1: if ϕ is in [θ, θ + ∆]. As ∆ < π, f(θ) 6= f(θ+∆).
We define the orthogonal unit vectors u(θ) and v(θ) as

u(θ) =
f(θ + ∆)− f(θ)

|f(θ + ∆)− f(θ)|
, v(θ) = e+iπ2 u(θ)

We respectively note Dθ, D+
θ and D−θ the paral-

lel lines going by the respective couples of points(
f(θ), f(θ + ∆)

)
,
(
f(θ) + ρv(θ), f(θ + ∆) + ρv(θ)

)
and(

f(θ)− ρv(θ), f(θ + ∆)− ρv(θ)
)
. These definitions are il-

lustrated on Fig. 7. Their respective equations are

< v(θ)∗(z − f(θ)) = 0

< v(θ)∗(z − f(θ)) = ρ

< v(θ)∗(z − f(θ)) = −ρ

where < designates the real part and ∗ designates the com-
plex conjugate. The set between D+

θ and D−θ is characterized
by

−ρ ≤ < v(θ)∗(z − f(θ)) ≤ ρ

We note it Pθ. If w ∈ Pθ, one can easily show that either
w ∈ Eθ, either d(w) < ρ. In both cases, w ∈

⋃2π
ψ=0 Eψ .

We now prove that there exist ψ ∈ [θ, ϕ] so that w ∈
Pψ , which, according to the preceding remark, concludes the
proof under Case 1. As I is convex, C is positively oriented
and v(θ) is the positive normal vector to the oriented segment
[f(θ), f(θ + ∆)], we have

< v(θ)∗(f(ϕ)− f(θ)) ≤ 0

Thus, for any z ∈ D(f(ϕ), ρ),

< v∗(θ)(z − f(θ)) ≤ < v∗(θ)(z − f(ϕ))

≤ |v(θ)||z − f(ϕ)| ≤ ρ

We also have for all z ∈ D(f(θ), ρ),
< v∗(θ)(z − f(θ)) ≤ ρ. Hence, the set
D(f(ϕ), ρ) ∪D(f(θ), ρ) lies in a convex closed half-
plane. As part of its convex hull, w also satisfies

< v∗(θ)(w − f(θ)) ≤ ρ

The same reasoning applied to θ, ϕ and ϕ + ∆ shows that
w satisfies

< v∗(ϕ)(w − f(ϕ)) ≥ −ρ

If w is in Pθ ∪ Pφ, we have nothing to prove. If not, both
< v∗(θ)(w − f(θ)) < −ρ and < v∗(ϕ)(w − f(ϕ)) > ρ
hold. The intermediate value theorem implies that the
continuous real function ψ 7→ < v∗(ψ)(w − f(ψ)) reaches
the value 0 for some ψ ∈ [θ, ϕ], and w ∈ Pψ .

Case 2: if ϕ ∈ [θ −∆, θ[, we have w ∈ E(ϕ, θ, ρ) with
θ ∈ [ϕ,ϕ+ ∆]. Thus, we can apply the result of Case 1. This
establishes the desired inclusion and concludes the proof.

Thanks to Proposition 5, we can give a more intuitive
expression of the set of allowed origins.
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Proposition 6: If I is a convex set, we have

Aρ,∆ = I ∩
2π⋂
θ=0

{z ∈ C, < v∗(θ)(z − f(θ)) > ρ} (III.6)

In particular, Aρ,∆ is also a convex set.
Proof: The proof uses the same tools as the one of

Proposition 5 and is omited for brievety purposes.
Formula (III.6) helps us better understand the set of allowed
origins. In particular, one can show that it inherits the axial
symmetry properties of f . If f has two axis of symmetry,
thus a center C at their intersection, and if the convex set
Aρ,∆ is not empty, then it contains C. Thus, a simple criteria
on (ρ,∆) for Aρ,∆ to be not empty is that C satisfies

< v(θ)∗(C − f(θ)) > ρ, ∀θ

For example, if f describes a circle of radius A, we easily
deduce that Aρ,∆ is not empty if and only if ρ < A cos ∆

2 .
More generally for the ellipse of Example 1, the criteria
becomes ρ < A

√
1− e2 cos ∆

2 .

Let us now assume that Aρ,∆ is not empty and that I is
strictly convex. Thus, the phase of v(θ) is strictly increasing
with θ and (v(θ), v′(θ)) is a direct frame of the plane.
Namely, = v(θ)∗, v′(θ)) > 0. Aρ,∆ is also strictly convex
and its boundary can be derived from its tangent lines.
Therefore, it is included in (but not necessarily equal to)⋃2π
θ=0 limδθ→0,δθ 6=0D+

θ ∩ D
+
θ+δθ. The next result gives an

explicit expression of this boundary.
Proposition 7: If Aρ,∆ is not empty and I is strictly

convex, then Aρ,∆ is an interior region defined by the (not
necessarily Jordan) closed curve

h : [0, 2π] 3 θ 7→ f(θ)+ρv(θ)+i
< v(θ)∗f ′(θ)

|v′(θ)|
v(θ) (III.7)

Proof: Let θ be in [0, 2π]. For δθ 6= 0 suffi-
ciently small, v(θ) and v(θ + δθ) are independent, namely
= v∗(θ)v(θ + δθ) 6= 0. Thus D+

θ and D+
θ+δθ intersect on a

unique point z(θ, θ + δθ), solution of

< v(θ)∗(z − f(θ)) = ρ = < v(θ + δθ)∗(z − f(θ + δθ))

which gives

z(θ, θ + δθ) = f(θ) + ρv(θ)

+ i
< v(θ)∗(f(θ + δθ)− f(θ))

= v(θ)∗v(θ + δθ)
v(θ)

+ i
< v(θ)∗(v(θ + δθ)− v(θ))

= v(θ)∗v(θ + δθ)
ρv(θ)

We have = v(θ)∗v(θ + δθ) = = v(θ)∗v′(θ)δθ + o(δθ). Dif-
ferentiating v(θ)∗v(θ) = 1 gives < v(θ)∗v′(θ) = 0 and
= v(θ)∗v′(θ) = |v′(θ)| 6= 0. Hence, we have

z(θ, θ + δθ) = h(θ) + o(δθ)

Thus, limδθ→0,δθ 6=0D+
θ ∩ D

+
θ+δθ = h(θ), which concludes

the proof.

Example 3: If f represents a circle f(θ) = Aeiθ and if
ρ < A cos ∆θ

2 , formula (III.7) gives

h(θ) = (cos
∆

2
− ρ)ei(θ+

∆
2 )

Thus, Aρ,∆ is the open disk of center O and radius
cos ∆

2 − ρ.

C. Practical determination of an origin
We focus on the case of an ellipse, which is relevant

for the problem under consideration. The best choice for an
origin would be the ellipse center C. A practical difficulty
is that the parameters of the ellipse are not directly given
by the sampled noisy measurements. One simple alternative
is to chose the mean of the measurements to average the
noise contribution to zero. Though this solution is easy
to implement, it might reveal troublesome as the average
of the samples can be very different from C (thus not in
Aρ,∆). The culprit can be that the f(θ[k]) values may be
not homogeneously distributed on the ellipse. One way to
circumvent this problem is to compute an origin that only
depends on the shape of the samples, disregarding potential
aggregate of values. For example, we can try to compute a
point as far as possible from the polygonal line drawn by
the values y[k], namely its Chebychev center.

Note Γk the polygon of ordered vertices
y[1], . . . , y[k], y[1]. If Γk is convex, one can compute
the Chebychev center of Γk with convex optimization
methods. If not, the task is more difficult. We propose to
pick a subset of y[1], . . . , y[k], say z1, . . . , znk so that the
polygon line Γ̃k of ordered vertices z1, . . . , znk is convex
and so that its shape reflects the one of Γk. For example,
one could chose Γ̃k as the convex hull of Γk. An other way
could be to compute the largest convex polygon included in
the set y[1], . . . , y[k]. Still another way could be to consider
not the Chebychev center but the gravity center of the
polygonal Γ̃k (centroid). In this article we illustrate the first
solution and we call Chebychev center of Γk the Chebychev
center of its convex hull.

On Fig. 8, we simulated a non homogeneous θ[k] distri-
bution around a circle, with ρ = 1. ∆ is computed as the
largest |θ[k + 1]− θ[k]|.

IV. SUMMARY OF RESULTS AND SIMULATION
EXPERIMENTS

To summarize, we can now formulate the following results
for Problem 1.

Solution 1: Consider Problem 1. Assume that f is such
that its Fourier expansion {cn}n∈Z satisfies

|c1| >
∑
n 6=0,1

|cn|+ |c0 − z0|

Assume that the interior region I defined by the boundary C
is strictly convex. Assume that the noise n is (uniformly)
bounded by ρ and that |θ[k + 1]− θ[k]| is (uniformly)
bounded by ∆ < π. Then consider

Aρ,∆ = I ∩
2π⋂
θ=0

{z ∈ C, < v∗(θ)(z − f(θ)) > ρ}
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Fig. 8. The Chebychev center position (bubble) does not depend on
the points distribution, but rather on the geometric shape of the samples.
Therefore, it remains in the allowed origins set, while the average (cross)
is dragged out by a non homogeneous distribution of the θ[k].

where v(θ) = e+iπ/2 f(θ+∆)−f(θ)
|f(θ+∆)−f(θ)| . If Aρ,∆ is not empty,

then the following sequence

θ̂z0 [k] =

k−1∑
j=1

arg−π
y[j + 1]− z0

y[j]− z0
(IV.1)

where z0 ∈ Aρ,∆ provides an estimate of θ[k] with an error
that is bounded by

|ez0 |∞ ≤ 2 arcsin

∑
n 6=0,1 |cn|+ |c0 − z0|

|c1|
+ 2 arcsin

ρ

d(z0)

where d(z0) = minϕ |f(ϕ)− z0|. In practice, a recommen-
dation it to select z0 as one of the following: i) the Chebychev
center of measurements, ii) the polygon centroid.

Solution 2 (particular case of an ellipse): Assume that f
defines an ellipse f(θ) = C + A cos θ + i

√
1− e2A sin θ.

Consider ρ and ∆ as defined in Solution 1. Then Aρ,∆ is
not empty if and only if ρ < A

√
1− e2 cos ∆

2 and for z0 in
Aρ,∆, (IV.1) gives an estimate of θ[k]. For z0 = C, the error
is bounded by

|eC |∞ ≤ 2 arcsin
1−
√

1− e2

1 +
√

1− e2
+ 2 arcsin

ρ

A
√

1− e2

To illustrate these results, we now perform simulations
using typical satellite photocells output as shown in Intro-
duction. We consider the satellite initially at rest during
a burst–burst manoeuvre. For t ∈ [0, 3], θ̈(t) = 1, for

TABLE I
STANDARD DEVIATION OF THE ERROR ESTIMATE FOR VARIOUS SNR

AND VARIOUS SAMPLING RATES.

νs = 100 Hz νs = 50 Hz νs = 10 Hz
SNR = 30 dB σ = 5.7◦ σ = 6.3◦ σ = 6.5◦

SNR = 13 dB σ = 14.2◦ σ = 13.5◦ σ = 14.4◦

SNR = 5 dB σ = 24.5◦ σ = 23.8◦ σ = 22.9◦
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Fig. 9. θ̂[k] matches θ[k] from the start to the end of the manoeuvre.

t ∈ [3, 6], θ̈(t) = −1. We consider several sampling rates
ranging from 10 Hz to 100 Hz and SNR ranging from 5 dB
to 30 dB. Typical results are pictured in Fig. 9. Numerical
results are presented in Table I. As expected the estimate
error grows with the noise amplitude. The sampling rate
however does not seem to affect the error standard deviation.

It appears that the angle θ is well estimated and that the
spin motion of the satellite is relatively accurately estimated,
enabling monitoring strategies. Post filtering of the estimate
can also be used on-line or off-line (to avoid filtering lag) to
smooth out visible artefacts. To obtain the presented results,
the Chebychev center of the samples was computed only
once, using linear programming techniques with an interior
point method. Alternatively, the centroid point could be used,
which reveals significantly lighter in terms of computational
effort. The estimation algorithm itself consists in simple
arithmetic operations, as detailed in Solution 1. No pre-
filtering of data was employed.

V. CONCLUSIONS AND PERSPECTIVES

We have studied a simple estimation procedure to re-
construct the phase of a 2-dimensional vector data repre-
senting periodic dynamics. The underlying idea stems from
the classic notion of index of a curve and relates to the
mathematics of complex and curve analysis. The application
of the method to real data naturally raises the problem of
noise and sampling. These issues have been treated by careful
analysis, and sufficient conditions have been proposed to
guarantee that the estimation is not jeopardized. Explicit
bounds have been found for the error estimate. A critical
notion of the proposed approach is the definition of suitable
or allowed origins. Necessary conditions on noise level
and on sampling rate have been derived to guarantee their
existence. These conditions can be made explicit for the
particular case of an ellipse, which is a natural approximation
for numerous real situations. Derivating these conditions is
the main theoretical result of this paper. In the future, our
effort will be focused on the Chebychev center. It has proven
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to be a good candidate as origin. Determining its value can be
performed using standard numerical procedure. This could
probably be improved in terms of computational burden.
Besides, it is desirable to exploit its stochastic properties as
one can expect that, when N grows, the Chebychev center
tends to the set of suitable origins.

Alternative methods to solve the considered problem are
phaselock loops [11]. They are the reference solution for
frequency modulated signals, their most striking property
being that they operate under very poor SNR. They are
however sensitive to the phase dynamics. Our method, which
is purely geometric is (relatively) independent on the phase
dynamics. For these reasons, the two methods appear to
be very complementary as they produce good performance
under different operating conditions. Exploiting this comple-
mentarity is also a point for further investigations.
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