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Abstract: In this paper, we study a simple single-input single output nonlinear system
controlled by a Run-to-run algorithm. Besides the usually considered model uncertainty, the
particularity of the system under consideration is that measurements available to the control
algorithm suffer from large and varying measurement delays. The control algorithm is a nonlinear
sampled model-based controller with successive model inversion and bias correction. The main
contribution of this article is its proof of global convergence. In particular, the model error and
the varying delays are treated using monotonicity of the system and a detailed analysis of the
closed-loop behavior of the sampled dynamics, in an appropriate norm.
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1. INTRODUCTION

In this article, we consider the effects of delay variability
on the Run-to-run control of a nonlinear process. Run-to-
run is a popular and efficient class of techniques, originally
proposed in Sachs et al. [1991], specifically tailored for
processes lacking in situ measurement for the quality of the
production (see Wang et al. [2009]). Numerous examples of
implementations have been reported in the semiconductor,
and materials industry, in particular, see e.g. Wang et al.
[2009], Moyne et al. [2000] and references therein. However,
in applications, two practical problems often arise: model
uncertainty and delay uncertainty.

First, the interactions between the input and the system
states can be rather complex, which, in turn, causes some
non-negligible uncertainty on the quantitative effects of
the input. These can be addressed as model mismatch.

Second, the measurements are available after a long time
lag covering the various tasks of sample collection, receipt,
preparation, analysis and transfer of data through an in-
formation technology (IT) system to the control system.
Therefore, measurements are impacted by large delays,
which can be varying to a large extent, and in some cases
be state- or input-dependant. This variability of the delay
builds up with the intrinsic information technology (IT)
dating uncertainty, because, usually, no reliable timestamp
can be associated to the measurements. The delay variabil-
ity cannot be easily represented by Gaussian models, nor
can it be fully described as deterministic input or state
dependant delay, nor known varying delays that could

be compensated for by predictor techniques (as done in
e.g. Bresch-Pietri et al. [2012, 2014], Bekiaris-Liberis and
Krstic [2013b,c,a]). As is well known, the uncertainty and
the variability of delay may jeopardize closed-loop stabil-
ity Krstic [2009] and references therein. In the particular
context of Run-to-run control, it is known, see Wang et al.
[2005], that such metrology delay coupled with inaccurate
process model could lead to closed-loop instability. For
these reasons, the problem under consideration in this
article can be considered as challenging and of importance
for applications.

In this paper, we consider a simple single-input single-
output problem of Run-to-run control. As is well known,
such control problem can also be seen as an adaptive
control scheme or a simple nonlinear implementation of an
internal model controller (IMC, see e.g Morari and Zafiriou
[1989]). Besides the usual model mismatch (both model
and true system behavior are assumed to be monotonic),
we address the effects of the discussed delay uncertainty.

The nonlinearity does not cause too much difficulty. In
the absence of delay, robust stability in the presence of
model mismatch can be readily established, using the
monotonicity of the system and model. The study of delay
effects is more involved. Once expressed in the sampled
time-scale, the control scheme exhibits a variable delay
discrete-time dynamics. Hence, a simple Nyquist criterion
analysis cannot be used to infer stability and some more
specific investigations are required. In details, the control
scheme involves an uncertain positive bounded delay. From
there, a complete stability analysis in a space of sufficiently
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large dimension, with a well chosen norm, yields a proof
of robust stability under a small gain condition. Interest-
ingly, the small-gain bound is reasonably sharp, so that it
can serve as guideline for practical implementation. The
novelty of the approach presented in this article lies in
the proof considered. It does not treat the uncertainty of
the delay using the Padé approximate approach consid-
ered in Zhang et al. [2009], but directly uses an extended
dimension of the discrete time dynamics. In future works,
these arguments of proof could be extended to address
more general problems, in particular to higher dimensional
forms (lifted forms) usually considered to recast general
iterative learning control into Run-to-run as clearly ex-
plained in Wang et al. [2009].

The paper is organized as follows. In Section 2 notations
are given. In Section 3 the process under consideration
is exposed. In Section 4 robust stability results are es-
tablished. In Section 5 simulations results are reported.
Conclusions and future directions are given in Section 6.

2. NOTATIONS AND PRELIMINARY RESULTS

2.1 Notations

Given I an interval of R, and f : I → R a smooth function,
we define

‖f‖∞ = sup
x∈I
|f(x)|

For any vector X, we note ‖X‖1, ‖X‖2 and ‖X‖∞ its
1-norm, its Euclidean norm and its infinity norm, respec-
tively. Note ‖.‖∗ any of the vector norms above. For any
square matrix A, we note ‖A‖∗ the norm of A, subordinate
to ‖.‖∗. Classically (e.g. Higham [2008]), for all A, B

‖AB‖∗ ≤ ‖A‖∗‖B‖∗
We note bxc the floor value of x, mapping x to the largest
previous integer.

For any matrix dimension, we define Eij the matrix of
general term ek,l

∀(k, l), ek,l = δk,iδl,j (1)

where δ is the Kronecker delta δk,i = 1 if k = i and 0
otherwise.

2.2 Preliminary results on discrete linear time-varying
systems

The event-driven nature of the control scheme leads us
to consider discrete time dynamics. Below, we formulate
a simple technical result, instrumental in the rest of the
paper.

Consider a discrete linear time-varying system (2) of
dimension s, and A a bounded set of possible transition
matrices in Ms(R) and initial condition X0

∀n ≥ 0, Xn+1 = AnXn, An ∈ A (2)

For any vector norm ‖.‖∗ and any N ∈ N, we define

MN,∗ , sup
AN−i∈A

‖
N∏
i=1

AN−i‖∗ = sup
Ai∈A

‖
N−1∏
i=0

Ai‖∗ (3)

Proposition 1. (Suff. cond. for exp. stab.). Consider the sys-
tem (2). If there exists N0 ∈ N∗ such that MN0,∗ < 1, then
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Fig. 1. Examples of possible input-output mappings f

the system (2) (globally) exponentially converges to 0. One
has, for some K > 0,

∀n ∈ N∗, ‖Xn‖∗ ≤ K‖X0‖∗ (MN0,∗)

⌊
n
N0

⌋
Proof. see appendix

3. PROBLEM STATEMENT

3.1 Model

We note y the controlled variable (output) and u the
control variable (input). It is assumed that there exists
f a strictly monotonous smooth function such that

y = f(u)

Although f is unknown, we can use a model of it, fp, which
is also smooth and monotonous 1 , such that fp(0) = f(0).
Usually, fp is a rough estimate of f . Typical models are
represented in Figure 1. For the simulations considered
in this article, the model error can be as large as 20-40%,
which is representative of needs for industrial applications.

The target value c for the controlled variable is assumed to
be reachable by both the system and the model, i.e. there
exists uc and up verifying

f(uc) = c, fp(up) = c

3.2 Measurements

A measurement system sporadically provides measure-
ments of y. Once a value is available, a new measurement
process is initiated.

In many cases, the measurement time is varying, and
the measurement delay directly depends on the value of
the measured variable. Besides this state-dependent delay,
another source of lag is related to the industrial IT. In
many cases, no track is kept of the time the specimen was
1 In practice, it can result from the analysis of sensitivity look-up
tables obtained from experiments and derivation of interpolating
models.
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Fig. 2. Representation of times when measures become
available (T1, ... Tn) and measurement delays (D1,
... Dn).

taken on the plant. This causes an additional uncertainty
on the delay.

In the system considered in this article, the measurements
available for feedback in a control loop have thus two
specificities. They are sporadic, and each value yn, n = 1,...
becomes available after a delay D(yn) which depends
on the value measured, and uncertain. Exact dating of
the data is impossible because each measurement yn is
corrupted with noise, and because the specimen date itself
is uncertain.

3.3 Control problem

The above description leads us to consider an event trig-
gered discretization of the process in which a new sampling
time n is created at every time Tn when a measurement
yn is received. By definition,

Tn − Tn−1 = D(yn) , Dn

These variables are represented in Figure 2.

A closed-loop controller can be designed for the system.
Every time a measurement is received, the control is
updated and the value of the control remains constant
until the next measurement is received, creating piece-wise
constant control signals (with varying step-lengths). To
account for delay variability and estimate the date of each
measurement, it is necessary to use a model of it, Dp(y),
providing one with an estimation of the measurement
delay associated with a given measured value y.

The control design should aim at solving the following
problem.

Control problem Create a sequence (un) using the ap-
proximate model fp and the delayed measurements (f(un))
of yn such that lim

n→+∞
f(un) = c

At this stage, we can propose a simple nonlinear IMC
algorithm to address the problem. This algorithm adapts
a bias term used in a model inversion. Ignoring the
measurement delay effects, the implementation of such an
algorithm would be

u0 = 0, δ0 = 0, α ∈]0; 1]

n > 0, un+1 = f−1
p (c− δn)

δn+1 = δn + α(yn − fp(un)− δn)

(4)

which can be wrapped up in the following familiar block
diagram of Figure 3.

f−1
p f

fp

Low Pass Filter

uc + y

+

−δ

−

Fig. 3. Idealized closed-loop control scheme.

f−1
p f

fp∆

Low Pass Filter

uc + y

+

−δ

−

Fig. 4. Mis-synchronization due to delay measurement
creates a varying delay in the IMC scheme.

However, the measurement delays have an impact on
the controller dynamics. Instead of (4), one is able to
implement the following

u0 = 0, δ0 = 0, T0 = 0

n > 0, un+1 = f−1
p (c− δn)

δn+1 = δn + α(yn − fp(uind(Tn+1−Dp(yn)))− δn)

(5)

where the ind function is defined as

ind(t) =

{
n such as t ∈ [Tn;Tn+1[

0 if t < 0

Besides,

ind(Tn+1 −Dp(yn)) = ind(Tn +D(yn)−Dp(yn))

Note

ind(Tn +D(yn)−Dp(yn)) = n−∆n

then ∆n ∈ N. It can be interpreted as an explicit mis-
synchronization term.

Equivalently, equations (5) can be rewritten as
u0 = 0, δ0 = 0, T0 = 0

n > 0, un+1 = f−1
p (c− δn)

δn+1 = δn + α(yn − fp(un−∆n
)− δn)

(6)

Interestingly, if the delay model is perfect i.e. D ≡ Dp, it is
straightforward to see that (6) simplifies to (4). Otherwise,
some mis-synchronization appears between the measure-
ment and the associated prediction in the calculation of the
bias. The situation is pictured in Figure 4. It is necessary
to investigate the stability of the controller in this case.

4. STABILITY ANALYSIS

4.1 Convergence with model mismatch, without delays

In the analysis, two problems must be treated: model
mismatch and mis-synchronisation.

We first consider the system without measurement delays.

Error dynamics Used in closed loop, (4) gives
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
u0 = 0, δ0 = 0, δ1 = α0(f(0)− fp(0))

n > 0, un+1 = f−1
p (c− δn)

δn+2 = (1− α)δn+1 + α(δn − c+ f ◦ fp−1(c− δn))
(7)

The asymptotic behaviour of (7) is determined by the
second order dynamics of (δn). If (un) and (δn) converge
toward the limits u and δ respectively, then, necessarily,

u = uc and δ = c− fp(uc)

Define the sequence (dn , δn − δ, n ≥ 0). The error
dynamics is equivalently represented by the second order
equation

dn+2 = (1−α)dn+1+α(dn+f ◦fp−1(fp(uc)−dn))−αc
Applying the mean value theorem to the function x 7→ x+
f ◦ f−1

p (fp(uc)− x), one deduces that there exists

an ∈ [min(0, dn); max(0, dn)]

such that

dn+2 = (1−α)dn+1+α

(
1− f ′ ◦ fp−1(fp(uc)− an)

f ′p ◦ fp
−1(fp(uc)− an)

)
dn

This can be rewritten as a two-dimensional linear time-
varying (LTV) system

Xn+1 = AnXn (8)

with

Xn =

(
dn
dn+1

)
and An =

(
0 1

αh(an) 1− α

)
where

h(an) = 1− f ′ ◦ fp−1(fp(uc)− an)

f ′p ◦ fp
−1(fp(uc)− an)

Interestingly, h can be interpreted as a metric of the model
error: if f ≡ fp, we indeed get h ≡ 0. Then, (8) becomes
a simple linear time invariant system (LTI) which is
trivially exponentially stable. Otherwise, one needs further
investigations to establish the following result, showing
that the control problem is solved, in the absence of delay
variations.

Theorem 2. (Global exponential convergence). Given any
α ∈]0; 1], if there exists η such that ‖h‖∞ ≤ η < 1,
then the closed loop error (7) converges exponentially and

lim
n→+∞

f(un) = c.

Remark 1. In particular, one can notice that f ′ and f ′p
must have the same sign so that the condition can be
verified. In this case, if

0 < ‖ f
′

f ′p
‖∞ < 2

then the sufficient condition is satisfied.

Proof. Establishing the asymptotic (not to say exponen-
tial) convergence of a general LTV discrete time system is
a difficult task. In particular, it is not sufficient to study
its eigenvalues (see Rugh [1996]). Some results have long
been available for slowly varying systems and have recently
been refined in Hill and Ilchmann [2010], in particular.
However, in our present case, it is not necessary to use
them. The particular structure of the varying term allows
more straightforward investigations.

We define the (infinite) set

A =

{(
0 1

αh(x) 1− α

)
, x ∈ R

}
Under the assumption ‖h‖∞ ≤ η < 1, A is bounded.
Consider any (A1, A2) ∈ A2

A1 =

(
0 1
αh1 1− α

)
and A2 =

(
0 1
αh2 1− α

)
Then,

A2A1 =

(
αh1 1− α

(1− α)αh1 αh2 + (1− α)2

)
,

(
L1

L2

)
Since

‖L1‖1 ≤ 1− α(1− η) , l < 1

and
‖L2‖1 ≤ (1− α)2 + α(2− α)η , l′ < 1

then, we have for all (A1, A2) ∈ A2

‖A2A1‖∞ ≤ max(l, l′) < 1

As a consequence, using the notation (3)

M2,∞ = sup
(A1,A2)∈A2

‖A2A1‖∞ < 1

which, according to Proposition 1, yields the conclusion.

4.2 Convergence with measurement delays

We now consider the implementation of the same con-
troller on the more realistic system with variable measure-
ment delays causing the discussed mis-synchronization.

Error dynamics Using the same transformation as in
§ 4.1, we establish the closed-loop error

dn+2 =(1− α)dn+1 + α(f(f−1
p (fp(uc)− dn))

− fp(uc) + dn−∆n+1
)− α(c− fp(uc))

and, applying the mean value theorem, we get that

dn+2 = (1− α)dn+1 − αρ(an)dn + αdn−∆n+1

where

ρ(an) =
f ′(f−1

p (fp(uc)− an))

f ′p(f−1
p (fp(uc)− an))

and
an ∈ [min(0, dn); max(0, dn)]

We will now assume that the desynchronization is bounded
in terms of sampling times, i.e. we assume the following

Assumption 1. There exits ∆max such that ∀n ∈ N one
has ∆n ≤ ∆max

If this reasonable assumption holds, the system can be
written as a LTV system of dimension ∆max + 2

Xn+1 = AnXn (9)

where
Xn = (dn−∆max · · · dn+1)

T

with

An =



0 1 · · · · · · · · · · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . 0

...
. . . 1

0 · · · · · · · · · 0 −αρ(an) 1− α


+ αFn
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and, with the notation (1),

Fn = E∆max+2,∆max+1−∆n+1

Convergence analysis without model error Let us first
assume that there is no model error. Under this assump-
tion

ρ = 1

and the transition matrices An of the dynamic (9) all
belong to the finite set

A = {C + αEDmax+2,k, k ∈ J1;Dmax + 1K}
where

C =



0 1 · · · · · · · · · · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...
...

. . .
. . . 0

...
. . . 1

0 · · · · · · · · · 0 −α 1− α


Theorem 3. (Global exponential convergence). If ρ = 1

and if Assumption 1 holds, then for α ≤ 3−
√

5
2 the

controller (5) guarantees lim
n→+∞

f(un) = c.

Proof. The proof is built, recursively, on the fact that for
all n ∈ N∗

Mn,∞ = ‖
n∏

i=1

An−i‖∞ ≤ (1 + α)(1− α2)b
n−1
p+1 c (10)

Consider a sequence of n transition matrices (Ai)i∈J0;n−1K ∈
An. Define

∀k ∈ J1;nK, Πk =

k∏
i=1

Ak−i =

L
k
1
...
Lk
p


where Lk

i designates the ith row of the product of the
k matrices and p = ∆max + 2 is the dimension of the
transition matrices.

With these notations, one has

‖Πk‖∞ = max
i∈J1;pK

‖Lk
i ‖1

For all n ≥ 2, we wish to prove that the following relations
(11), (12), (13) hold.

∀(j, k) ∈ J1; pK× {n− 1;n},

‖Lk
j ‖1 ≤ (1 + α)(1− α2)b

k+j−2
p+1 c (11)

∀j ∈ J1; p− 1K, Ln
j = Ln−1

j+1 (12)

∃l ∈ J1; p− 1K, Ln
p = (1− α)Ln−1

p

− αLn−1
p−1 + αLn−1

l (13)

If α ≤ 3−
√

5
2 , the property can be initialized by a straight-

forward computation for n = 2.

Given n ≥ 2, let us assume that the property is true for
this rank. One has

Πn+1 =

n+1∏
i=1

An+1−i =

L
n+1
1
...

Ln+1
p


Computing Πn+1 gives

∀j ∈ J1; p− 1K, Ln+1
j = Ln

j+1

and

∃l ∈ J1; p− 1K, Ln+1
p = (1− α)Ln

p − αLn
p−1 + αLn

l

This proves (12) and (13) at the rank n+ 1. Furthermore,
according to (13) at rank n

∃l′ ∈ J1; p− 1K, Ln
p = (1− α)Ln−1

p − αLn−1
p−1 + αLn−1

l′

Hence, according to (12) at rank n

Ln
p = (1− α)Ln

p−1 − αLn−1
p−1 + αLn−1

l′

As a consequence,

Ln+1
p = [(1− α)2 − α]Ln

p−1 − α(1− α)Ln−1
p−1

+ α(1− α)Ln−1
l′ + αLn

l

Leading to

‖Ln+1
p ‖1 ≤ [|(1− α)2 − α|+ α(1− α)+

α+ α(1− α)] max
j∈J1;p−1K
k∈{n−1;n}

‖Lk
j ‖1

If (1− α)2 − α ≥ 0, i.e. α ≤ 3−
√

5
2 , (11) implies

‖Ln+1
p ‖1 ≤ (1− α2) max

j∈J1;p−1K
k∈{n−1;n}

‖Lk
j ‖1

≤ (1 + α)(1− α2)b
n−2
p+1 c+1

≤ (1 + α)(1− α2)b
n+1+p−2

p+1 c

Hence proving (11) at rank n + 1. As a result we deduce
for all n ≥ 2, (11), (12) and (13) hold.

The proof directly follows using

∀n ∈ N, ‖Πn‖∞ = max
i∈J1;pK

‖Ln
i ‖1

Remark 2. In particular, one sees from (10) that the larger
Dmax is, the slower the guaranteed convergence is.

General case Based on this first result, we extend it to
the case with small model error, by continuity. This last
result shows that the proposed controller solves the control
problem at stake, in the presence of both model mismatch
and varying delay.

Corollary 4. (Small model errors). Under Assumption 1,

consider the controller (5). For any α ≤ 3−
√

5
2 there exists

ε ∈ R+ such that if ‖ρ − 1‖∞ ≤ ε, then the controller
converges and lim

n→+∞
f(un) = c.

Proof. According to Theorem 3, there exists N0 ∈ N such
that if there is no model error

MN0,∞ ≤
1

2
With model error, every transition matrix of the dynamics
An can be written under the additive form

An = A0
n + Pn

where A0
n is a matrix of the dynamics for ρ = 1

A0
n ∈ {C + αEDmax+2,k, k ∈ J1;Dmax + 1K}
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and Pn is a perturbation matrix of general term pnij

pnij = −α(ρ(xn)− 1)δi,∆max+2δj,∆max+1

with xn a given real number. Consider any N0 sized
collection of such matrices (Ai)i∈J0;N0−1K, then

‖
N0−1∏
i=0

Ai‖∞ ≤ ‖
N0−1∏
i=0

A0
i ‖∞ +

N0−1∑
i=0

Ci
N0

(1 + α)iεN0−i

≤ 1

2
+

N0−1∑
i=0

Ci
N0

(1 + α)iεN0−i

By upper-bounding the (finite) sum appearing in the right-
hand side, it follows that there exists a sufficiently small
value of ε such that for any (Ai)i∈J0;N0−1K

‖
N0−1∏
i=0

Ai‖∞ ≤
3

4
< 1

Then, Proposition 1 yields the conclusion.

5. SIMULATION

Destabilization may arise without any model error on the
function f , simply because of mis-synchronization between
prediction and measurement. For this purpose, we consider
a situation where fp ≡ f with small measurement errors
to excite the system and

D(y) = Dp(y) + δD

where δD is a stochastic term governed by a uniform
law (Dp is simply given by an affine law with values
ranging between 15 and 50 units of time for the values
of y considered here). We simulate the system for different
values of the filtering parameter α. The results of these
simulations are given on Figure 5.

We also give an illustration of Corollary 4, by simulating
the same system without measurement error but a model
error (fp and f being given respectively by the medium
and non-linear scenarios of Figure 1, i.e. ε = 2). The results
of this second simulation batch are presented on Figure 6.

These simulations illustrate the merits of the theoretical
results established in this article. A tuning of the con-
troller gain following the (conservative) estimate provided
by the small-gain condition gives satisfactory closed-loop
responses even when the delay variability is not negligible
and not perfectly known. If the gain is chosen above the
threshold, some divergence (or strong oscillations) can be
observed.

6. CONCLUSIONS

As a static SISO control problem, the core problem tackled
in this paper appears, at first sight, as simple as it could be.
However, the variability of the delay makes the problem
particularly tricky. We have provided explicit robustness
margins in regard of model error and asymptotic analysis
on the consequences of imperfect timestamping. Indeed,
while the situation of timestamping error is relatively
frequent in real closed-loop control systems (see Petit
[2015]), to the best of our knowledge, it as received lim-
ited theoretical attention since timestamping is usually
implicitly assumed to be exact (especially in contributions
studying the control of delayed systems such as Krstic
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0.48

0 200 400 600 800 1000 1200
−12

−10

−8

−6

−4

−2

0

2

Time (minutes)

y

Target
Measurement
Real

(c) Perfectly known delay, α ' 0.7
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Fig. 5. System behaviour without model error, with mea-
surement error and with and without delay mismatch
under different filtering parameters
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(b) Perfectly known delay, α ' 0.58
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(d) Delay known with error (± 10 units of
time), α ' 0.48
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(e) Delay known with error (± 10 units of
time), α ' 0.58
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(f) Delay known with error (± 10 units of
time), α ' 0.7

Fig. 6. System behaviour with model error, with and without delay mismatch under different filtering parameters

[2009], Niculescu [2001]). In the case where an underly-
ing dynamical system should be considered to model the
system, the preceding approach should be updated, sig-
nificantly. Because the measurement will remain sampled
by nature, the closed loop system will naturally become
a sampled-data ordinary differential equation as consid-
ered in e.g. Fridman et al. [2004]. Also, it is known, see
e.g. Cacace et al. [2014] that the introduction of time-
varying gains may improve the exponential convergence,
when measurements are subjected to (known) delays. If
estimates of the delay are available, such tuning rules could
bring some performance improvement. While the problem
becomes significantly harder due to the time-varying na-
ture of the discretized system transition matrices, it would
be interesting to investigate whether, in a more general
context of multi-input multi-output (MIMO) dynamical
systems, an event-triggered discretization approach such
as the one developed in this paper could be used to obtain
results on the influence of timestamping uncertainty.

Appendix A. PROOF OF PROPOSITION 1

The proof is relatively straightforward

∀n ∈ N, Xn =

n∏
i=1

An−iX0

Hence, grouping terms in N0-size bundles starting from
the right

‖Xn‖∗ ≤ ‖
n−
⌊

n
N0

⌋
N0∏

i=1

An−i‖∗

×

⌊
n
N0

⌋∏
i=1

‖
N0∏
j=1

A⌊ n
N0

⌋
N0−(i−1)N0−j

‖∗‖X0‖∗

and

‖Xn‖∗ ≤Mn−
⌊

n
N0

⌋
N0,∗

M

⌊
n
N0

⌋
N0,∗ ‖X0‖∗

Besides,

∀n ∈ N, 0 ≤ n−
⌊
n

N0

⌋
< N0

Hence, we get the desired result by defining

K , max
k∈J0;N0−1K

Mk,∗
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