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Abstract: The article examines the pressure-controlled dynamics of the flowrate in an elastic
microchannel. As shown by numerical simulations, the elasticity of the channel gives rise to
a complex and nonlinear transient response. The employed numerical scheme is based on the
method of characteristics. It is also used to solve the inverse problem of determining the inlet
pressure required to achieve a smooth flowrate at the microchannel outlet.
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1. INTRODUCTION

Microfluidics is the science of manipulating and control-
ling fluids at Reynolds numbers lower than 1.0, in very
small amounts (microliters to picoliters), in networks of
channels with dimensions significantly below 1 mm. It has
applications in various fields of science and engineering,
including, among others, biology, chemistry and medicine,
see e.g. Tabeling (2023); Kirby (2010).

Microfluidic devices often exhibit some elasticity. Uninten-
tional sources of elasticity include compressible air inlets
(bubbles) trapped within the device, and compliances of
the materials used to produce chips (mostly polydimethyl-
siloxane (PDMS)). Another common source of elasticity is
the compliance of silicone connectors and tubing, which
are often preferred over stainless steel versions for their
affordability and ease of integration.

The negative effects of elasticities in microfluidics are
similar to those created by parasitic impedances in elec-
tronic circuits and are primarily noticeable and harmful
during transient modes. Many microfluidics applications
are plagued with lags in responses, poorly damped os-
cillations, and difficult to handle water-hammer effects
(see e.g. Squires and Quake (2005)). A notable challenge
is the difficulty in predicting the total amount of fluid
delivered at the circuit’s outlet when elasticity is involved.

This is a critical issue for all drug delivery applications
(see Alavi et al. (2024)).

The article studies the particular issues caused by elas-
tic walls in pressured-based controlled microfluidics and
proposes a way to mitigate their detrimental effects. In-
terestingly, a closely related topic (the transport of fluid
in elastic tubes) has been a seminal subject of study
since the early days of fluid mechanics. The review arti-
cle Tijsseling and Anderson (2012) provides a comprehen-
sive summary of important classical models and practical
observations, focusing on the pioneering works of Moens
and Korteweg (1878) regarding the propagation of pressure

waves in unsteady pipe flows within macroscopic elastic
tubes.

The scenario considered in the article involves a pressur-
ized cavity connected to a downstream microchip via an
elastic tube, see Fig. 1. When the pressure is changed,
the flowrate at the microchip’s inlet (i.e., the flowrate at
the system’s outlet) becomes unsteady. Unless the pres-
sure variation (input variable) is particularly slow, the
flowrate (output variable) exhibits an undesirable over-
shooting transient before eventually stabilizing. The aim
of the article is to address the motion planning prob-
lem—specifically, to determine an input transient that
ensures the output achieves a smooth and monotonic in-
crease.

Fig. 1. An incompressible fluid flows from a pressurized
cavity to a downstream microchip through an elastic
tube.

The article is organized as follows. First, the model of the
(incompressible) fluid - (elastic) structure interaction is
presented in Sec. 2. The derivation of the governing equa-
tions is based on integrating the continuity and Navier-
Stokes equation over the cross-sectional area. The resulting
equations are additionally subjected to an algebraic equa-
tion that relates the pressure to the deformation of the
compliant tube (Barnard et al. (1966), Formaggia et al.
(2003)). In Sec. 3, we develop a characteristics method to
numerically determine the response of the system. In Sec. 4
we report numerical results of this approach, stressing the
nonlinear nature of the system observed in the overshoot
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and oscillations of the output of the system when the
input changes are gradually increased. In Sec. 5 we employ
the characteristics method to solve the inverse control
problem. It appears that the input has to overshoot so
that the output does not, and that the propagation delay
has to be accounted for in form of an anticipation in the
control actuation. Finally, conclusions and prospects on
future works will be drawn in Sec. 6.

Funding. Timo Stréhle is financially supported by the
Deutsche Forschungsgemeinschaft (DFG) through the
Walter Benjamin-program. This support is gratefully ac-
knowledged.

2. MODEL
2.1 Physics and balance equations

Consider a compliant vessel with circular cross section
containing an incompressible fluid. The system parame-
ters are the time and space varying flowrate Q(s,t) and
cross sectional area A(s,t), distributed along the one-
dimensional s-axis, with unit length s € [0, 1]. They are
governed by the balance of linear momentum
10) 0 i A@ P+ K @ 0 1
tQ+as(A>+ps + A— 3 ()
where p is the mass density, « is the momentum correction
factor and K is the friction coefficient, see Formaggia et al.
(2003) and the continuity equation

0tA+0;Q=0. (2)
To close the system, the tube-law f relates the luminal

pressure P(s,t) relative to the extraluminal pressure P..;
to the value of A(s,t)

P(s,t) = B(s) f(A(s,1)) + Peat - (3)
The factor 3(s) accounts for the geometrical and material
properties that influence the stiffness of the tube. Both
f and ( are derived by considering the radial deforma-

tion of a (thick-walled in all generality) tube yielding
(see Strohle and Petit (2025b), Formaggia et al. (1999))
f(A)=at - a3, (4)
where Ag is a reference cross sectional area. In this
paper we investigate the important case of thin-walled
vessels (see Formaggia et al. (1999)). In this context the
B—function can be stated as
4\/7(Eh)(s)
= =" 5
B(s) 34, (5)
where the Young’s modulus F and the wall thickness h
are, in all generality, depending on s, to account for the
different constituent materials of the vessel !.

After inserting the partial derivative of (3) w.r.t. s, 9;P =
f(A)%(s) + ﬂ%(A)asA, some calculus turn (1) into

A d
0:Q+20%0.Q+ 9(Q A4+ K5 + 25505 =0,
)

where

" dA A @

see again Strohle and Petit (2025b) for a general expression of 3
in the case of thick walls.

9@ 4) =25 4y —q (Q)2 .
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The pressure in the cavity is controlled using a high-
bandwidth pressure controller, as described in Tabeling
(2023), resulting in a deformation at the inlet of the vessel.
We note the control variable? u(t) = A(0,t). The outlet of
the vessel is connected to a rigid material, s.t. A(1,t) = A
where A is a given constant . The output of interest is the
flowrate at the outlet y(t) = Q(1,1).

2.2 Summary of the model

Equations (2) and (6) can be seen as a system of coupled
first order quasilinear partial differential equations with
state z = (Q, A)T

Oz + Bosz = C (8)
with
A d
B— 20&13 g(é),A) O = —K%—;JC(A)CT?(S) 7
0

subjected to initial conditions z(s,0) = zo(s), i.e.

Q(5,0) =Qo(s) and A(s,0) = Ag(s),

and boundary conditions

u(t) = A(0,t) and A(l,t)=A. (10)
The output of the system is
y(t) = Q(L,t) . (11)

2.8 Definition of steady-state

To get insight into the dynamics of the system, we il-
lustrate below a steady regime (Q°, A°?) obtained for a
particular value of the input. At steady-state case, one has
0;Q°1 = 0 and 0, A4°? = 0. Continuity equation gives rise
to 9,Q°%1 = 0, hence Q°? is uniform. Then, (6) gives
ea geqy 3A% _ QA ey 48
(@A) S = K = S
This ordinary differential equation (ODE) is readily
solved numerically (backwards, staying always from the
singularity A°? = 0) from the boundary condition at s = 1.
A typical example of the vessel shape and the flow regime
are pictured in Fig. 2.
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Fig. 2. Deformed vessel and mean velocity g—: for steady-
state flow regime.

3. METHOD OF CHARACTERISTICS
In this section, we exploit the classic method of characteris-
tics (see e.g. (Abbott, 1966, Chap. 3),(Courant and Hilbert,

2 (3) shows the equivalence of A(0,t) and the inlet pressure P(0,t).
3 or a function of time without loss of generality
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1937, Chap. V. §.3 and §.5), Courant and Hilbert (1962))
on the two-dimensional system of quasilinear partial dif-
ferential equations with non-zero forcing terms (8). We
identify the eigenvalues of the matrix B to obtain two

scalar ODEs, one for each direction with non-zero right
hand-side.

In details, to obtain the ODEs, the method introduces a
characteristic s = k(t) where k is the solution of det H = 0
with H £ B—1%$k(t). This gives two solutions. Then, the
ODEs are obtained as the unique independent line in the
matrix H defined by exchanging one column of H by the
right-hand side of the modified Eq. (12) below. Consider
a characteristic line s = k(t) along which z = z(k(t),t) =
¢(t) is given. Using (8) along with d;2+09,z- % k(t) = £((t),
gives

d d
[B — Idtk(t)] Oz =C — @C(t) (12)
which involves H defined above. The conditions
det(H)=0 and  det(H)=0, (13)

are referred to as directionality and compatibility condi-
tion, respectively. Eq. (13); has two solutions

A A
(14)
Along each of these two lines the solution is governed by

compatibility condition (13)2

iQ ( Q_\dA  _Q A,  dp
(it_(aA:':(:)dt__KA_pf(A)dS(S).

The resulting system of ODEs (15) can be solved numeri-
cally (see Sec. 4 and Sec. 5).

dt

(15)

4. DIRECT SIMULATION

Problem 1. (Direct problem). Let @ = S x T, where S =
[0,1] € R and T = [0,00) C Ry, be the space-time
domain of interest and 9Qy = S x {0}, 89Sy = {0} x T and
051 = {1} xT its boundaries. Find the output y : 95; — R
with given initial and boundary conditions zo : 9 — R?
and u : 9Sy — R as well as A : 57 — R such that (8) is
satisfied.

The resolution methods works by defining a stack of slabs
in Q, see Fig. 3. These slabs are defined as follows.
Starting from a meshed (non-characteristic) curve 9Q,,_1,
the boundary 0%2,, is defined by the set of points of second
intersection of all positive characteristic lines k() with
negative characteristic lines k_(t) or boundary 0S} as
well as the points of second intersection of all negative
characteristic lines k_(t) with positive characteristic lines
k4 (t) or the boundary 9Sj. The space-time strip Q,, is
then defined by the polygon inside 99,_1, 95§, Q,, and
057.  The numerical method is initialised by defining
equidistantly distributed points on the boundary 0.
Then the system of ODEs (14) and (15) is discretised
in ¢ along characteristic lines, that originate at these
prescribed points, by applying appropriate finite difference
schemes. The system of ODEs (14) and (15) is discretised
in Qg along characteristic lines by applying appropriate
finite difference schemes. In the context of this work, the

2
iki(t) = agic, where ¢ = \/fp\/z —(1-a)a (Q) .

implicit midpoint rule and the implicit Euler method have
been implemented. Then, the given boundary and initial
conditions can be applied directly at the corresponding
nodes of the characteristic net. The resulting algebraic
system of nonlinear equations can then be solved iter-
atively for the nodal unknowns of the slab by applying
Newton’s method. For accuracy and numerical efficiency
the Jacobian of this system of equations is calculated
analytically.

Thus, by knowing the initial conditions ¢ and A on
Qg along with the knowledge of A at 4SJ and 9S¢ the
solution can be computed on 0€2;. This procedure can
be carried out recursively for the space-time slabs §2,, for
n € [1,N] C N, where N indicates the total number of
space-time slabs (see Fig. 3 for an illustration thereof).
The CFL-condition (see e.g. Allaire (2007)) is fulfilled by
construction. In the discretisation, a variable time step
is implicitly and adaptively determined by directionality
condition (14) depending on the fixed number of nodes.
The code is available on the repository (Strohle and Petit
(2025a)).

Fig. 4 reports a numerical error analysis. The error is
computed by comparing a steady-state solution of the
output that is computed at the last node on 0S5; i.e.
ys = y(t = ty), with a numerical solution yas(t})
depending on the spatial refinement and computed at

the same node, i.e. e(M) = % As expected, see

e.g. Leimkuhler and Reich (2004), the error is quadratic
with M the number of nodes in space on 0€ for the
implicit midpoint-rule. One can note that this approach
is fundamentally different to the more classical method of
(horizontal) lines (see e.g. (Ascher and Petzold, 1998, e.g.
Ex.1.7)), where the governing partial differential equation
is integrated first in space by means of finite elements
followed by an integration in time mostly based on ap-
propriate finite difference schemes.

Ny,
t . "
oST
oSy
S0, .
¢ an :
‘ o
\ £
. QO ° 0
a5 957
590 ‘ S

Fig. 3. Hlustration of the numerical scheme proposed
in Sec. 4 for integrating the direct problem along
characteristic lines.

Ezample 2. Problem 1 is solved with @ = 1.0, K =
200 mm? s7! and p = 107 kg mm~3, Ay = 0.1 mm?.
The S—function is illustrated in Fig 5, implying that the
vessel is less stiff in its middle.
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Fig. 4. Numerical error analysis: The accuracy of the pro-
posed method of characteristics achieved by integrat-
ing the underlying equations numerically by means of
the implicit mid-point rule compared to the implicit
Euler method.

05 \

@ 04+

0.3 |

0 0.25 0.5
s

0.75 1

Fig. 5. Hlustration of the variation of the stiffness of the
vessels wall.

The fluid is initially at rest, i.e. the flowrate is null
Q(.,0) = 0.0 and the cross-sectional area is being set uni-
formly to A(.,0) = Ag. A smooth monotonically increasing
(pressure) input is imposed over some finite time so that

%(O)(cos(('erl)w)Jrl)Jer forto <t>T
u(t) = Ao for t < tg
Ap + AA(0) fort>1T,
(16)
where y(t) = 1 cos (522 + 1) m) + § s.t. the system is be-

ing transferred after the time 7= 10.0 ms from an initial
steady-state [0 AO]T at time to = 0 to another steady-
state [Q(.) Ao+ AA()]" with AA(0) = 0.01 mm?2. Fig. 6
stresses that the input-output response system is nonlin-
ear. The response of the output according to the prescribed
inputs of varying amplitudes is shown. Fig. 7 stresses the
laggy output response, and the transient overshoot of the
inlet flowrate, temporarily filling the volume corresponding
to the expansion of the vessel. These numerical results
have been obtained by employing 15 nodes initially equally
distributed on 9€y. On average, 5 Newton iterations for
each space-time slab were required to converge quadrat-
ically to the presented numerical solution, i.e. to achieve

an Euclidean norm of the residual vector, that is smaller
than a given tolerance ¢ = 1078,
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Fig. 6. Input-output response: Illustration of different
imposed inputs u;(t) with AA4;(0) =i - AA(0) (top)
and the corresponding outputs y;(¢) (bottom).

5. MOTION-PLANNING

We now employ the characteristic method of Sec. 3 to solve
the following inverse problem.

Problem 3. (Motion-planning). With the notations of Prob-
lem 1. Consider a sufficiently smooth y : 957 — R for
051 D 057 = {1} x[t§ > 0, 00) along with given initial and
boundary conditions zy : 00 — R? and A : 051 — R, find
the input u : dSy — R such that (8) is satisfied.

The transformation of the PDEs at hand into a system of
ODEs along characteristic lines enables a construction of
a numerical scheme, that is capable of solving Problem 3
by connecting the boundaries through characteristic lines
along which the information flows. With the notations of
Problem 3, assume that 0€)g is non-characteristic, i.e. that
there exist no characteristic line k¥ (¢) which lies on 9.
Along with given boundary conditions for A(1,t) = A(t)
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Fig. 7. Numerical results of the normalised output g(t) =
Q(1,t) Q7 1(1,0) along with the normalised flow rate

Q(0,t) = Q(0,t) Q@ '(1,00) according to the nor-

malised prescribed input @(t) = A(0,t) = (A(0, 00) —
A(0,0))71(A(0,t) — A(0,0))

on Sy = {1} x [0, 5], that need to be chosen consistently
with respect to the given initial conditions, i.e. A(t=0) =
Ap(s=1), the solution at any grid point within the space-
time triangle Qg (defined by the three boundaries 9, 95
and kg (see Fig. 8)), is fully determined by the system of
ODEs (14) and (15) along characteristic lines k.

Once the solution is computed at every grid points in ),
a prescribed output can be defined on the time interval
T+ = 081\05Y = [t5,0) s.t. y : T* — R is fulfilling the
condition y(t§) = Q(1,t§). This is a necessary condition for
the prescribed output. Then, the solution within space-
time slabs Q,,, n € [1, N] (where N indicates the number of
space-time slabs) can be computed recursively by solving
(14) and (15) in accordance with the previously computed
solution at points along k‘f_l as initial condition together
with the prescribed output y and the cross-sectional area A
at the boundary 0S7'. The numerical scheme is illustrated
in Fig. 8.

A delay between the input and output signal is visible in
Fig. 7. It is here determined numerically, and is implic-
itly taken into account by the motion planning method.
This task is not straightforward due to the nonlinearity
of the equations at hand, resulting in a dependence of
the delay on the input signal itself. This situation is
often observed in systems subjected to hydraulic delay
see e.g. Clerget and Petit (2020); Bekiaris-Liberis et al.
(2024). The delay D(t) of the response of the output y(¢)
to the input u(t — D(t)) is therefore determined implicitly
by the characteristic lines kt, i.e.

t
1= / K (t) t.
t—D(t)

The presented solution strategy takes this delay implicitly
into account. Note that the initialisation procedure does
not depend on the imposed output. So, if the initial
conditions do not change, this procedure only needs to be

(17)

executed once before planning different manoeuvers using
the recursive procedure stated above.
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Fig. 8. Mlustration of the numerical scheme proposed in
Sec. 5 for solving the motion-planning problem by
inverse integration along characteristic lines.

Remark 4. (Parameterisation) Within each space-time
slab ,¥n € [1, N] C N the input can be parameterised
by the prescribed output. According to Fig. 9, the solution
at point O} depends on the solution at points O%_; and
0% which is given by the boundary conditions (10)2 and
(11). Once the solution is calculated at the point O} and
since the solution along k", is known the solution at the
points O™ is determined by the solution at points O™~!
and O™ for all m € [2, M] C N, where M indicates the
number of nodes on k*, (cf. Fig. 9). Thus, the solution
in 05, including the unknown input u(t) = A(0,?), can
be completely parameterised by the solution given at 0.5y,
including the output y(t) = Q(1,1).

o,
01
Omfl k:'; * 85?
o 08,
Oy s n ’ erLr—1
con)!

Fig. 9. Parameterisation of the governing equations along
characteristic lines within the space-time slab €2,,.

Ezample 5. The system described in Ex. 2 is reconsidered.
The output is prescribed according to (16) by replacing Ay
and AA(0) with Qo(1) and AQ(1), respectively. Further-
more ty and T are set to 5 ms and 15 ms, respectively.

The results of the numerical simulations are summarised
in Fig. 10. Therein the flowrate at the boundaries is
plotted together and compared with the input. Note that,
at an expense of a moderate increase of the input signal
compared to Fig.7, the output is significantly sped-up. The
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Fig. 10. Numerical results of the normalised input @(t) =
(AA(0))~" (A(0,t) — Ap) along with the normalised
flow rate Q(0,t) = Q(0,¢)(Q°%)~! according to
the normalised prescribed output g(t) = Q(1,t) =
Q(1,t) (Q°9)~1. Q°9 is the corresponding steady-state
solution.

desired output flowrate is reached fast and in finite time
thanks to the pressure input signal carefully calculated
using the method outlined above.

These numerical results have been obtained by employ-
ing 15 nodes equally distributed on 0€y. On average, 4
Newton iterations for each space-time slab were required
to reach the presented numerical solution.

6. CONCLUSION

The aim of this research was to investigate the flow control
problem of incompressible flow in compliant tubes for
microfluidic applications. Due to the hyperbolic structure
of the governing equations, a numerical method based on
the classical method of characteristics was developped and
applied for direct simulation and resolution of the inverse
problem (motion-planning).

In this context we could observe phenomenologically and
analytically that the mode and magnitude of the expansion
of the tube, i.e. the increase in volume of the fluid inside
the tube, has an effect on the delay. For example, lower
stiffness leads to greater hydrodynamic capacitance and
therefore greater delays. Especially for the inverse prob-
lem, the influence of the hydrodynamic capacitance on
the delay plays a crucial role. This analysis and numerical
investigations has enabled to reveal and specify necessary
conditions for the prescribed output and its feasible range.
These conditions are induced by the velocity of wave
propagation and have been implicitly incorporated in the
numerical scheme presented.

Among the limitations of this work is that the scheme
does not yet allow the treatment of shocks, i.e. crossing
characteristic lines leads to a failure of the computations.
One further interesting direction that would be worth
investigating is the question of finding a time-optimal

input to transfer the system from one steady state to
another, under flowrate constraints, while avoiding shocks.
Furthermore, when dealing with varying parameters, a
model predictive control should be established to ensure a
robust control. The codes for direct simulation and motion
planning are available on GitHub (see Strohle and Petit
(2025a)).
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