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Abstract

The purpose of this article is to provide the reader with an
overview of an inversion based methodology applied to a shut-
tle atmospheric reentry problem. The proposed method originates
in the search for computationally efficient trajectory optimization
as an enabling technology for versatile real-time trajectory gen-
eration. The technique is based on the nonlinear control theory
notion of inversion and flatness. This point of view allows to map
the system dynamics, objective, and constraints to a lower dimen-
sional space. The optimization problem is then solved in the lower
dimensional space. Eventually the optimal states and inputs are re-
covered from the inverse mapping.

1 Introduction

The purpose of this article is to provide the reader with an
overview of an inversion based methodology applied to a
shuttle atmospheric reentry problem. This problem has a 6
states, 2 controls nonlinear dynamics with terminal and ini-
tial constraints and a terminal cost function. Aerodynamics
models (linear for lift and quadratic for drag) are consid-
ered. Gravity and air density are modelled according to the
classic non rotating spherical earth potential and exponen-
tial models.

The proposed method originates in the search for com-
putationally efficient trajectory optimization as an enabling
technology for versatile real-time trajectory generation.
Trajectory generation of unmanned aerial vehicles is an ex-
ample where the tools of real-time trajectory optimization
can be extremely useful. In [9, 13, 12], this new technique
was presented and used to solve such problems. In [11]
this methodology was applied to formation flight of micro-
satellites under J2 gravitational effect. Following the same
ideas the real time trajectory generation of a planar missile
was addressed [10] with similar drag and lift models.

The technique is based on the nonlinear control theory
notion of inversion [7] and flatness [3, 4]. This point of
view allows to map the system dynamics, objective, and
constraints to a lower dimensional space. The optimiza-
tion problem is then solved in the lower dimensional space.
Eventually the optimal states and inputs are recovered from
the inverse mapping.

The example treated in this report has interesting fea-
tures. First it is more complex in terms of dimensionality
and nonlinearities than the previously cited examples. Sec-
ond the dynamics are not flat. In other words it is not possi-
ble to fully invert the system dynamics. This particular sit-
uation deserves a careful treatment of the parametrization
of the states variables. Numerical results are given, and a
comparison with existing techniques for this example [1] is
given. In short, the proposed approach appears tracktable,
but could be improved further by paying more attention to
the choice of the nonlinear programming solver and the fi-
nite dimensional representation that are used.

2 Background information

In this section we present the general framework of
inversion-based collocation methods for numerical solution
to optimal control problems. Most of this material can be
found in [13]. We address the simple single-input case
which is by far the most easy and emphasizes the role of
inversion.

2.1 Optimal Control Problem

Consider the single input nonlinear control system

ẋ = f(x) + g(x)u, (1)

R 3 t 7→ x ∈ Rn,R 3 t 7→ u ∈ R

where all vector fields and functions are smooth functions.
It is desired to find a trajectory of (1)[t0, tf ] 3 t 7→
(x, u)(t) ∈ Rn+1 that minimizes the cost

J(x, u) =φf (x(tf ), u(tf )) + φ0(x(t0), u(t0))

+
∫ tf

t0

L(x(t), u(t))dt,

whereL is a nonlinear function, subject to a vector of initial,
final, and trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,

lbf ≤ ψf (x(tf ), u(tf )) ≤ ubf ,

lbt ≤ S(x, u) ≤ ubt,

(2)
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respectively. For conciseness, we will refer to this optimal
control problem as





min
(x,u)

J(x, u)

subject to

ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.

(3)

2.2 Different approaches

2.2.1 Classical collocation

One numerical approach to solve this optimal control prob-
lem is the direct collocation method outlined by Hargraves
and Paris in [6]. The idea behind this approach is to trans-
form the optimal control problem into a nonlinear program-
ming problem. This is accomplished using a time mesh

t0 = t1 < t2 < . . . < tN = tf (4)

and approximating the statex and the control inputu as
piecewise polynomialŝx and û, respectively. Cubic poly-
nomial may be chosen for the states and a linear poly-
nomial for the control on each interval represents a good
choice. Collocation is then used at the midpoint of each
interval to satisfy Equation (1). Let̂x(x(t1)T , ..., x(tN )T )
andû(u(t1), ..., u(tN )) denote the approximations tox and
u, respectively, depending on(x(t1)T , ..., x(tN )T ) ∈ RnN

and(u(t1), ..., u(tN )) ∈ RN corresponding to the value of
x andu at the grid points. Then one solves the following
finite dimension approximation of the original control prob-
lem (3)





min
y∈RM

F (y) = J(x̂(y), û(y))

subject to

˙̂x− f(x̂(y), û(y)) = 0, lb ≤ c(x̂(y), û(y)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1

(5)
wherey = (x(t1)T , u(t1), . . . , x(tN )T , u(tN )), andM =
dim y = (n + 1)N .

2.2.2 Inverse dynamic optimization

In [15] Seywald suggested an improvement to the previ-
ous method (see also [2] page 362 for an overview of this
method). Following this work, one first solves a subset of
system dynamics in (3) for the the control in terms of com-
binations of the state and its time derivative. Then one sub-
stitutes for the control in the remaining system dynamics
and constraints. Next all the time derivativesẋi are approx-
imated by the finite difference approximations

˙̄x(ti) =
x(ti+1)− x(ti)

ti+1 − ti

to get

p( ˙̄x(ti), x(ti)) = 0
q( ˙̄x(ti), x(ti)) ≤ 0

}
i = 0, ..., N − 1.

The optimal control problem is turned into




min
y∈RM

F (y)

subject to

p( ˙̄x(ti), x(ti)) = 0
q( ˙̄x(ti), x(ti)) ≤ 0

(6)

wherey = (x(t1)T , . . . , x(tN )T ), andM = dim y = nN .
As with the Hargraves and Paris method, this parameteriza-
tion of the optimal control problem (3) can be solved using
nonlinear programming.

The dimensionality of this discretized problem is lower
than the dimensionality of the Hargraves and Paris method,
where both the states and the input are the unknowns. This
induces substantial improvement in numerical implementa-
tion (see again [15] for an implementation of the Goddard
problem).

2.2.3 Proposed Numerical Approach

In fact, it is usually possible to reduce the dimension of the
problem further. Given an output, it is generally possible
to parameterize the control and a part of the state in terms
of this output and its time derivatives. In contrast to the
previous approach, one must use more than one derivative
of this output for this purpose.

When the whole state and the input can be parameterized
with one output, one says that the system is flat [3]. When
the parameterization is only partial, the dimension of the
subspace spanned by the output and its derivatives is given
by r therelative degreeof this output.

Definition 1 ([7]) A single input single output system
{

ẋ = f(x) + g(x)u
y = h(x)

(7)

is said to haverelative degreer at pointx0 if LgL
k
fh(x) =

0, in a neighborhood ofx0, and for all k < r −
1 LgL

r−1
f h(x0) 6= 0 whereLfh(x) =

∑n
i=1

∂h
∂xi

fi(x)
is the derivative ofh alongf .

Roughly speaking,r is the number of times one has to
differentiatey beforeu appears.

Result 1 ([7]) Suppose the system(7) has relative degreer
at x0. Thenr ≤ n. Set

φ1(x) = h(x)
φ2(x) = Lfh(x)

...

φr(x) = Lr−1
f h(x).

If r is strictly less thann, it is always possible to findn− r
more functionsφr+1(x), ..., φn(x) such that the mapping

φ(x) =




φ1(x)
...

φn(x)



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has a Jacobian matrix which is nonsingular atx0 and there-
fore qualifies as a local coordinates transformation in a
neighborhood ofx0. The value atx0 of these additional
functions can be fixed arbitrarily. Moreover, it is always
possible to chooseφr+1(x), ..., φn(x) in such a way that
Lgφi(x) = 0, for all r + 1 ≤ i ≤ n and allx aroundx0.

The implication of this result is that there exists a change
of coordinatesx 7→ z = (z1, z2, ..., zn) such that the sys-
tems equations may be written as





ż1 = z2

ż2 = z3

...

żr−1 = zr

żr = b(z) + a(z)u
żr+1 = qr+1(z)

...

żn = qn(z)

wherea(z) is nonzero for allz in a neighborhood ofz0 =
φ(x0).

In these new coordinates, any optimal control prob-
lem can be solved by a partial collocation, i.e. collo-
cating only(z1, zr+1, ..., zn) instead of a full collocation
(z1, ..., zr, zr+1, ..., zn, u). Inverting the change of coor-
dinates, the state and the input(x1, ..., xn, u) can be ex-
pressed in terms of(z1, ..., z

(r)
1 , zr+1, ..., zn). This means

that once translated into these new coordinates, the original
control problem (3) will involver successive derivatives of
z1.

It is not realistic to use finite difference approximations
as soon asr > 2. In this context, it is convenient to repre-
sent(z1, zr+1, ...zn) as B-splines. B-splines are chosen as
basis functions because of their ease of enforcing continuity
across knot points and ease of computing their derivatives.

Both equation from the dynamics and the constraints will
be enforced at the collocation points. In general,w col-
location points are chosen uniformly over the time inter-
val [to, tf ], (though optimal knots placements or Gaussian
points may also be considered and are numerically impor-
tant). The problem can be stated as the following nonlinear
programming form:





min
y∈RM

F (y)

subject to

żr+1(y)− qr+1(z)(y) = 0
...

żn(y)− qn(z)(y) = 0 for everyw

lb ≤ c(y) ≤ ub

(8)

where y represents the unknown coefficients of the B-
splines. These have to be found using nonlinear program-
ming.

2.2.4 Comparisons

Our approach is a generalization of inverse dynamic opti-
mization. Let us summarize the presented approaches One
could write the optimal control problem with:

• “Full collocation” solving problem (5) by collocating
(x, u) = (x1, ..., xn, u) without any attempt of vari-
able elimination. After collocation the dimension of
the unknowns space isO(n + 1).

• “Inverse dynamic optimization” solving problem (6)
by collocatingx = (x1, ..., xn). Here the input is
eliminated from the equation using one derivative of
the state. After collocation the dimension of the un-
knowns space isO(n).

• “Flatness parametrization” (Maximal inversion), our
approach, solving problem (8) in the new coordinates
collocating only(z1, zr+1, ..., zn). Here we eliminate
as many variables as possible and replace them using
the firstr derivatives ofz1. After collocation, the di-
mension of the unknowns space isO(n− r + 1).

2.3 The ruled manifold criterion

When facing a new system dynamics, it would be interest-
ing to know wether these can be fully inverted or not. The
single-input case presented before is the exception. Unfor-
tunately, up today, there does not exist any flatness crite-
rion. Nevertheless the following necessary condition can
be a handy tool to check wether one may completely invert
a system. This necessary condition for a system to be flat is
given by the following criterion [14] (see also [8]).

Result 2 ([14]) Assume the systeṁx = f(x, u) is flat. The
projection on thep-space of the submanifoldp = f(x, u),
wherex is considered as a parameter, is a ruled manifold
for all x.

Eliminatingu from the dynamicṡx = f(x, u) yields a set
of equationsF (x, ẋ) = 0 that defines a ruled manifold. In
other words for all(x, p) ∈ R2n such thatF (x, p) = 0,
there exists a directiond ∈ Rn, d 6= 0 such that

∀λ ∈ R, F (x, p + λd) = 0.

3 The reentry problem

In this section we present the reentry problem. We detail
the nonlinear dynamics, the constraints and the cost func-
tion. We show that this system is not flat and explain how to
parameterize its trajectories using a reduced number of vari-
ables and additional constraints. Finally we give a rewrit-
ing of the optimal control problem in terms of this reduced
number of unknowns.
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3.1 Dynamics

As detailed in Betts [1], the motion of the space shuttle are
defined by the following set of equations

ḣ = v sin γ (9)

φ̇ =
v

r
cos γ sin ψ/ cos θ (10)

θ̇ =
v

r
cos γ cos ψ (11)

v̇ = −D(α)
m

− g sin γ (12)

γ̇ =
L(α)
mv

cosβ + cos γ
(v

r
− g

v

)
(13)

ψ̇ =
1

mv cos γ
L(α) sin β +

v

r cos θ
cos γ sin ψ sin θ (14)

whereh denotes the altitude,φ the longitude,θ the latitude,
v the velocity,γ the flight path,ψ the azimuth. The two
control areα the angle of attack andβ the bank angle.

3.2 Control objective and constraints

Here our problem is to maximize the final value of theθ
variable in agiven timetf . The initial conditions are pre-
scribed as

h(0) = 260000 ft

φ(0) = 0 deg

θ(0) = 0 deg

v(0) = 25600 ft/sec

γ(0) = −1 deg

ψ(0) = 90 deg

In the numerical example treated in this report the final time
tf equals 2008.59 s. The study is restricted to the trajectory
satisfying

0 ≤ h,−89 deg≤ θ ≤ 89 deg

1 ≤ v,−89 deg≤ γ ≤ 89 deg

−90 deg≤ α ≤ 90 deg,−89 deg≤ β ≤ 89 deg

The final point of the trajectory is defined by the terminal
area energy management (TAEM) interface which is de-
fined by the following relations

h(tf ) = 80000 ft, v(tf ) = 2500 ft/s, γ(tf ) = −5 deg

3.3 Physics constants and parameters

We useµ = 0.14076539e17 as gravitational constant,Re =
20902900 ft as the radius of the Earth,S = 2690 ft2 as
the aerodynamic reference surface,href = 23800 ft and
ρ0 =0.002378 for the following physics parameters

g = µ/r2 (15)

ρ = ρ0 exp(−(r −Re)/href ) (16)

We useCL = a0 + a1α whereα is in deg,a0 =-0.20704,
a1 =0.029244. Lift is then given by

L =
1
2
CLSρv2 (17)

Also we noteCD = b0 + b1α + b2α
2, whereb0 =0.07854,

b1 = -0.61592e-2,b2 = 0.621408e-3 and use it in

D =
1
2
CDSρv2 (18)

The mass of the shuttle was chosen as

m = 6309.44 lbs

3.4 The system is not flat

We use the ruled manifold criterion presented in section 2.3
to prove that the system is not flat.

Eliminating the control from the reentry dynamics yields
an equationF (x, ẋ) = 0. To get this equation we have to
solve for the unknownsα andβ in terms of the states and
its derivatives.

First one may pick equation (12) to get

D(α) = −mv̇ −mg sin(γ)

Then solve according to the physical model (18) to get

α =
−b1 ±

√
b2
1 − 4b2(b0 + 2m(v̇+g sin γ)

ρSv2 )

2b2
(19)

On the other hand it straightforward to solve forβ using
equation (13), equation (14) and the fact that−89 deg ≤
β ≤ 89 deg. This gives

β = arctan

(
cos γ(ψ̇ − v

r cos θ cos γ sin ψ sin θ)
γ̇ − cos γ

(
v
r − g

v

)
)

(20)

Using these last two relations in the reentry dynamics
we get the manifold equationF (x, p) = 0, wherep =
(p1, p2, p3, p4, p5, p6)T = ẋ satisfy

p1 =v sin γ (21)

p2 =
v

r
cos γ sin ψ/ cos θ (22)

p3 =
v

r
cos γ cos ψ (23)

and Equation (24) Now let us look for a non-zero direction
d = (d1, d2, d3, d4, d5, d6)T ∈ R6 such that at a point(x, p)
such thatF (x, p) = 0, for all λ ∈ R, F (x, p + λd) = 0.

The first three equations (21), (22), (23) give

p1 + λd1 =v sin γ

p2 + λd2 =
v

r
cos γ sin ψ/ cos θ

p3 + λd3 =
v

r
cos γ cos ψ

which give
d1 = 0, d2 = 0, d3 = 0

Equation (24) gives after using the simplification
sin(arctanx) = x√

1+x2 Equation (25)
This equation must hold for allλ ∈ R. After taking the

square of the last expression, the square root in the last ex-
pression involvingd4 is the only one that still contains a
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p6 =
ρSv2

2mv cos γ


a0 + a1

180
π

−b1 ±
√

b2
1 − 4b2(b0 + 2m(p4+g sin γ)

ρSv2 )

2b2


× ...

sin

(
arctan

(
cos γ(p6 − v

r cos θ cos γ sin ψ sin θ)
p5 − cos γ

(
v
r − g

v

)
))

+
v

r cos θ
cos γ sin ψ sin θ (24)

p6 + λd6 =
ρSv2

2mv cos γ


a0 + a1

180
π

−b1 ±
√

b2
1 − 4b2(b0 + 2m(p4+λd4+g sin γ)

ρSv2 )

2b2


× ...

cos γ(p6 + λd6 − v
r cos θ cos γ sin ψ sin θ)√(

cos γ(p6 + λd6 − v
r cos θ cos γ sin ψ sin θ)

)2 +
(
p5 + λd5 − cos γ

(
v
r − g

v

))2

+
v

r cos θ
cos γ sin ψ sin θ (25)

square root terms inλ. It can not be matched to anything
else in the expression. Thus, necessarily,

d4 = 0

Taking the square of the last equation gives rise to the fol-
lowing second order polynomial inλ

λ2(d2
5 + d2

6)

+ 2λ
(
p5d5 − d5(cos γ

(v

r
− g

v

)
)...

+ cos γ2(p6d6 − a6(
v

r cos θ
cos γ sin ψ sin θ)

)
...

+ p2
5 − 2p5 cos γ

(v

r
− g

v

)
+ (cos γ

(v

r
− g

v

)
)2

+ cos2 γ(p2
6 − 2p6

v

r cos θ
cos γ sin ψ sin θ...

+
( v

r cos θ
cos γ sin ψ sin θ

)
)

− c cos2 γ

where

c =
ρSv2

2mv cos γ
(
a0 + a1

180
π

−b1 ±
√

b2
1 + 4b2(b0 + 2m(p4+λd4−g sin γ)

ρSv2 )

2b2

)

For this polynomial to be identically zero, necessarily we
must have

d5 = 0, d6 = 0

Thus the candidate vector for a direction of the ruled mani-
fold is d = 0. This shows the manifold is not ruled and so
the system is not flat.

3.5 Parameterization

Should the system have been flat, we would have been
using only 2 quantities (same number as inputs) for the
parametrization of all its variables. As we will see in the
following, we need 3 quantities instead. We now use

z1 = r = h + Re

z2 = θ

z3 = φ

where Re is the radius of the Earth. Assuming that
around the trajectory−90 deg < ψ < 90 deg, we recover
from (10) and (11)

ψ = arctan
(

ż3

ż2
cos z2

)
(26)

Since−90 deg< γ < 90 deg, we get from (9) and (11)

γ = arctan
(

ż1

ż2

cos ψ

z1

)

= arctan

(
ż1

z1

√
ż2
2 + ż2

3 cos2 z2

)
(27)

and then

v =

√(
z1ż2

cos ψ

)2

+ ż2
1

=
√

ż2
1 + z2

1 (ż2
2 + ż2

3 cos2 z2) (28)

It is convenient in the sequel to solve for the derivatives
v̇, γ̇, ψ̇. These quantites can be obtained either by direct
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differentiation of (26) (27) and (28) as

ψ̇(1 + tan2 ψ) =
d(tan ψ)

dt

=
d

dt

(
ż3

ż2
cos z2

)

=
z̈3

ż2
cos z2 − ż3 sin z2 − ż3z̈2

ż2
2

cos z2

which gives

ψ̇ =
(

1 +
ż2
3

ż2
2

cos2 z2

)−1

(
z̈3

ż2
cos z2 − ż3 sin z2 − ż3z̈2

ż2
2

cos z2

)
(29)

and

v̇ =z̈1 sin γ + cos γ cosψ (z̈2z1 + ż2ż1)
+ cos γ sin ψ×
(z̈3z1 cos z2 + ż3ż1 cos z2 − ż2ż3z1 sin z2) (30)

γ̇ =
1
v
z̈1 cos γ − 1

v
sin γ cosψ (z̈2z1 + ż2ż1)

− 1
v

sin γ sinψ×
(z̈3z1 cos z2 + ż3ż1 cos z2 − ż2ż3z1 sin z2) (31)

The lift is computed from equations (13) and (14) as

L =mv
(
(ψ̇ − v/z1 cos γ sinψ tan z2) cos γ)2

+ (γ̇ − (v2/z1 − g) cos γ/v)2
)1/2

sign(γ̇ − (v2/z1− g) cos γ/v)

which we note after substitution with equations
(26), (27), (28), (30) and (29)

L = fL(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) (32)

The bank angle can be recomputed from the previous ex-
pression and equation (13)

β = − arccos((γ̇ − (v2/z1 − g) cos γ/v/m)v/L)

which we note after substitution with equations (27), (28)
and (31)

β = fβ(z1, ż1, z̈1, z2, ż2, z3, ż3) (33)

Using the linear model for lift (see appendix), we can solve
for the angle of attack

α = (2L/ρ/v2/S − a0)/a1

which we note after substitution with equations (28)
and (32) and the air density model forρ(z1) given by equa-
tion (16)

α = fα(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) (34)

The drag is then recomputed from the law

D =
1
2
ρSv2CD

3.5.1 Parameterization constraints

The reentry dynamics have the same nonlinear structure as
the following simple nonlinear system with 3 states and 2
inputs

ẋ1 = −D(u1)
ẋ2 = L(u1) cos u2

ẋ3 = L(u1) sin u2

In general this system is not flat (e.g. ifD andL corre-
spond to drag and lift models). In other words, not any time
functiont 7→ (x1(t), x2(t), x3(t)) is a trajectory of the sys-
tem. But the trajectories of the system, i.e. time functions
t 7→ (x1(t), x2(t), x3(t), u1(t), u2(t)) solution to the dy-
namics, indeed satisfy

tan u2 =
(

ẋ3

ẋ2

)
(35)

and

L =
√

ẋ2
2 + ẋ2

3sign(ẋ2 cos u2)

These are only necessary conditions. Sufficient extra con-
ditions are that

ẋ1 = −D(L−1(
√

ẋ2
2 + ẋ2

3sign(ẋ2 cosu2)))

In order to solve equation (35), one has to pick the right
determination of the angle. In general it can not be assumed
thatu2 ∈]−π/2, π/2[ (it is the case in our example though).
Let us callu∗2 this solution (defined up toπ). A suitable
value has to be such that

ẋ2 = L(u1) cos u∗2
ẋ3 = L(u1) sin u∗2

To summarize, the trajectories of the system are of the
form

t 7→ (x1(t), x2(t), x3(t),

L−1(
√

ẋ2
2 + ẋ2

3sign(ẋ2 cos u∗2), u
∗
2)

wherex1, x2, x3, u∗2 are any arbitrary function that satisfy

ẋ1 = −D(L−1(
√

ẋ2
2 + ẋ2

3sign(ẋ2 cos u∗2)))

ẋ2 =
√

ẋ2
2 + ẋ2

3sign(ẋ2 cosu∗2) cos u∗2

ẋ3 =
√

ẋ2
2 + ẋ2

3sign(ẋ2 cosu∗2) sin u∗2

tanu∗2 =
(

ẋ3

ẋ2

)

Similarly, in our case the following constraints must hold

1. First the drag and the lift must correspond. In other
words, the drag that is computed from the lift must be
such that

mv̇ + g sin γ + D = 0
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2. Also the sign that appears in the lift expression has
to be taken into account. Two additional constraints
have to be satisfied to transform the previous necessary
condition in a sufficient condition. It is assumed that
α ∈] − π/2, π/2[. Sou∗2 is uniquely defined by the
arctan function. As a summary, the trajectories have
to satisfy

(ψ̇ − v/z1 cos γ sin ψ tan z2) cos γ)
= L cosβ/m/v/ cos γ

(γ̇ − (v2/z1 − g) cos γ/v)
= L sin β/m/v

3.5.2 Parameterization of the trajectories

The previous relations derived at section 3.5 are necessary
conditions. In other words if the time functions

t 7→ (h(t), φ(t), θ(t), V (t), γ(t), ψ(t), α(t), β(t))

are solutions of the reentry dynamics then they are of the
form

h = z1 −Re

φ = z3

θ = z2

v =
√

ż2
1 + z2

1 (ż2
2 + ż2

3 cos2 z2)

γ = arctan

(
ż1

z1

√
ż2
2 + ż2

3 cos2 z2

)

ψ = arctan
(

ż3

ż2
cos z2

)

α = fα(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3)
β = fβ(z1, ż1, z̈1, z2, ż2, z3, ż3)

Conversely any time function t 7→
(h(t), φ(t), θ(t), V (t), γ(t), ψ(t), α(t), β(t)) computed
from the same relations are not solutions to the reentry dy-
namics. Sufficient extra conditions are that these functions
must satisfy the extra conditions

mv̇ + g sin γ +
1
2
CDρS

((
z1ż2

cos z3

)2

+ ż2
1

)
= 0

(ψ̇ − v/z1 cos γ sin ψ tan z2) cos γ)
= L cos β/m/v/ cos γ

(γ̇ − (v2/z1 − g) cos γ/v)
= L sin β/m/v

These three relations can be rewritten, after substitution
with the necessary conditions (26), (27), (28), (30), (32),
(33)

F1(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (36)

F2(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (37)

F3(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (38)

3.6 Rewriting of the optimal control problem

The problem is only to find the best time functions[0, tf ] 3
t 7→ (z1(t), z2(t), z3(t)) so as to maximizez2(tf ) under the
following constraints.

• Initial constraints

h(0) = z1(0)−Re (39)

φ(0) = z3(0) (40)

θ(0) = z2(0) (41)

v(0) =
√

ż2
1(0) + z2

1(0) (ż2
2(0) + ż2

3(0) cos2 z2(0))
(42)

γ(0) = arctan

(
ż1(0)

z1(0)
√

ż2
2(0) + ż2

3(0) cos2 z2(0)

)

(43)

ψ(0) = arctan
(

ż3(0)
ż2(0)

cos z2(0)
)

(44)

• Trajectory constraints (must hold for allt ∈ [0, tf ])

F1(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (45)

F2(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (46)

F3(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) = 0 (47)

0 ≤ z1 −Re,−89 ≤ z2 ≤ 89

1 ≤
√

ż2
1 + z2

1 (ż2
2 + ż2

3 cos2 z2),

−89 ≤ arctan

(
ż1

z1

√
ż2
2 + ż2

3 cos2 z2

)
≤ 89,

−90 ≤ fα(z1, ż1, z̈1, z2, ż2, z̈2, z3, ż3, z̈3) ≤ 90,

−89 ≤ fβ(z1, ż1, z̈1, z2, ż2, z3, ż3) ≤ 89

• Endpoint constraints

h(tf ) = z1(tf )−Re (48)

v(tf ) =
√

ż2
1(tf ) + z2

1(tf ) (ż2
2(tf )ż2

3(tf ) cos2 z2(tf ))
(49)

γ(tf ) = arctan

(
ż1(tf )

z1(tf )
√

ż2
2 + ż2

3 cos2 z2

)
(50)

4 Numerical results

In this section we give numerical results using the proposed
methodology. Details about the initialisation and conver-
gence are given. Accuracy of the method is discussed and
comparisons with reference results are given.
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h(tf ) (ft) 102600
v(tf ) (ft/sec) 3291.6
γ(tf ) (deg) -3.6479
θ(tf ) (deg) 31.0802

Figure 1: Initial guess terminal values and cost function
value.

4.1 Numerical setup

4.1.1 Initial guess

The system was initialized with control variables set to
α =21 deg for the angle of attack, andβ(t) = 75× (−1 +
t/tf ) for the bank angle (in deg). After a careful integration
performed with Matlabode23 , the corresponding trajec-
tory was found to give the data given in Figure 1.

From these trajectories the unknown coefficients were
computed through a least square B-spline approximation.
Of course the results depend on the number of coefficients,
the order of the B-splines and the multiplicity of their knots
and the fitting mesh.

Then we recomputed the control histories from the B-
splines representation of the outputsz1, z2, z3 using the
formulas given in Section 3.5.

Finally we reintegrated the system dynamics from the
same initial condition as before while using the latest con-
trol histories. Results are given for a typical case with 40
intervals (44 coefficients) per variable, 60 points mesh, 4th

order B-Splines with multiplicity of 3.

h40×60(tf )− hguess(tf ) = 55.244 ft ,

v40×60(tf )− vguess(tf ) = −0.7559 ft/sec,

γ40×60(tf )− γguess(tf ) = −0.0266 deg

Results vary with the number of coefficients and Results are
given for a typical case with 100 intervals (104 coefficients)
per variable unknown variables, 200 points mesh, 4th order
B-Splines with multiplicity of 3.

h100×200(tf )− hguess(tf ) = −11.1395 ft ,

v100×200(tf )− vguess(tf ) = 0.5795 ft/sec,

γ100×200(tf )− γguess(tf ) = −0.0216 deg

In these two cases the mesh was refined around the two
boundaries of the domain, to limit the side effects of least
square approximation. In fact, a linearly spaced mesh
would produce much larger errors. With the 100 intervals
and the 200 points linearly spaced mesh the same test gives

h100×200l(tf )− hguess(tf ) = 141 ft ,

v100×200l(tf )− vguess(tf ) = 7.49 ft/sec,

γ100×200l(tf )− γguess(tf ) = 0.024 deg

We were investigating wether the B-Splines were able to
provide us with a high degree of accuracy as required for
our application. The above numerical investigation suggests

h(tf ) (ft) 80182
v(tf ) (ft/sec) 2475.3
γ(tf ) (deg) -5.0179
θ(tf ) (deg) 33.0656

Figure 2: Terminal values and cost function value after op-
timisation.

that they are well suited provided a sufficiently large num-
ber of coefficient is chosen. Also the choice of the mesh
matters. In the rest of the report we conduct the tests with a
mesh refined around the two ends of the time interval.

4.1.2 Solving the optimal control problem

All the tests were conducted using Matlab 6.5 with the
collocation routines from the Splines toolbox and the
fmincon routine from the Optimisation toolbox.

No analytical gradients were provided, neither for the
cost nor for the constraints. This has an impact on the com-
putation times.

Scalings were used for the cost function and the con-
straints. This helped the nonlinear programming routine to
find appropriate search lines. Also nonlinear equality con-
straints over the time interval (due to the parameterization)
were relaxed to help convergence. Eventually the optimisa-
tion procedure was restarted once with the previous solution
as an initial guess and more stringent values for the relax-
ation parameter.

We used 40 intervals (44 coefficients per variable) and a
65 nonlinearly spaced points mesh.

With a first run (relaxation parameter set to 1e-
4) the obtained solution gaveh(tf ) = 79906 ft,
v(tf ) =2753.7 ft/sec, γ(tf ) =-4.0726 deg, θ(tf )=
33.5771 deg. This first problem was solved using 104 itera-
tions offmincon , which used 14117 F-count and took ap-
proximatively 20 minutes on a Pentium III 1.13 GHz Win-
dows XP based computer.

These results were eventually improved using a new re-
laxation parameter of 1e-5. Final results are given in Fig-
ure 2. The corresponding trajectory is detailed in Fig-
ure 3 and Figure 4. This run used 122 iterations of
fmincon , which used 16703 F-count and took approxi-
matively 50 minutes on the same computer.

5 Conclusions

The numerical results must be compared to the solution
given in [1] that givesθ(tf ) =34.1412 deg, a higher value.
The result presented here were obtained by a much differ-
ent technique. It seems we converged to a different solu-
tion. Also it seems that the accuracy could be improved
further using more coefficients for the B-splines representa-
tion and well adapted meshes. It should be noted that only
a simple nonlinear solver was used in this study and that
the use of more complex, yet less convenient for implemen-
tation, solvers such asNPSOL[5] with analytic gradients
could help too.
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Figure 3: Reentry state variables. Optimal solution (plain) and initialisation (dotted).
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