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Abstract

We detail here the controller of the acid strength that we implemented in the Elf-Antar France re"nery in Feyzin (France). The
control technique used is new. It relies on the yatness property of the system to solve a constrained minimum time objective as
successive linear-programming problems. This controller is in full service since January 1997. We detail the control technique,
including the estimation and numerical problems and then give industrial results over 6 months. � 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The alkylation of butenes is a common operation in oil
re"neries. It allows the synthesis of an interesting prod-
uct, suitable to enter the composition of gasolines: the
alkylate has a good octane number. Many kinds of units
exist, but we concentrate here in the unit operated at the
Elf Antar France's Feyzin re"nery, which uses sulfuric
acid as a catalyst.
The acid catalyst feeds two reactors in series. This feed

is continuous. Partially destroyed during alkylation, the
catalyst is withdrawn from the second reactor to feed
a storage tank for o!-site regeneration. A minimum
amount of catalyst must be provided for the reactors to
operate correctly. Providing more catalyst than the re-
quired minimum decreases the risks. But this implies
expensive over-consumptions. The operator then tries to
stabilize the unit just above the minimum. But the de-
terioration of the catalyst is very slow, and this makes
such a manual driving di$cult.
In 1996, the re"nery decided to install a controller

in order to limit acid consumption. The unit being
very slow, we have decided to implement a minimum
time control algorithm, applying results of a current

collaboration between Elf and the `Centre Automatique
et Systèmesa of the ED cole des Mines de Paris. This con-
troller is being used since January 1997, with a service
factor higher than 98%. Under similar unit environ-
ments, it brings about 5% savings, which corresponds to
a return time on investment of approximately 6 months.

2. Process description

The alkylation is made of two principal #ow paths
displayed in Fig. 1: a #ow path for hydrocarbons and
another for acid. The unit organizes the reaction of bu-
tenes and iso-butanes to form iso-octanes. Flows, either
mainly containing butenes (ole"ns) or isobutane (recycle),
are mixed before feeding two reactors in parallel, where
the reaction takes place, catalyzed by sulfuric acid. The
product of the reaction is #ashed. The gas phase is
condensed to generate a cold recycle. Mixed with the
ole"ns and recycle, it helps to compensate for the
exothermicity of the reaction. The liquid phase is washed
before feeding a deisobutanizer. Propane is inert and
accumulates in the unit. It is withdrawn after the #ash. At
its top, the deisobutanizer concentrates the isobutane,
either coming from the so-called saturated feed or re-
maining in the liquid phase of the #ash. The bottom
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Fig. 1. Alkylation process.

product of this column essentially contains the alkylate
and normal-butane (another inert), separated down-
stream.
The acid path #ow is organized in series for the two

reactors. A fresh acid #ow (that is to say with a large acid
concentration) feeds the "rst reactor and circulates be-
tween it and an associated settler. Secondary e!ects as
reactions with impurities coming in small amounts with
a #ow of hydrocarbons induce a deconcentration of the
acid (referred to as acid consumption). A #ow, at a rate
equivalent to the fresh acid #owrate, is withdrawn from
the "rst settler and feeds the second reactor where a sim-
ilar circulation is implemented with an associated settler.
The second reactor also induces acid consumption. The
used acid is withdrawn from the second settler and enters
full storage tank. The acid from this tank is regenerated
o!-site. The concentration is analyzed at its output: this
provides information about the nature of the forthcom-
ing regeneration.
The fresh acid #owrate must be tuned to compensate

for the variations of the acid consumption. Under a min-
imum concentration threshold, undesired reactions be-
come important and induce serious malfunctions that
must be avoided. Due to the way the unit is built, the
concentration is the lowest at the output of the second
settler. If its value is kept correct, good operating condi-
tions are guaranteed for the two reactors. But allowing
large security margins implies a large fresh acid #owrate
that increases operating costs. It is better to work near
the required minimum.
The slow variations of the acid concentration charac-

terize this unit. A modi"cation of the fresh acid #owrate

is fully transmitted after about 1 week. Such a modi"ca-
tion furthermore implies di!erent residence times in the
storage tank: they roughly vary from 8 to 24 h.

3. The control problem

The acid #ow path is "rst modeled. A linear model
su$cient for control purposes is derived from this phys-
ical model. It is better to control the output concentra-
tion of the second settler rather than the measured
output concentration of the storage tank. But this implies
the construction of an estimator, because of the location
of the analyzer. We also use the physical model for this
purpose.

3.1. Modeling

The acid #ow path is viewed as two blocks in series
followed by a full storage tank considered as an ideal
plug #ow reactor. Each block consists in a reactor and
a settler. It is considered as a perfectly mixed reactor,
which is a sounded assumption. The acid #ow path is
then made of the concatenation of the two block models
and the model for the storage tank.
For each block, we consider the partial mass variation

of sulfuric acid:

�<
dx

dt
"!(u#A(p))x#ux

��
,
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where � is the acid density (mass/volume), assumed con-
stant,< is the volume of acid phase in the block, assumed
constant, x is the acid mass fraction in the block. As the
block is perfectly mixed, it is the output concentration,
x
��
is the acid mass fraction of the input #ow, u is the

input and output #owrate, and A is a consumption term.
It depends on a set of 12 disturbances p and takes into
account all the e!ects implying a measurable acid decon-
centration.
The storage tank is considered as a plug #ow reactor.

Dynamically, this tank introduces in the system a delay
that is equal to the ratio between the mass of the acid
contained in the tank and the #owrate. Finally, the model
is

�<
�

dx
�

dt
"!(u#A

�
(p))x

�
#ux

�
, (1)

�<
�

dx
�

dt
"!(u#A

�
(p))x

�
#ux

�
, (2)

y"x
��t!

K

u �, (3)

where, x
�
and x

�
, respectively, denote the sulfuric acid

mass fractions at the output of the "rst and second
blocks, u is the control, that is to say the acid #owrate
feeding the "rst reactor, x

�
is the sulfuric acid mass

fraction of the fresh acid #ow, A
�
and A

�
, respectively,

represent the acid consumptions in the "rst and second
blocks, � is the acid density, <

�
and <

�
, respectively,

represent the acid phase volumes in the "rst and second
blocks, y is the measured output. The dependency of
delay on the control is denoted by K/u.

3.2. Control design

3.2.1. Control model
To act as e$ciently as possible, we control an estima-

tion of x
�
. As y corresponds to the delayed value of x

�
, if

x
�
is correctly controlled, so is y. We shall see in the

sequel how the physical model is used to build an estima-
tion of x

�
. Because of the very slow dynamics, when the

situation is analyzed on a time range of a few hours, it is
possible to ignore the drift of the system and summarize
information for the control in the linear approximation

d

dt
(x!x����)"a(u!u����)#�!�����,

we use as a model and where

� x is the acid mass fraction at the output of the second
block and x���� its average value (we simplify nota-
tions: x corresponds to x

�
in the previous sections),

� u is the control and u���� its average value,

� � denotes the contribution of measured disturbances
and ����� its average value,

� a denotes the gain by time unit.

Or, denoting, P"!au����#�!����� and considering
that x���� is constant,

dx

dt
"au#P.

The gain a and the value of P are computed from a tan-
gent approximation of the physical model (initial slope of
a step response).

3.2.2. Minimum time constrained control

3.2.2.1. Flatness property and control algorithm. The idea
relies upon the possibility to explicitly parameterize via
x all the trajectories of the system. According to Fliess,
Levine, Martin, and Rouchon (1995) and Martin, Mur-
ray, and Rouchon (1997), the system is yat and x is its yat
output. Assuming x is known, u is derived immediately.
Constraints on x, on the control and its variations are all
linearly expressed with respect to x. Discretizing the
model, we are led to the question of existence of solutions
for a linear-programming problem. In case of multiple
solutions, we choose the one allowing x to reach its
setpoint in a minimum time.
Let us denote by x� the values of x at the n!1 future

sampling times and express the constraints that must be
ful"lled over this horizon, exponent 1 denoting the cur-
rent value. The n constraints on x are x���)x�)x��	.
The n!1 constraints on u are a�u���#�P�)

x���!x�)a�u��	#�P�, where � is the sampling
period and P� the contribution of disturbances at time i
(a constant equal to P� if no information is available
about future disturbances). The sign of a impacts these
inequalities. Here it is strictly positive. Constraints on
the variations of u lead to similar expressions. Reaching
the setpoint as an equilibrium point is achieved owing to
the constraints x�"x���"x
���
���. Finally, the current
value x��
 of x (or its estimation in our case) is taken into
account by x�"x��
. All the constraints are summarized
by AX)B, where X is the vector of the x�. Every
X obeying this inequality allows the construction of an
admissible control pro"le:

u�"
x���!x�!�P�

a�
∀i"1, n!1.

As many solutions might exist for X, we must "nd a way
to get a unique solution. We use a dichotomy on n to "nd
the vector X with the lowest dimension that satis"es all
the constraints. This is a minimum time control. Other
approaches are possible. Only u� is applied and all the
operations are computed at each sampling times, to par-
tially compensate for nonmeasurable disturbances and
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modeling errors. At each sampling time, we also compute
a prediction for the next time:

x����"x��
#�a(u!u����)#�(�!�����).

The "ltered di!erence between the prediction and the
`measurea is added to P. This is a standard compensa-
tion method.

3.2.2.2. Generalization. The idea of this method was ori-
ginally described in Petit (1996). Note that it might be
extended to (controllable) multivariable linear systems.
This brings an alternative formulation of the classical
linear predictive control algorithms (Richalet (1993)).
This method lies in a natural framework for e$cient nonlin-
ear extension of these algorithms, namely the yatness frame-
work (Fliess et al., 1995; Martin et al., 1997). When a system
is yat, it is possible to directly work on its parameterized
trajectories and doing so to avoid solving ordinary di!er-
ential equations, that penalizes nonlinear predictive con-
trol and other approaches in dynamic optimization.

3.2.2.3. Numerical solving. To solve the successive linear
programming problems we used a standard commercial
simplex-based algorithm. Though these algorithm are
known to have a nonpolynomial complexity (Klee
& Minty, 1972), it has been noted by many authors and
specialists that in practice they behave very well and are
very robust numerically speaking (Nering & Tucker,
1993). This robustness combined to the breadth of the
commercial packages and the relative low dimension of
the problem led us not to consider interior-point algo-
rithms.

3.3. Estimation

The control law described above assumes that x
�
is

known. But only y is measured: we have to construct an
estimation of x

�
based on delayed measurements, further-

more with variable delays. We have tested many ap-
proaches before "nding the following satisfactory answer:

�<
�

dz
�

dt
"!(u#A

�
(p))z

�
#ux

�
, (4)

�<
�

dz
�

dt
"!(u#A

�
(p))z

�
#uz

�
, (5)

y�"z
�
#�, (6)

�� "sat�z��t!
K

u �, y�!

�

�
�

, (7)

where the estimated state is z, � denotes a "lter of the
di!erence between the delayed observation and the mea-
sured value of y. The "rst two equations of this system
are a copy of those of the original model. For con"dential
reasons it is not possible to describe the sat function
which is roughly speaking a linear saturated function.

Strictly speaking, it is possible to prove that if the
system is not perturbed the z

�
and z

�
converge to x

�
and

x
�
. Though the system is time-varying, its triangular

form allows to prove that z
�
tends exponentially to

x
�
since (u#A

�
(p)) is lower-bounded by a positive con-

stant. Then one can prove that z
�
converges exponen-

tially to x
�
since (u#A

�
(p)) is lower-bounded by a

positive constant and (z
�
!x

�
) is an exponentially

decreasing function (see, for instance, Khalil, 1992).
It should have been possible to use the classical high-

gain observer approach (see, Gauthier, Hammouri,
& Othman, 1992). But here the perturbations prevented
us from implementing it successfully.

3.4. Robustness

Strictly speaking, we cannot prove the overall math-
ematical robustness of our approach.
On the one hand, the above observer gives good re-

sults, despite the perturbations, and is robust. Practically,
this method insures that y� converges to x

�
.

On the other, the control algorithm we use is numer-
ically robust.
To show the experimental robustness of our approach

are shown in Fig. 2 industrial results over 6 months with
our controller.

3.5. Implementation

Implementing this control law took about 6 months. It
constitutes a fast transfer between academic work and
application in industry. The Feyzin re"nery and the Elf
research center have "rst developed and validated the
model (we thank MM. Dajczman -Feyzin- and Djenab
-CRES- for their fruitful participation). Together, we
have then adapted to this problem the "rst results of
N. Petit's Ph.D. thesis, detailed in Petit (1993). Finding
a good estimator has revealed more time-consuming,
because of the need for robustness in face of inaccuracies
on variable delays.
The algorithm runs on a HP1000 computer. Its execu-

tion period is 15 min.

4. Conclusions

The controller was rapidly accepted by the operators.
Since its implementation, it has been used almost full-
time (service factor higher than 98%). The operator have
"rst observed the way it was working with a setpoint
above the "nal objective. They were convinced by its
ability to safely react in order to stabilize the unit
(modifying the fresh acid #owrate before variations on
the measured concentration was surprising at the begin-
ning). After a short period, they accepted to decrease the
setpoint, then decreasing the required fresh acid #ow
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Fig. 2. Daily averages over 6 months: setpoint, result with our controller, and without it in dashed line (from history).

rate. Results of our controller over a period of 6 months
are shown in Fig. 2. One can compare these results with
results over a similar period of 6 months without our
controller.
The bene"ts of this implementation are as follows.

Stabilizing the unit allows the operators to concentrate
on more di$cult tasks. Furthermore, limiting acid con-
sumption brings about 5% savings on the costs asso-
ciated with the use of sulfuric acid.

Appendix

In the following, we show how to turn a solution to the
discrete time optimization problem into a solution to
a continuous time problem. This regularization is
achieved owing to a convolution with a C� kernel and
a time scaling (details about the classical technique of
regularization can be found in Schwartz (1973, pp.
165}167)). This demonstrates Proposition 1.
Next, we show (Propositions 4 and 5) that both con-

tinuous and discrete time problem have a unique min-
imum time solution.
In the end, we conclude (Theorem A.1) that when the

time step decreases to zero, the solution of the discrete
time problem tends towards the solution of the continu-
ous time problem.

Notation A.1. Given a set of real numbers >���
���

, >���
��	

,
>���

��	
, >���

��	
, where we assume >���

��	
*0, >���

��	
*0, let

C(¹) be the subset of functions >3C�([O,¹]) satisfying

the following conditions:

C(¹): �
∀t3]0,¹[: ,

>���
���

)>(t))>���
��	

,

�>Q (t)�)>���
��	

,

�>$ (t)�)>���
��	

,

>(0)"0, >Q (0)"0, >$ (0)"0,

>(¹)"1, >Q (¹)"0, >$ (¹)"0.

Besides, let D(N, �t) be the set of samples
>

�
"[>

�
(0),>

�
(1),2,>

�
(N)] satisfying the following

conditions:

D(N,�t): �
∀i3� (where if necessary >

�
(i(0)">

�
(0)),

>
�
(i'N)">

�
(N):

>���
���

)>
�
(i))>���

��	
,

�
>

�
(i#1)!>

�
(i)

�t �)>���
��	

,

�
>

�
(i#2)!2>

�
(i#1)#>

�
(i)

(�t)� �)>���
��	

,

>
�
(0)"0, >

�
(N)"1.

In the following, [x] denotes the largest integer less or
equal to x.

Proposition A.1. ∀(N, �t), D(N, �t)O� implies
C((N#3/2)�t(1#�t))O�.
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>���"�
>

�
(0) if t(�t,

>
�
(i!1)#

>
�
(i)!>

�
(i!1)

�t
(t!i�t) with i"[t/�t] if �t)t((N#1)�t,

>
�
(N) if t*(N#1)�t.

Proof. Let >��� be the function continuing the a$ne
interpolation of >

�
to the left and to the right of

[�t, (N#1)�t]:

Let �� be an approximation to the unit, i.e., a positive
function, the support of which is [!	/2, 	/2] and such
that 
�	�

��	���(s) ds"1.
We regularize >��� into >� by the following convolu-

tion:

>�">��� * �� .

The support of >� is [�t!	/2, (N#1)�t#	/2]. �

Let us assume that 0(	/2)�t.

Lemma A.1.

>�(0)"0, >��(N#1)�t#
	
2�"1, and

∀t, �>�(t)�)>���
��	

.

Proof. �>
���

�)>��	 and>�">��� * �� , then �>��)>���
��	

.
At last, >�(0)"0 since >���(t(�t)"0. Likely,
>�((N#1)�t#	/2)"1 since >���(t'(N#1)�t)"1. �

Lemma A.2.

>Q �(0)"0, >Q ��(N#1)�t#
	
2�"0, and

∀t, �>Q �(t)�)>���
��	

.

Proof.

>Q �(t)">Q ��� * ��(t)

"

>
�
(i!1)!>

�
(i!2)

�t �
�

��	�
��(s) ds

#

>
�
(i)!>

�
(i!1)

�t �
�	�

�
��(s) ds,

where �3[!	/2, 	/2], i"[t/�t], and >
�
(i(0)">

�
(0)

>
�
(i'N)">

�
(N) if necessary.

>Q �(t) can be seen as the barycentre of (>
�
(i!1)!

>
�
(i!2))/�t and (>

�
(i)!>

�
(i!1))/�t. Thus,

�>Q ��)>���
��	

. The last formula directly implies that
>Q �(0)"0 and >Q �((N#1)�t#	/2)"0. �

Lemma A.3. One may choose �� such as

>$ �(0)"0, >$ ��(N#1)�t#
	
2�"0,

and ∀t�>$ ��)(1#�t)>���
��	

.

Proof.

>Q �(t)">Q ��� * �� �(t)

"

>
�
(i!1)!>

�
(i!2)

�t �
�

��	�
�� �(s) ds

#

>
�
(i)!>

�
(i!1)

�t �
�	�

�
�� �(s) ds

"!�� (�)
>

�
(i)!2>

�
(i!1)#>

�
(i!2)

�t
,

where �3[!	/2, 	/2], i"[t/�t],>
�
(i(0)">

�
(0) and

>
�
(i'N)">

�
(N) if necessary. This yields

�>$ ��)��� (r)�>���
��	

�t

and

>$ �(0)"0,

>$ ��(N#1)�t#
	
2�"0.

Let us choose �� such as ��)(1#	)/	, which is compat-
ible with 
�	��	��� (s) ds"1. Then choose 	"�t. This
gives

�>$ ��)(1#�t)>���
��	

. �

In the end, let us use a time scaling to de"ne
>�: >�(t)">�(t/(1#�t)).

Lemma A.4. According to the previous notations,
>�3C((N#


�
)�t(1#�t)).
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Proof. As shown by Lemmas A.1}A.3:

>
���

)>�)>
��	

,

�>Q ��)>�
��	

,

�>$ ��)>���
��	

and

>�(0)"0,

>Q �(0)"0, >$ �(0)"0,

>�((N#3/2)�t(1#�t))"1, >Q �((N#3/2)�t(1#�t))"
0,

>$ �((N#3/2)�t(1#�t))"0.

Finally, the support of >� is [�t/2, (N#

�
)�t]. This

means that the support of >
�

is included into
[0, (N#3/2)�t(1#�t)]. �

Lemma A.4 gives the conclusion of Proposition A.1.

Proposition A.2. ∀¹, C(¹)O� implies ∀�¹)0,
C(¹#�)O�.

Proof. Assume C(¹)O�, then there exists >3C(¹). For
all �'0, let us continue > into >K :

>K "�
>(t) if t)¹,

>(¹) if ¹(t)¹#�.

Obviously, >K 3C(¹#�) which is not empty. �

Proposition A.3. C(¹)O�N∀N3�H, D(N,¹/N)O�.

Proof. Assume C(¹)O�, then there exists >3C(¹). Let
�t"¹/N. Consider >

�
"[>(0),>(�t),>(2�t),2,>(¹)].

In the following>
�
( j) denotes the ( j#1)th coordinate of

>
�
, the value of which is >( j�t).
(i) Obviously

>
���

)>
�
( j)">( j�t))>

��	
. (A.1)

(ii) Let us consider the di!erences >
�
( j#1)!

>
�
( j)"0#�t>Q ( j�t#�

�
�t) where �

�
3]0,1[ from Mac-

Laurin's formula,
Yet

�>Q ( j�t#�
�

�t)�)>���
��	

so ∀j, �
>

�
( j#1)!>

�
( j)

�t �)>���
��	

, (A.2)

(iii) at last, let us consider the di!erences

>
�
( j#2)!2>

�
( j#1)#>

�
( j)

">(( j#2)�t)!2>(( j#1)�t)#>( j�t)

"�t>Q (( j#1)�t)#�
�
(�t)�>$ (( j#1)�t#�t ��)

where ��3]0,1[

!�t>Q (( j#1)�t)#�
�
(�t)�>$ (( j#1)�t#�t ��)

where ��3]!1,0[

"�
�
(�t)�(>$ (( j#1)�t#�t ��)#>$ (( j#1)�t#�t ��))

which ends up in

>
�
( j#2)!2>

�
( j#1)#>

�
( j)

(�t)�

" �
�
(>$ (( j#1)�t#�t ��#>$ (( j#1)�t#�t ��)).

Yet, as we already know

∀t, �>$ (t)�)>���
��	

so

∀j, �
>

�
( j#2)!2>

�
( j#1)#>

�
( j)

(�t)� �)>���
��	

. (A.3)

In the end, Eqs. (A.1)}(A.3) ensure that >
�

3D(N,¹/N)
which is not empty. �

Proposition A.4. There exists a unique minimum time,
which we denote ¹

����
, such as C(¹)O�.

Proof. This is a direct conclusion from Proposition
A.2. �

Proposition A.5. For any given �t, there exists a unique
minimum integer, which we denote N

����
(�t) such as

D(N,�t)O�.

Proof. The proof is similar to the one of Proposition A.2:
let >3D(N, �t), then it is clear that [>(0)>(1)2
>(N)>(N)] is an element of D(N#1, �t). �

Theorem A.1. The required time for the solution to the
discrete time problem, N

����
(�t)�t, tends towards ¹

����
as

�t tends towards zero. In other words, the discrete time
problem tends to the continuous time problem as �t tends
towards zero.

Proof. From Proposition A.4, we know that there exists
a unique minimum time ¹

����
such that C(¹

����
)O�.

Given �t, one may write

�
¹

����
�t � �t(¹

����
)��

¹
����
�t �#1� �t.
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This last equation means that

C��
¹

����
�t � �t�"� (A.4)

C���
¹

����
�t �#1� �t�O�. (A.5)

Then, we deduce from Proposition A.3 that

D([¹
����

/�t]#1, �t)O�. Let �t�"(!1#�1#4�t)/2,
i.e., �t�(1#�t�)"�t. We must have D([¹

����
/�t]!

2, �t�)"� otherwise, Proposition A.1 insures that
C(([¹

����
/�t]!�

�
) �t�(1#�t�))O� which would mean

that C([¹
����

/�t] �t)O� which is not true as we know
from Eq. (A.4). So

D��
¹

����
�t �!2,

!1#�1#4�t

2 �"�,

D��
¹

����
�t �#1, �t�O�.

Besides, as we know from Proposition A.5, for all �t there
exists a unique minimum integer N

����
(�t) such that

D(N
����

(�t), �t)O�.
The last two relations imply that:

N
�����

!1#�1#4�t�

2 �)�
¹

����
�t �!2,

N
����

(�t))�
¹

����
�t �#1.

We deduce that

lim
�	
�

N
����

(�t)�t)¹
����

,

lim
�	
�

N
�����

!1#�1#4�t

2 ��t)¹
����

which gives

lim
�	
�

N
����

(�t) �t"¹
����

.

Solving the discrete time problem gives a solution to the
continuous time problem owing to a regularization and
a time scaling. The support of the obtained solution
is [0, (N

����
(�t)#


�
�t(1#�t)] and it tends to [0,¹

����
]. �
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