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Abstract

We compensate by a prefilter the distortion of an input
signal along an electric line modeled by the telegraph equa-
tion. The prefilter is based on the so-called flatnessproperty
of the telegraph equation. We derive the explicit equation
of the filter and illustrate the relevance of our approach by
a few simulations.
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Introduction

A standard problem in signal processing is the resto-
ration of an input signal u(t) from a degraded output
signal y(t). When the line can be modeled by the te-
legraph equation, it is possible to design a prefilter to
get an undistorted signal at the end of the line. In-
deed, the inverse of the transfer function can be seen
as a noncausal filter F

u = F � y.

An important feature of F is that it has compact sup-
port, which means it can be actually computed in a
finite amount of time: F combines a delay operator,
an advance operator and Bessel functions expressing
distributed delays.

The prefilter can be seen as a motion planner, a notion
often encountered in control theory. It relies on the
property of flatness, originally developed for ordinary
differential systems [7, 8, 14], and later extended to
partial differential equations (delay systems [17, 9, 20],
the wave equation [18], the heat equation [14, 12], the
Euler-Bernoulli equation [10], the Saint-Venant equa-
tion [5]).

The paper is organized as follows: we first briefly recall
the physical model of an electric line and then derive
the equation of the prefilter with operational calculus.
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Finally, we illustrate the relevance of our approach with
numerical simulations.

The appendix deals with the technical aspects, na-
mely a presentation of Heaviside’s operational calcu-
lus thanks to Mikusiński’s algebraic formalism [15, 16]
and an interpretation of controllability in the modules
theoretic framework [6, 17].

Finally, notice that the point of view of this paper is
quite different from the more established approach in
the control of partial differential equations [1, 2, 13].
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1 The physical model
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Figure 1: An electric line

We are interested in the propagation of an electric si-
gnal through an electric line of length �. Per unit of
length, the resistance is R, the inductance is L, the ca-
pacity is C and the perditance is G. Kirschoff’s laws
read (see for instance [21]):

L
∂i

∂t
= −Ri − ∂v

∂x

C
∂v

∂t
= − ∂i

∂x
−Gv.

where 0 ≤ x ≤ �, t ≥ 0. Eliminating the current, we
get the telegraph equation

∂2v(x, t)
∂x2

= (R+ L
∂

∂t
)(G+ C

∂

∂t
)v(x, t). (1)
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The boundary conditions are

v(0, t) = u(t)
v(�, t) = Zi(�, t).

The input and the output of the system are respectively
u(t) = v(0, t) and y(t) = v(�, t).

2 Derivation of the prefilter

2.1 Operational solution
With zero initial conditions, i.e. v(x, 0) = ∂v

∂t (x, 0) = 0,
we turn (1) into the following ODE thanks to opera-
tional calculus

v̂′′(x, s) = �(s)v̂(x, s), (2)

where �(s) = (R + Ls)(G + Cs) and s stands for the
time derivative. The boundary conditions now read

v̂(0, s) = û(s), (R+ Ls)v̂(�, s) = Zv̂′(�, s). (3)

û et v̂ are the operational images1 of u and v. Clearly
the general solution of (2) is

v̂(x, s) = A(s)ch((�−x)
√

�(s))+B(s)sh((�−x)
√

�(s)),

where A(s) and B(s) are independent of x and are de-
termined by the boundary conditions (3). Now, instead
of writing the relation between v̂ and û, we write the
relation between v̂ and ŷ(s) = v̂(�, s):

v̂(x, s) =
(
ch((�− x)

√
�(s))

+
R+ Ls

Z

sh((�− x)
√

�(s))√
�(s)

)
ŷ(s). (4)

Notice the remarkable fact that the transfer function
from ŷ to v̂ has only zeroes and no poles, i.e., is an ana-
lytic function (it is even an entire analytic function).
Therefore the motion of the whole system is defined by
the motion of ŷ: in other words ŷ is a flat output (see
[7, 8, 14]).

In particular, for x = 0 (4) reads

û(s) =


ch(

�
√

�(s)
)
+

R+ Ls

Z

sh
(
�
√

�(s)
)

√
�(s)


 ŷ(s).

(5)

The last formula explicitly solves the motion planning
problem: indeed, if we want the output y to follow some
desired trajectory then the required input u is given by
5.

1In the traditional justification of operational calculus, û and
v̂ are the Laplace transform of u et v, i.e. û(s) =

R+∞
0 e−stu(t)dt

and v̂(x, s) =
R +∞
0 e−stv(x, t)dt. Another approach due to [15,

16] (see also [24]), is exposed in the appendix.

2.2 Time domain solution
We now express formula (5) back into the time domain.
For the sake of simplicity but without loss of generality,
we assume G = 0. Let λ = �

√
LC, α = R

2L . Then
�(s) = RCs+ LCs2 and (5) gives

u(t) =
1
2
e−αλ(1− 1

Z

√
L

C
)y(t − λ)

+
1
2
eαλ(1 +

1
Z

√
L

C
)y(t + λ)

+
∫ +λ

−λ

( R

4Z
√
LC

e−ατJ0(iα
√

τ2 − λ2)

+
e−ατ iα

2
√
τ2 − λ2

(λ− 1
Z

√
L

C
τ )J1(iα

√
τ2 − λ2)

)
y(t − τ )dτ (6)

where J0 et J1 are Bessel functions of the first kind.
We have used the results of [3], formulas 2.4.180 and
2.4.183 (see also [15], pp. 207–208 or [24], pp. 136–
138)2.

Notice that the last formula is indeed the equation of
a noncausal prefilter F with compact support (u(t) is
expressed in terms of the values of y over the finite
interval [t− λ, t+ λ]).

One can also directly prove that F has compact sup-
port by the Paley-Wiener theorem (see [22]). On the
other hand F−1 has not a compact support.

3 Simulations

For the following simulations we take R = 2.16e − 3,
L = 18.42e− 7, C = 1.8e− 11, Z = 100, l = 1e − 6
(S.I. units). We use a discrete model to simulate the
partial differential system with N = 80 cells (see figure
1). The input test signals (voltages) are square signals
with 50Hz and 300Hz frequencies.

The natural (1+ Rl
Z ) attenuation of the line is compen-

sated by an adequate static gain.

3.1 50 hz frequency
Without precompensation the input signal is quite dis-
torted (figure 2). With precompensation the output
signal is much less distorted, though more attenuated
(figure 3). Notice the same voltage range is used in
both cases.

3.2 300 hz frequency
Without precompensation the input signal is hardly
recognizable (figure 4). The precompensation still gives

2One may compare the demonstrations based on Mikusiński
operational calculus and Laplace transform (see, for instance,
[4]).
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Figure 2: No compensation. 50Hz frequency
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Figure 3: Precompensation. 50 Hz frequency

good results (figure 5).

3.3 Experimental robustness
In practice R is easy to measure. We numerically inves-
tigated the robustness to variations of L and C (figures
6 and 7).

3.4 Experimental conclusion
We have proposed a way to improve the bandwidth of
the line. Though the output signal is more attenuated
due to a larger input excursion its shape is much easier
to recognize.

A Theoretic background

A.1 Mikusiński’s operational calculus
C, the set of complex continuous functions defined over
the real interval [0,+∞[ endowed with addition +,

(f + g)(t) = f(t) + g(t)
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Figure 4: No compensation. 300 Hz frequency
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Figure 5: Precompensation. 300 Hz frequency

and the convolution f � g,

(f � g)(t) =
∫ t

0

f(t − τ )g(τ )dτ,

is a commutative ring. From Titchmarsh’s theorem
(see [15, 16, 24]), C is entire, i.e. without any zero
divisor:

f � g = 0⇔ f = 0 ou g = 0

The field of fractions M of C is called the Mikusiński
field. The elements of M are operators.

Notations. 1) every function f(t) when considered as
an operator of M is noted as {f(t)}. Thus, {1} ∈ C is
the Heaviside function

H(t) =
{
1 si t ≥ 0
0 si t < 0

2) The (convolution) product of two operators a, b ∈ M
is noted ab.
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Figure 6: 300 Hz. % 5 under-estimation of C
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Figure 7: 300 Hz. % 5 over-estimation of L

Examples. 1) The unit element 1 of M is similar to
the Dirac distribution in the theory of distributions of
L. Schwartz.

2) The inverse inM of the Heaviside function {1} is the
derivation operator s which obeys the following rules:
if f ∈ C is C1, then sf = {ḟ} − {f(0)}. The operators
of the subfield C(s) of M have the usual signification.
The fractional derivative

√
s is the inverse of { 1√

2πt
}.

3) e−λs, λ ∈ R, λ > 0, is the λ delay operator. Its
inverse is eλs the advance operator.

An operational function is a I → M map, where I is a
interval of R. One may define its continuity, differen-
tiability and integrability.

Operational calculus turns certain types of linear par-
tial differential equations into linear ordinary differen-
tial equations that we call operational equations. The
telegraph equation (1) is turned into the operational
equation (2), where s is considered as a constant para-

meter. In equations (3), (4) and (5), û, which corres-
ponds to u, is a transcendental quantity with respect
to the field M.

A.2 Modules and flat outputs
Let us write (4) as

Qv̂ = P (x)û (7)

where

P (x) = ch(�− x)
√

�(s)

+
R+ Ls

Z

sh(�− x)
√

�(s)√
�(s)

Q = ch�
√

�(s) +
R+ Ls

Z

sh�
√

�(s)√
�(s)

respectively are an operational function and and ope-
rator. We will check the properties of the C[P (x), Q]-
module M generated by û and v̂, satisfying (7).

It can be shown [11] that C[P (x), Q] is isomorphic to
a ring of polynomials in two variables with complex
coefficients.The matrix (Q,−P (x)), which has generic
rank 1, is the presentation matrix of M , i.e.

(Q,−P (x))
(
v̂
û

)
= 0

Hence, by Youla’s theorem [25] M is without torsion
since the minors of this matrix are coprime. Moreo-
ver thanks to the resolution of Serre’s conjecture by
Quillen [19] and Suslin [23] M is not free; indeed the
rank of the presentation matrix degenerates when the
indeterminate represented by P (x) and Q are equal to
zero. The localized module

Mloc = C[P (x), Q, (P (x)Q)−1]⊗C[P,Q] M,

where one can multiply by the inverse of P (x)Q, is free
and has 1⊗ û or 1⊗ v̂ as a basis. This property is the
π-freeness of [9, 17], where π = PQ.

Theorem. The C[P,Q]-module M is torsion-free but
not free. The localized module Mloc is free.

Since P (�) = 1, an interesting basis of Mloc is ŷ =
v̂(0),which is called a flat output.
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CHON, “A Lie-Bäcklund approach to equivalence and flat-
ness of nonlinear systems”, IEEE Trans. Automat. Control,
Vol. 44, 1999.

[9] M. FLIESS, H. MOUNIER, “Controllability and
observability of linear delay systems: an algebraic
approach”, ESAIM: Control, Optimization and Calcu-
lus of Variations, Vol. 3, 1998, p. 301-314. URL:

//www.emath.fr/Maths/Cocv/cocv.html

[10] M. FLIESS, H. MOUNIER, P. ROUCHON, J.
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