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Abstract— For many articulated systems (i.e. systems com-
posed of several mechanically connected objects), the assump-
tion of full rigidity is only a mere approximation. The various
flexibilities of the structure, if not accounted for, all hinder
the positioning ability of the device, by generating biases in
the estimations determined from rigid models. In this paper,
we propose a sensor-based methodology for estimating the
flexibilities of an open kinematic chain. To estimate the real
position and orientation of the elements of the system, we
reconcile data from Inertial Measurement Units (IMU) with the
kinematics of the rigid system. We show that, under a model
of punctual, spring-like deformations, this methodology allows
one to observe all the deformations, if one IMU is installed
downstream of each deformation in the chain. We design and
test such an observer in simulation and on an exoskeleton,
where it proved a suitable way of estimating the position of the
flying foot. Experimental results, validated against a motion
capture device, demonstrate the ability of this observer to fully
capture the dynamics induced by these flexibilities.

I. INTRODUCTION

Estimating the position of an open kinematic chain is
a general problem of practical importance in robotics. It
represents a central question to enable precise motion of
a manipulator [1] [2], or to make a legged robot walk [3]
[4]. Apart from the positioning of each actuator, the overall
kinematics of the structure is a key element to determine
the position of the various elements of the chain. While
motor information (rotary encoders) gives these positions in a
straightforward, unambiguous manner for a completely rigid
structure, in practice, some flexibilities may be present at
weaker points in the structure. The weaknesses are often
a side-effect of design constraints, such as mass or size
limitations. They may also be a resolute design choice: as
is well documented, see e.g. [5], compliance protects the
structure from impacts, may be used to improve ground
contact, and creates additional mobility to the system. In this
paper, we study the estimation of flexibilities. We distinguish
between:

• joints instrumented with encoders (actuated or not),
which we simply call joints.

• degrees of freedom accounting for these deformations,
which we call flexibilities. These flexibilities are as-
sumed to be punctual, 3D rotations, with a spring-like
behavior.

The main objective of this paper is to estimate their angle
based on IMUs.

The motivation for such work arises from the study of
the exoskeleton depicted in Figure 1, which has a flexible
behavior. This fact was clearly evidenced by motion capture
experiments showing a mismatch between the measured
absolute position measurements and the rigid body model:

Fig. 1. Picture of Atalante
TM

, an exoskeleton developed by Wandercraft. On
the right, CAD reconstruction under the assumption of full rigidity (gray),
and real deformed configuration (red), as measured by a motion capture
device.

in Figure 1, the real robot state (in red) does not match
the predicted rigid states model (in gray): the only possible
source of error are the flexibilities at several points in the
structure. An objective of practical importance is to estimate
the real position of the flying foot, which is the end effector
of the chain, taking this effect into account.

Using inertial information to reconstruct the attitude of
an object has become a popular trend [6] [7] [8] [9], with
the advent of MEMS sensors which can easily be placed
on a device such as the exoskeleton of Figure 1. Various
kinds of filters, like Kalman or complementary filters, have
been used to reconcile accelerometers and gyroscopes (and
sometimes magnetometers) measurements (see for example
[7] and references therein). For kinematically constrained
systems, constraints may be put into the formulation of the
attitude observer (see for example [10] or [11]). Without any
specific assumption on the kinematics of the system, such
filters implicitly consider that, on average, the accelerometer
gives the direction of gravity. This is not the case for fast-
moving systems, such as a robotic platform. However, when
kinematic information is available (e.g. through encoder
information), it could be subtracted from inertial sensor
readings, providing (theoretically exact) cancellation of the
disturbances, to give a better estimate of the true pose of
the system [12], [13], [14]. Knowing where the deformation
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takes place can be introduced as a kinematic constraint (see
for example work done on HRP-2, a humanoid with flexible
ankles, in [15] and [16]). Moreover, when the rotation being
estimated stems from structural flexibility but is not directly
measured, a dynamic model can also be added, such as in
[17]. All these examples however consider that there is only
one unknown rotation to be observed: to our knowledge, the
presence of several deformations inside an otherwise rigid
structure has not been addressed. This is precisely the topic
under consideration in this article: we consider n IMUs to
reconstruct n flexibilities.

The main contribution of this paper is a methodology
for estimating the flexibilities distributed along an open
kinematic chain of arbitrary length using the mechanical
description of each object in the articulated system and
measurements of strapdown IMUs. In accordance with our
definition of flexibilities given above, we formulate this
estimation problem by assuming that, overall, the structure is
composed of rigid bodies and instrumented joints, apart from
specific points where unmeasured rotations occur. At these
points, the deformation is modeled by a spring. For each
deformation, an IMU is placed in one of the downstream
bodies of the chain, to observe this rotation. Using this
sensor, information about the state of the joints, and the
resulting dynamical model, we estimate the position of
each element of the chain. We show that the full state is
observable. Then, an observer is implemented (an EKF), and
simulation results are proposed to assess its performance.
Finally, experimental results obtained using a motion capture
device as reference stress the accuracy of the reconstruction.

The paper is organized as follows: in Section II, we present
the class of system under consideration, and a model of
flexibilities. In Section III, the state dynamics of the system
is presented. This state is then shown to be observable
in Section IV. Finally, Section V presents simulation and
experimental results.

II. PROBLEM PARAMETRIZATION

Notations: throughout this paper, the following notations
are used: given two orthonormal frames of reference A
and B, and a point c, we write Apc the coordinates of c
in A, BRA the rotation from frame A to frame B (such

that if A and B have the same origin, Bpc = BRA
Apc).

The variable BωA is the angular velocity vector of frame A
relative to frame B, expressed in frame B. Finally, [.]× is
the operator that associates to a vector x the skew-symmetric
matrix such that [x]×y = x× y, for all y.

Consider a nb-bodies system forming an open kinematic
chain (for example, a robotic arm or a humanoid robot in
single support). To describe the position of the flexibilities in
the system, we gather the rigid bodies into n+1 sets Si, i ∈
[0, n], each set having only measured internal dynamics. S0,
the set supporting the open kinematic chain, is here assumed
to be linked with the world frame (this is the case if the
system is a walking robot in single support, with one foot
touching the ground)1. Let Oi be the point linking Si−1

with Si, i.e. the point where the flexibility takes place. To
represent the flexibilities, we define Ci a frame centered

1Note that, as long as the kinematics of the (possibly non-Galilean) frame
linked to S0 is known, the results in this article may be applied (the only
difference would be the addition of a known fictitious force term in the
forthcoming equation (7)).

in Oi, rotated from the world frame by the total flexibility
applied to the set Si. Thus, Ci−1RCi

represents the rotation of

the ith flexibility, while WRCi
gives the combined effect of

the first ith flexibilities. Note that the definition of Ci is inde-
pendent of joint motion, but only reflects the total flexibility
at a certain point. For convenience, we define C0 = W .
Figure 2 gives a representation of these frames. Table I gives
a summary of these notations and those defined hereafter.

W

WRCi

Oi

Ci

Si

ai

ai+1

WRCi+1

CiRCi+1

Ci+1

Oi+1

Si+1

g

Fig. 2. Representation of two body sets Si and Si+1. The circles represent
system joints, and the red spirals flexibilities. The dots ai and ai+1 show
the location of the IMU in each set. The dotted set shows the configuration
of the chain in the absence of all deformations.

The general problem under consideration is stated below.
Problem 1: Given a set of IMUs and actuator measure-

ments, estimate the current flexible state of the system,
that is, determine all the rotation matrices Ci−1RCi

and the

corresponding velocities Ci−1ωCi
.

To solve this problem, we make the following additional
assumptions:

Assumption 1: The deformations of the system due to the
flexibilities remain small, and can be modeled as the decou-
pled deformation of linear torsion springs. More specifically,
calling τi the torque generated on Si by Si−1, in frame Ci,
we have

τi , −Ki
Ci−1ΩCi

(1)

where Ci−1ΩCi
is the rotation vector associated to Ci−1RCi

through the exponential map [18]

Ci−1RCi
= exp

(
[Ci−1ΩCi

]×

)

and Ki is a positive-definite symmetrical matrix, representing
the stiffness of the joint.

Assumption 2: The dimensions, mass and inertia of all
the bodies of the system are known. Additionally, the joint
configuration of the system is measured. We call qj this
generalized position, αj and α̇j the corresponding velocity
and acceleration

Note that, for simple revolute joints, αj is simply the
derivative of qj , but generically this is not always the case,
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as position and velocity may be represented by different
coordinates, see [19, Chapter 4]. In this case, we shall write

q̇j = Qj(qj)αj (2)

Assumption 3: Each set Si, i = [1, n], is equipped with
one IMU, consisting of a 3-axis accelerometer and a 3-axis
gyroscope (we thus place as many IMUs as flexibilities,
i.e. n). We consider the position and orientation of the IMUs
in the body frame to be known. In the theoretical study, we do
not consider gyroscope bias, assuming it has been previously
debiased by, e.g., the filter implemented in [7].

We define x, the state to estimate, and u, the vector of
known inputs, as:

x ,




q1
...
qn
ω1

...
ωn




,

(
qf
αf

)
u ,

(
qj
αj

α̇j

)
(3)

where qi is a quaternion representing the rotation matrix
Ci−1RCi

and ωi =
CiRCi−1

Ci−1ωCi
is the rotation velocity

of set Si relative to Si−1, expressed in Ci. The variables qf
and αf are the quaternion and angular velocity parts of x
respectively. Note that there is a one-to-one mapping be-
tween x and the vector (WRC1

... WRCn
W

ωC1
... W

ωCn )
through the following equations





WRCi
= WRC1

C1RC2
...Ci−1RCi

WωCi
=

i∑

k=0

WRCk−1
ωk

(4)

To solve Problem 1, we prove in Section IV the result
given below (Theorem 1).

Definition 1: [20, Definition 2.4.1] The system defined by
{
ẋ = f(x,u)

y = h(x,u)
(5)

is E-uniformly observable if, for any T > 0 and any input
u : [0, T ] 7→ E, u distinguishes every pair of initial state.

Theorem 1: Under Assumption 1-3, the state x defined
in (3) is E-uniformly observable.

An interesting feature of Theorem 1 is that the observ-
able state x includes the full 3D rotation of the IMU.
The observability of the yaw deformation, in particular, is
made possible by the modeling of the deformation as a
spring, which alleviates the traditional need for an additional
absolute measurement such as a magnetometer. Before giving
the proof of this theorem in Section IV, we derive in the next
section the state dynamics f and output equation h.

III. STATE AND MEASUREMENTS DYNAMICS

A. Derivation of system dynamics f

The kinematics of the system consists of the motion at the
joints, described by qj , and the motion of the flexibilities,
qf . Thus we define the full generalized position and velocity
vector of the system as:

q ,

(
qj
qf

)
α ,

(
αj

αf

)
(6)

TABLE I

FREQUENTLY USED NOTATIONS

A
pc Position of point c in frame A.

BRA Rotation from frame A to B.
B
ωA Angular velocity of A relative to frame B, in

frame B.

[x]× Skew-symmetric matrix such that [x]×y = x×y

Si for i ∈ [0, n] Sets of bodies of the system, internally articulated
only with measured joints.

Oi for i ∈ [1, n] The point of junction between Si−1 and Si were
a flexibility is placed.

Ci for i ∈ [1, n] Frame associated with the deformation at Oi,
representing the flexibility.

W The world frame, also noted C0.

Ii for i ∈ [0, n] Frame associated to the IMU placed in Si.

ai for i ∈ [0, n] Localization of the IMU placed in Si.

qi for i ∈ [1, n] Quaternion representation of Ci−1RCi

ωi for i ∈ [1, n] Relative angular velocity of the flexibility: ωi =
CiRCi−1

Ci−1ωCi
.

qf Generalized position vector of the flexibilities.

αf Generalized velocity vector of the flexibilities.

qj Generalized position vector of the joints.

αj Generalized velocity vector of the joints.

The dynamics of an open kinematic chain of rigid bodies
is a topic that has already been thoroughly studied (see for
example [19] for a comprehensive analysis of such problem).
Taking the notations of [19, eq. 3.5], the inverse dynamics
of this system can be generically written as:

H(q)α̇+C(q,α) = τ (7)

where H(q) is the generalized symmetric inertia matrix of
the system, C(q,α) is the generalized bias force (taking into
account inertial forces and the effect of gravity), and τ is the
vector of generalized external forces acting on the joints. To
solve (7) for α̇f , we split the rigid and flexible parts of this
equation as:

(
Hj(q) HT

jf (q)
Hjf (q) Hf (q)

)(
α̇j

α̇f

)
=

(
τj −Cj(q,α)

τf (qf )−Cf (q,α)

)
(8)

where τf , the torque applied to the flexible joints, is de-
scribed by (1), and is only a function of qf .

The second line of this equation yields:

α̇f = H−1

f (q) (τf (qf )−Cf (q,α)−Hrf (q)α̇j) (9)

Summing up (9) and the relation between the derivative
of the quaternions and αf yields

ẋ =

(
Qf (qf )αf

H−1

f (q) (τf (qf )−Cf (q,α)−Hrf (q)α̇j)

)
(10)

where Qf (qf ) is given by [19, eq. 4.13]. This relationship
is indeed of the desired form (5).

B. Derivation of measurement equation h

Let i ∈ [1, n]. We here derive the equations defining the
measurement from the IMU in the set Si. Let ai be the center
point of the sensor, and Ii the sensor measurement frame.
The gyroscope measures the body angular velocity, whereas
the accelerometer measures its specific acceleration. Both do
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so in their respective sensor frame, which we both take equal
to Ii for simplicity of notation. Thus, we have:

{
ya = IiRW (W p̈ai

−
Wg)

yg = IiRW
WωS

(11)

where ya is the accelerometer output, yg the gyroscope
output, and Wg the gravity vector.

To express this equation as a function of x and u only, we
split the motion of the IMU in the world as the combination
of the motion of the IMU in Ci (which is entirely defined
by u), and the motion of Ci in the world, which depends
both on the flexible and the rigid dynamics:

yg = IiRW (WωCi
+ WRCi

CiωS(qj ,αj))

= IiRCi
(qj)(

CiRW
WωCi

+ CiωS(qj ,αj))
(12)

From (4), CiRW and WωCi
are functions of x only.

Thus, (12) gives the expression of the gyroscope mea-
surements as a function of x and u. Similarly, the linear
acceleration of the sensor can be rewritten

W p̈ai
=WRCi

Ci p̈ai
(qj ,αj , α̇j)

+ W p̈Oi

+ [W ω̇Ci
]×

WRCi

Cipai
(qj)

+ [WωCi
]2
×

WRCi

Cipai
(qj)

+ 2[WωCi
]×

WRCi

Ci ṗai
(qj ,αj)

(13)

The acceleration of the origin of the frame W p̈Oi
can be

computed by chaining changes of referential for Oi through
Ci−1, Ci−2, ..., C0 = W as follows

W p̈Oi
=

i∑

k=1

[
WRCk−1

Ck−1 p̈Ok
(qj ,αj , α̇j)

+ [W ω̇Ck−1
]×

WRCk−1

Ok−1pCk
(qj) (14)

+ [WωCk−1
]2
×

WRCk−1

Ok−1pCk
(qj)

+ 2[WωCk−1
]×

WRCk−1

Ok−1 ṗCk
(qj ,αj)

]

Notice that W ω̇Ci
, a function of ẋ, appears in these formulas.

From (11) and (13), we write the accelerometer output as
follows

ya = h̃(x, ẋ,u) (15)

To remove the dependency of h in ẋ, we use the state
dynamics (10). Thus, from (10), (12) and (15), we get the
sensor dynamics equation, in the desired form (5)

(
yg

ya

)
= h(x,u) (16)

IV. PROOF OF OBSERVABILITY

Using (10) and (16), we now prove Theorem 1. Let u be
any input of the system: we show that, using the state and
sensor dynamics, the measurements uniquely determine x.

From (12) and its time derivative, we get




CiRW
WωCi

= CiRIi(qj)yg −
CiωIi(qj ,αj)

CiRW
W ω̇Ci

=
d

dt

(
CiRIi(qj)yg −

CiωIi(qj ,αj)
)

(17)

According to (2), the right hand sides of these equations
only depend on u, yg and its derivative ẏg , and is thus

entirely known. Thus, CiRW
WωCi

and CiRW
W ω̇Ci

may
be computed: physically, this reflects the fact that, subtracting
the rigid kinematics from the gyroscope readings, one can
infer the angular velocity and angular acceleration of the
set Si in the body frame Ci without any ambiguity.

Similarly, using the fact that for any rotation R

∀a, b : [Ra]×b = R[a]×R
T b (18)

and by substituting (13) into (15), the latter can be rewritten
as follows

CiRW (W p̈Oi
−

Wg) =CiRIi(qj)ya

−
Ci p̈ai

(qj ,αj , α̇j)

+ [CiRW
W ω̇Ci

]×
Cipai

(qj) (19)

+ [CiRW
WωCi

]2
×

Cipai
(qj)

+ 2[CiRW
WωCi

]×
Ci ṗai

(qj ,αj)

From these quantities, we now compute the orientation
matrices CiRW , and the corresponding angular velocity. For
this, we use the system dynamics (10). However, instead
of using the algebraic value of the matrices in (10), we
reformulate these dynamics using Newton and Euler’s laws
of motion. Consider the set Si. This set is subjected to three
external actions: gravity, the force and torque due to the link

with Si−1, and those due to the link with Si+1. Note WF i

the force exerted on Si by Si−1, expressed in the world
frame. The torque applied at this point, τi, is defined by

(1), in frame Ci. By convention, we have WF n+1 = 0 and
τn+1 = 0, as Sn is the last set of the open kinematic chain.
Writing Newton’s law of motion for set Si in the world frame
gives:

mi
W p̈Gi

= mi
Wg + WF i −

WF i+1 (20)

where mi is the mass of the set Si, and Gi its center of
mass. Writing (20) for i = 1, .., n and solving the n × n
linear system of equations for the forces yields

∀i ∈ [1, n] : WF i =

n∑

k=i

mk(
W p̈Gk

−
Wg) (21)

We now apply Euler’s law of motion at point Oi to the
set Si, along the world frame axes. As Oi is not fixed
in W , we add the torque due to the inertia forces related
to the translational motion of Oi with respect to the world.
Writing L(Si) the angular momentum of the set Si with
respect to Oi, in W , this gives

d

dt

(
L(Si)

)
=mi[

WRCi

CipGi
(qj)]×(

Wg −
W p̈Oi

)

+ [WRCi

CipOi+1
(qj)]×

WF i+1

+ WRCi
τi

−
WRCi+1

τi+1

(22)

Isolating the last two terms, we rewrite this equation
according to the following property:

Lemma 1: Let Zi = (ya,yg, ẏg,u,
Ci+1RCi

, ...,CnRCn−1
).

There exists a function Φi of Zi, expressed in Appendix,
such that:

τi =
CiRCi+1

τi+1 +Φi(Zi) (23)
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The constructive proof is given in Appendix. The impor-
tant feature in (23) is its triangular structure, where τi is
expressed as a function of sensor data and of downstream
deformations only. This naturally leads to a proof by in-
duction initialized at the last joint of the kinematic chain:
writing (23) for the last set, i = n, since τn+1 = 0 and
Zn contains only sensor data, τn is known, and, from (1),
Cn−1RCn

, is known. Recursively, all the rotation matrices
WRCi

are uniquely determined by successive reconstruction

of Ci−1ΩCi
. Then from (17), we compute WωCi

, and thus
the full state x. This concludes the proof.

V. IMPLEMENTATION AND RESULTS

The preceding study of observability suggests that a state-
of-the-art observer should produce satisfactory results. In
this section, we present a simulation study of an Extended
Kalman Filter (EKF) based on (10) and (16). Although the
observability property does not guarantee the convergence of
the EKF, the EKF is a natural first choice for implementation
of an asymptotic observer, as illustrated in several contribu-
tions in the literature [13] [15]. Moreover, the implemen-
tation of the EKF is made particularly convenient by the
combined use of the open-source generic implementation of
such observer by LAAS [21], and the open-source dynamics
library Pinocchio [22], which is used to implement (10). The
resulting observer is tested, first on a simulation model, then
on real data from the robotic platform depicted in Figure 1.

A. Simulation on a triple inverted pendulum

Consider the case of a robot arm with compliant joints.
A usual task for such a robot is to control the position of
the tip of the arm. However, due to the compliance, rigid
computation of the robot kinematics does not give the correct
position, and thus cannot track the target trajectory.

Here, we consider as a simplification a triple, actuated,
inverted pendulum, such as described by Figure 3 and
Table II. The pendulum has three arms, the first and third
rotating around their local X axis, and the second around its
local Y axis. The arms are weightless, and a point mass is
present at the tip of each pendulum. We consider each joint to
be flexible, with the given model of (1) - the stiffness matrix
is taken proportional to identity. However, to introduce some
realism into the simulation, a viscous damping term is added
to the simulation model. In accordance with the methodology
advocated and studied in this article, one IMU is placed at
the midpoint of each arm, at a1, a2 and a3 respectively.

TABLE II

PARAMETERS USED FOR THE SIMULATION.

Length
(m)

Mass
(kg)

Stiffness

(Nm.rad-1)

Damping

(Nm.s.rad-1)
L1 1 m1 1 K1 800 ν1 8
L2 0.5 m2 1 K2 400 ν2 4
L3 0.5 m3 1 K3 150 ν3 1.5

In simulation, a sinusoidal motion of the rigid joints is
generated, giving a closed trajectory for the tip of the arm
(as all frequencies are taken equal). However, this motion
generates oscillations of the flexible joints, leading to an
error in position of the tip of the arm (see Figure 4).
We use the designed observer to reconstruct this position.
To model sensor inaccuracy, a white noise is added, of
standard deviation 0.2 m.s−2 and 0.015 rad.s−1 respectively

..

Z

.

X

.

Y
.

L1

.

a1

.

m1

.

L2

.

a2

.

m2

.

L3

.

m3

.

a3

Fig. 3. Kinematics of the simulated system.

−0.1
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0.1

x
(m

)

0 1 2 3 4 5

Time (s)

−0.25

0.00

0.25

y
(m

)

Rigid position Real position Estimated position

Fig. 4. Simulation results: position of the tip of the pendulum, as given
by the rigid and flexible model, and EKF estimation.

to the accelerometer and gyroscope. A constant bias of norm
0.4 m.s−2 and 0.03 rad.s−1 is also added to some axis of each
sensor. These values are consistent with the off-the-shelves
sensors being used on Wandercraft exoskeleton. Finally, the
presence of viscous damping in the simulation, which is
not taken into account by the observer, is another source of
error. Figure 4 shows the resulting tip trajectory, for the rigid
and flexible case, and for the observer. Despite imperfect
sensors and modeling discrepancies, the observer manages to
estimate the real trajectory of the tip, with the observed tip
trajectory remaining less than 1 cm from the real trajectory,
out of an average error of 13.5 cm for the rigid model. This
error largely comes from adding damping to the dynamics:
indeed, as a sensitivity study reveals it, the bias added to
the sensor account for only 1 mm of error on average. Thus,
the proposed observer reveals quite robust to sensor additive
bias.

B. Experiment on an exoskeleton

Wandercraft develops Atalante
TM

(see Figure 1 (left)),
an exoskeleton designed to enable paraplegic patients to
stand up, and walk without any external assistance. The
exoskeleton reproduces the kinematics of the human lower
limbs. However, the structure is not fully rigid, and, under
its own weight added to that of the patient, undergoes
deformations (see Figure 1 (right)). Analysis with a motion
capture device from OptiTrack has shown that while the
structural parts like the tibia or the thigh remain rigid, small
deformations are observed around each joint of the system.

6783



0

1

x

0

1

y

0 2 4 6 8 10

Time (s)

0

1

z
Rigid position Mocap position Estimated position

Fig. 5. Experimental results: position of the flying foot, given by the rigid
model, the motion capture and the observer. Data is normalized using the
initial error on the z axis.

The main deformations happen at the support ankle and the
hips, thus, for design simplicity, we consider only these three
deformations, and place three IMUs, one in each leg and
one in the back. Their position and orientation are known
from the blueprint of the device. Thus, this setup satisfies
assumptions 2 - 3. Note that these IMUs are mass-market
MEMS components, thus characterized by a high level of
noise and bias, as mentioned in the previous section.

In the experiment presented in Figure 5, the robot is stand-
ing on one leg, with a foot in the air, as shown in Figure 1.
Manually, the foot is pushed, leading to deformations and
foot oscillations. The proposed EKF is then run (offline)
on data from this experiment. This observer requires the
robot kinematics (joint and flexibility position), mass and
inertia: this data is extracted from the robot CAD design. The
stiffness associated to each flexibility is identified by trial and
error procedure, to minimize the observer error in term of
flying foot and center of mass position, during the oscillatory
phase. Finally, the observer is fed with the position, velocity
and acceleration of the robot joints, measured by rotary
encoders, and the IMU signals. Figure 5 reports the result of
this experiment. As expected, the rigid computation of the
position remains constant, stressing that no encoder motion
was present. On the contrary, the observer gives an estimate
much closer to the actual value, and captures the dynamic
behavior of the foot as it is pushed. Indeed, during the
oscillation phase, the remaining error has an amplitude 3.5
times smaller thanks to the observer.

There remains however a constant bias, accounting for
about 25% of the total deformation. As seen in simulations,
sensor bias do not explain such an error : indeed, computing
them offline and removing them changes only slightly the
results. Instead, this bias is probably due to model inaccu-
racies, at least at three levels. First, the proposed kinematics
having three deformations in an otherwise rigid exoskeleton
is only an approximation. The motion capture indeed shows
small deformations at other points: if one reconstructs the
position of the flying foot from the motion capture angular
deformation, taking into account only the three identified
deformations, one finds a similar level of error to that of the
observer. Second, modeling the dynamics of the flexibilites
by a linear spring of constant stiffness is also debatable.
In practice it is highly unlikely that the deformation is

linear with the applied torque. Mechanical backlash may
also explain part of this deformation, which is not taken into
account by this model. In fact, the tuning of the joint stiffness
for the observer differs depending on the rigid configuration.
An average constant stiffness is chosen, but while it keeps
giving a better estimate of the position of the flying foot than
the rigid model, its performance will most likely decrease
in some configurations. This is in our opinion the main
limitation of the proposed approach. Future contributions
may include a more advanced model of the deformations,
e.g. featuring backlash. Importantly, a static bias such as the
one observed in Figure 5 can be reproduced in simulations by
simply adding a constant bias to the stiffness matrix. Third,
while we assumed the pose of the IMUs known, on the real
robot there is an additional uncertainty on the orientation
of the IMUs in the body frame, which, in turn, impacts the
definition of WRI in Equation (11).

VI. CONCLUSION

In this paper, we have presented a methodology for
estimating several deformations of an articulated set of rigid
bodies. Assuming these deformations are punctual rotations,
behaving like a spring, we have shown that, by placing
one IMU between each deformation, the system is fully
observable. An Extended Kalman Filter has been used as
state observer and has been tested, both in simulation and on
a real platform. Simulation show that this observer is quite
robust to sensor bias. The observer was run on experimental
data from an exoskeleton, where it gives a good estimate
of the position of the flying foot, despite kinematic and
dynamic modeling error introducing bias. This information
may now be used in future works to control the real position
of the flying foot, during a walking motion. The performance
of this observer may also be improved further. The chosen
kinematic model of three deformations might be refined, to
better capture the error in foot position seen by the motion
capture. The dynamic model of a linear spring of constant
stiffness might also be revised, to capture the change of
stiffness as the robot moves. Finally, the observer design
could be expanded to a walking scenario, where changes in
the number of contacts would modify the dynamics of the
system. In that context, the dependence of our observer on
articular acceleration poses new exciting challenges.
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APPENDIX

Proof of Lemma 1:
Let us define the following quantities





Φi,1 = CiRW

d

dt

(
L(Si)

)

Φi,2 = CiRW [WRCi

CipGi
(qj)]×(

Wg −
W p̈Oi

)

Φi,3 = CiRW [WRCi

CipOi+1
(qj)]×

WF i+1

(24)

Using (22) in (23) defines Φi as

Φi(Zi) = Φi,1 +Φi,2 +Φi,3 (25)

Thus, to prove Lemma 1, we show that each Φi,j depends
on Zi only.

To compute the angular momentum of the set Si, L(Si),
we once again decompose the motion of the bodies of Si

as their motion inside Ci, due to rigid motion, and their
motion due to the deformation, i.e. the rotation of Ci. Calling

L(Si/Ci) the angular momentum of these bodies relative
to Oi due to the rigid motion, in Ci (which depends only
on qj and αj), we have:

L(Si) =
WRCi

L(Si/Ci)(qj ,αj)

+

ni∑

l=1

WRCi

CiIi,l(qj)
CiRW

WωCi

−

ni∑

l=1

mi,l[
WRCi

Cipi,l(qj)]
2
×

WωCi

(26)

where ni is the number of bodies of Si, and, for l in [1, ni],
mi,l,

CiIi,l and Cipi,l are respectively the mass, inertia
(expressed at Oi in Ci) and position of the center of mass
of the lth body of Si.

Using (18), (26) become:

L(Si) =
WRCi

µi (27)

with:

µi =L(Si/Ci)(qj ,αj)

+

ni∑

l=0

CiIi,l(qj)
CiRW

WωCi

−

ni∑

l=0

mi,l[
Cipi,l(qj)]

2
×

CiRW
WωCi

(28)

From (17), we get that µi is function of qj , αj and yg only.
Derivating (27), we get:

Φi,1 = [CiRW
WωCi

]×µi +
d

dt
µi (29)

Once again using (17), (29) shows that Φi,1 is a function
of Zi.

Using (18) on (24) directly yields

Φi,2 = [CipGi
(qj)]×

CiRW (Wg −
W p̈Oi

) (30)

which, from (19), is indeed a function of Zi.
Finally, using (18) on (24) yields

Φi,3 = [CipOi+1
(qj)]×

CiF i+1 (31)

For i = n, WF i+1 = 0 and the property is trivial.
Otherwise, using (21) to get the value of the force, and
expressing W p̈Gk

in terms of W p̈Oi
yields

CiF i+1 = CiRW

n∑

j=i+1

mj(
W p̈Gj

−
Wg)

=

n∑

j=i+1

mj
CiRCj

[
CjRW (W p̈Oj

−
Wg)

+ Cj p̈Gj
(qj ,αj , α̇j)

+ [CjRW
W ω̇Cj

]×
CjpGj

(qj)

+ [CjRW
WωCj

]2
×

CjpGj
(qj)

+ 2[CjRW
WωCj

]×
Cj ṗGj

(qj ,αj)
]

(32)

The whole term in brackets, using again (17) and (19),
depends on u, yg , ẏg and ya. Thus, Fi+1 depends on these

variables, as well as on CiRCj
for j > i, making it a function

of Zi. This ends the proof.
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