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Abstract— We study the optimization of dynamical systems
exhibiting variable time delays. We consider time-varying
delays, and delays implicitly defined by input variables as
they appear in systems involving fluid transport phenomena.
We establish the necessary optimality conditions. Simulations
results are presented.
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I. INTRODUCTION

Because delays have a well-established potential to de-
crease the performance of a closed-loop system and even
deter its stability, they have been the subject of a rich
literature in control theory. For fixed time delays, extensive
work has been carried out to establish robustness criteria and
to design adequate compensation strategies. For time-varying
delays, robust stabilization techniques have been designed
and studied. The reader can refer to [14], [17], [5], [4], [3],
[9], [8] and references therein for numerous contributions
covering cases of unknown or modeled variabilities.

In the field of dynamic optimization, which is the scope
of our paper, delay systems are systems of importance,
especially in process control applications [19]. For this
reason, most commercial Model Predictive Control (MPC)
tools routinely take into account fixed time delays, and
implementations are common place in industrial applications.
Practically, delays are usually treated directly in the time-
discretization schemes. Formally, the numerical reformu-
lations rely on the optimality conditions that have been
investigated from early on by the control system community,
see [13], [16], [10], [2], [22]. These works cover cases of
multiple input and state delays in Pontryagin’s maximum
principle. Besides MPC techniques, other approaches have
focused on optimal synthesis, for fixed delays, resulting in
feedback control laws. A detailed panorama can be found
in [11], [12] which also propose numerical methods for
implementation.

Interestingly enough, it appears that only little attention
has been given to dynamic optimization problems under
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varying delays. Since the seminal work of [1], most re-
search efforts have focused on closed-form solutions to LQR
problems for dynamics impacted by time-varying delays,
see [7]. In facts, in most applications where delays are
a priori known to be variable, this information is simply
ignored. The delays are assumed to be fixed (e.g. set to
an expected value) while the controller is left to deal with
some level of unstructured uncertainty and is tuned so that
it features sufficient robustness with regard to delay errors.
Some adaptive control schemes, including those mentioned
earlier in this discussion, can be implemented to improve this
robustness or to compensate for the variability of the delay.
Nevertheless, even when these strategies are successful at
providing asymptotic stability (with zero asymptotic error),
the performance is sub-optimal because an undesirable tran-
sient error is resulting from the purposely created lack of
accuracy of the delay model. This sub-optimality can be
particularly costly in certain applications where transients
represent a dominant part of operating conditions. A typical
class of situations where such variable input delays exist
encompasses systems where the delay is related to fluid
transport as discussed in [15], [20] or [25]. These examples
feature “hydraulic delays”. In many cases, these delays can
be modelled relatively effortlessly.

This paper addresses optimization problems for systems
with time-varying delays or with hydraulic delays. We take
this variability into account, be it explicit as a time func-
tion or implicit in terms of the control variable, and we
establish necessary (first-order) optimality conditions. These
conditions are the main contribution of the paper.

The paper is organized as follows. In Section II, we define
hydraulic delays. In Section III, two illustrative practical
examples are presented. We treat problems of calculus of
variations in Section IV, and optimal control problems in
Section V. We detail the complexities created by time-
varying delays and hydraulic delays in the stationarity con-
ditions. As the reader will note it, the calculations performed
in these two sections have similarities with those of [10] or
[24] for fixed time delays. Simulation results illustrating our
theoretical results are given in Section VI. Some conclusions
and perspectives are given in Section VII.

II. NOTATIONS AND PRELIMINARY RESULT

In this article, a delay t 7→ D(t) is a smooth (scalar valued)
positive function. For any delay law t 7→ D(t), we note

r : t 7→ t−D(t).
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It is assumed that Ḋ(t) < 1, so that r is increasing and
bijective.

Given a control input R 3 t 7→ u(t) ∈ Rn, we call
“hydraulic delay” any delay law (t, u(.)) 7→ D(t, u(.))
defined by a relation of the type∫ t

t−D(t,u(.))

φ(u(τ)) dτ = 1, (1)

where φ is any given positive, bounded away from zero,
smooth function. For the sake of convenience, we will simply
use the notation D(t, u) instead of D(t, u(.)). Similarly, we
note

ru : t 7→ t−D(t, u).

Under the preceding assumptions on φ in (1), ru is nec-
essarily increasing and bijective [6]. This class of delays
is practically important in describing hydraulic transport
phenomenons, as outlined in examples of Section III.

In the optimal control problems under consideration, we
note t0, T > 0, x0, a, b ∈ Rn, some fixed parameters, and L
and ψ are smooth scalar valued functions.
1[a,b] → {0, 1} denotes the indicator function of the

interval [a, b].
For any f : Rn1 × ...×Rnm → R a smooth function, we

note
∂if = (

∂f

∂x∑i−1
j=1 nj+1

, ...,
∂f

∂x∑i
j=1 nj

),

the partial derivation of f with respect to the ni variables of
the ith subset of its arguments.

For (u, h) ∈ C2(Ω,Rn)2 where Ω is an open subinterval
of R and J : C2(Ω,Rn)→ R a functional, we consider the
Gâteaux derivative [21] of J in the direction h at u as

DhJ(u) , lim
δ→0

J(u+ δh)− J(u)

δ
.

With these notations, one has

Proposition 1 (Sensitivity of hydraulic delay with respect
to input variation) For all t ∈ r−1u (Ω) ∩ Ω, the Gâteaux
derivative w.r.t. u of the hydraulic delay is

DhD(t, u) , lim
δ→0

D(t, u+ δh)−D(t, u)

δ

= − 1

φ(u(ru(t)))

∫ t

ru(t)

∂φ

∂u
(u(τ))h(τ) dτ.

Proof: see Appendix.

III. EXAMPLES OF SYSTEMS WITH HYDRAULIC DELAYS

A. First example: a mixing unit with pre-blend, the “paint”
problem

A very simple system illustrating the effects of hydraulic
delays is described in Figure 1 that represents a mixing unit
with pre-blend. This example can be found in many process
applications, e.g. [23]. One can describe the control objective
as follows, see [18]. Three batches of paint of different
colours (inputs) are to be mixed to provide a product of a
desired colour (output). To minimize pipe lengths, the outlet
of the batch 1 and 2 are first blended, then go through a

u1(t),

1
0
0


u2(t),

0
1
0



u3(t),

0
0
1



V

yout(t)

Fig. 1: Three batch mixing unit with a dead volume V : the
“paint” problem

transport pipe having a dead volume V before being finally
mixed with the product 3. This color of the final product is
the output of the unit. The control variables are the flow-
rates out of each batch (ui)i∈J1;3K. It is desired to control
the instantaneous recipe of the output product, yout. Balance
equations give

yout(t) =
u1(t−D(t,u))

u1(t−D(t,u))+u2(t−D(t,u))
u1(t)+u2(t)

u1(t)+u2(t)+u3(t)
u2(t−D(t,u))

u1(t−D(t,u))+u2(t−D(t,u))
u1(t)+u2(t)

u1(t)+u2(t)+u3(t)
u3(t)

u1(t)+u2(t)+u3(t)

 ,
(2)

where
1

V

∫ t

t−D(t,u)

u1(τ) + u2(τ) dτ = 1. (3)

Despite its simplicity, the implicit integral-type relation
between D and the control makes both open-loop motion
planning and tracking problems relatively difficult.

B. Second example: control of a water heating process

Another example has been presented in [15] and used
as an experimental test case for the study of a non-linear
MPC-based approach to the control of systems with variable
time delays. The process is pictured in Figure 2. It consists
of a heated tank, the level of which is controlled so that
the water hold-up remains constant. A submerged electrical
heater delivers a constant heat flux to warm up the liquid.
The control objective is the temperature at the outlet Tout
and the input is the flow-rate of water through the tank, q.

As shown in [15], the temperature in the tank Ttank(t)
satisfies the following balance equation

ρcpV
dTtank(t)

dt
= Q+ ρcpq(t)(Tin(t)− Ttank(t)),

where ρ, cp and Q are the density of water, its specific heat
and the power of supplied heat, respectively. Neglecting the
heat losses in the pipe and the mixing time, we have

Tout(t) = Ttank(t− δ(t, q)),

2283



q(t)
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Tout (t)

L
Sensor:

T
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(t)

Sensor:
T tank (t)

q(t)

V

Outlet tube

Q

Fig. 2: Schematic of the water heating process from [15]

with ∫ t

t−δ(t,q)
q(τ) dτ = LS.

where L and S are the length and cross-section of the
pipe. After normalization and changes of state variables, this
system is equivalent to

Ṫi(t) = 1− u(t)Ti(t), x(t) = Ti(t−D(t, u)),

and ∫ t

t−D(t,u)

u(τ) dτ = 1,

where x is the variable to control, Ti the internal state of the
system and u the control. This can equivalently be rewritten
as

ẋ(t) =
u(t)

u(t−D(t))
(1− u(t−D(t, u))x(t))

, f(x(t), u(t), u(t−D(t, u))).

IV. CALCULUS OF VARIATIONS

In this section, we study the calculus of variations for time-
delayed systems where the time delay either is a (known)
time-varying function or is a hydraulic delay. These stud-
ies are closely connected to the optimal control problems
addressed in Section V.

A. Calculus of variations with time-varying delay

Here, D is a fixed function of time (it does not depend on u
in any way). As will appear, this variation creates new terms
in the calculus of variations. For conciseness of notations,
we define

[u, u̇]D(t) , (t, u(t), u(t−D(t)), u̇(t), u̇(t−D(t))).

Consider the following optimization problem
Problem 1:

min
u∈C2([r(t0);t0+T ],R)

u(t0)=a,u(t0+T )=b

J(u) =

∫ t0+T

t0

L([u, u̇]D(t)) dt. (4)

We wish to establish necessary stationarity conditions for
Problem 1. Since the control is fixed in the past t < t0, any
admissible variation h is such that

∀t ≤ t0, h(t) = 0, and h(t0 + T ) = 0.

As a consequence,

DhJ(u) =

∫ t0+T

t0

∂2L([u, u̇]D(t))h(t)

+ ∂4L([u, u̇]D(t))ḣ(t)

+ ∂3L([u, u̇]D(t))h(t−D(t))

+ ∂5L([u, u̇]D(t))ḣ(t−D(t)) dt.

Consider tk = tkick−in the uniquely defined time instant
such that

r(t0 + tk) = t0 + tk −D(t0 + tk) , t0,

then, the expression of the Gâteaux derivative DhJ(u)
becomes∫ t0+T

t0

∂2L([u, u̇]D(t))h(t) + ∂4L([u, u̇]D(t))ḣ(t) dt

+

∫ t0+T

t0+tk

∂3L([u, u̇]D(t))h(t−D(t))

+ ∂5L([u, u̇]D(t))ḣ(t−D(t)) dt.

The first integral is well-known and will bring the usual terms
of the Euler-Lagrange equations. To deal with the second
one, we use the change of variable t = r−1(τ). The new
expression of DhJ(u) is∫ t0+T

t0

(∂2L([u, u̇]D(t))− d

dt
∂4L([u, u̇]D(t)))h(t) dt

+

∫ r(t0+T )

t0

∂3L([u, u̇]D(r−1(t)))(r−1)′(t)h(t)

+ ∂5L([u, u̇]D(r−1(t)))(r−1)′(t)ḣ(t) dt,

and, after integrations by parts∫ t0+T

t0

(∂2L([u, u̇]D(t))− d

dt
∂4L([u, u̇]D(t)))h(t) dt

+

∫ r(t0+T )

t0

∂3L([u, u̇]D(r−1(t)))(r−1)′(t)h(t)

− d

dt
∂5L([u, u̇]D(r−1(t)))(r−1)′(t)

2
h(t)

− ∂5L([u, u̇]D(r−1(t)))(r−1)
′′
(t)h(t) dt

+ ∂5L([u, u̇]D(t0 + T ))(r−1)′(r(t0 + T ))h(r(t0 + T )).

Invoking Du Bois-Reymond lemma, we deduce the optimal-
ity conditions (5)-(6) of Problem 1:

∂2L([u, u̇]D(t))− d

dt
∂4L([u, u̇]D(t))

+ 1[t0;r(t0+T )](t) ·
(
∂3L([u, u̇]D(r−1(t)))(r−1)′(t)

− d

dt
∂5L([u, u̇]D(r−1(t)))(r−1)′(t)

2

− ∂5L([u, u̇]D(r−1(t)))(r−1)
′′
(t)
)

= 0, (5)
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and, because r−1(t) 6= 0 by assumption

∂5L([u, u̇]D(t0 + T )) = 0. (6)

B. Calculus of variations with hydraulic delay

Let us now consider that the system has a hydraulic delay
as defined by (1). For ease of notation, we define a similar
vector

[u, u̇]Du(t) = (t, u(t), u(t−D(t, u)), u̇(t), u̇(t−D(t, u))).

Problem 2: Consider functions u ∈ C2(Ωu), where Ωu is
an open set characterised by [ru(t0); t0 +T ] ⊂ Ωu, solve the
following problem

min
u∈C2(Ωu,R)

u(t0)=a,u(t0+T )=b

J(u) =

∫ t0+T

t0

L([u, u̇]Du(t)) dt. (7)

For conciseness, in the following development we will sim-
ply use the notation [u, u̇]D instead of [u, u̇]Du .

Since u is fixed in the past t < t0 and noting as before
tk(u) = tkick−in(u), with

ru(t0 + tk(u)) = t0 + tk(u)−D(t0 + tk(u)) , t0,

for any admissible variation h ∈ C2(Ωu,R)

DhJ(u) =∫ t0+T

t0

∂2L([u, u̇]D(t))h(t) + ∂4L([u, u̇]D(t))ḣ(t) dt

+

∫ t0+T

t0+tk

∂3L([u, u̇]D(t))h(t−D(t))

+ ∂5L([u, u̇]D(t))ḣ(t−D(t)) dt

−
∫ t0+T

t0

∂3L([u, u̇]D(t))u̇(t−D(t, u)) ·DhD(t, u) dt

−
∫ t0+T

t0

∂5L([u, u̇]D(t))ü(t−D(t, u)) ·DhD(t, u) dt.

With Proposition 1, it follows that DhJ(u) can be expressed
as ∫ t0+T

t0

∂2L([u, u̇]D(t))h(t) + ∂4L([u, u̇]D(t))ḣ(t) dt

+

∫ t0+T

t0+tk

∂3L([u, u̇]D(t))h(t−D(t))

+ ∂5L([u, u̇]D(t))ḣ(t−D(t)) dt

+

∫ t0+T

t0

∂3L([u, u̇]D(t))u̇(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ) dτ dt

+

∫ t0+T

t0

∂5L([u, u̇]D(t))ü(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ) dτ dt.

Finally, denoting

A =

∫ t0+tk(u)

t0

∂3L([u, u̇]D(t))u̇(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t0

∂φ

∂u
(u(τ))h(τ) dτ dt,

B =

∫ t0+T

t0+tk(u)

∂3L([u, u̇]D(t))u̇(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ) dτ dt,

C =

∫ t0+tk(u)

t0

∂5L([u, u̇]D(t))ü(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t0

∂φ

∂u
(u(τ))h(τ) dτ dt,

D =

∫ t0+T

t0+tk(u)

∂5L([u, u̇]D(t))ü(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ) dτ dt,

we get

DhJ(u) = A+B + C +D

+

∫ t0+T

t0

∂2L([u, u̇]D(t))h(t) + ∂4L([u, u̇]D(t))ḣ(t) dt

+

∫ t0+T

t0+tk

∂3L([u, u̇]D(t))h(t−D(t))

+ ∂5L([u, u̇]D(t))ḣ(t−D(t)) dt.

Using Fubini’s theorem to reorder the striped integration
domains, we get

A =

∫ t0+tk(u)

t0

∫ t0+tk(u)

τ

∂3L([u, u̇]D(t))u̇(t−D(t, u))

1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ,

and

B =

∫ t0+tk(u)

t0

∫ min(r−1
u (τ),t0+T )

t0+tk(u)

∂3L([u, u̇]D(t))

u̇(t−D(t, u))
1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ

+

∫ t0+T

t0+tk(u)

∫ min(r−1
u (τ),t0+T )

τ

∂3L([u, u̇]D(t))

∂u

∂t
(t−D(t, u))

1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ,

As a consequence, after some grouping of terms

A+B =

∫ t0+T

t0

∫ min(r−1
u (τ),t0+T )

τ

∂3L([u, u̇]D(t))

u̇(t−D(t, u))
1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ,
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and, similarly

C +D =

∫ t0+T

t0

∫ min(r−1
u (τ),t0+T )

τ

∂5L([u, u̇]D(t))

ü(t−D(t, u))
1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ,

Invoking Du Bois-Reymond lemma, the stationarity condi-
tions (8)-(9) of Problem 2 can finally be derived as

∂2L([u, u̇]D(t))− d

dt
∂4L([u, u̇]D(t))

+ 1[t0;ru(t0+T )](t) · [∂3L([u, u̇]D(r−1u (t)))(r−1u )′(t)

− d

dt
∂5L([u, u̇]D(r−1u (t)))(r−1u )′(t)

2

− ∂5L([u, u̇]D(r−1u (t)))(r−1u )
′′
(t)]

+

∫ min(r−1
u (t),t0+T )

t

∂3L([u, u̇]D(τ))u̇(τ −D(τ, u))

1

φ(u(τ −D(τ, u)))
dτ
∂φ

∂u
(u(t))

+

∫ min(r−1
u (t),t0+T )

t

∂5L([u, u̇]D(τ))ü(τ −D(τ, u))

1

φ(u(τ −D(τ, u)))
dτ
∂φ

∂u
(u(t)) = 0, (8)

and, because r−1u (t) 6= 0

∂5L([u, u̇]D(t0 + T )) = 0. (9)

V. OPTIMAL CONTROL

Having introduced new terms in the stationarity conditions
of the calculus of variations of the preceding systems, we are
now ready to address the problems of optimal control. Again,
we successively treat the case of time-varying delays and the
case of hydraulic delay appearing in the right-hand side of
differential equations, by order of complexity.

A. Optimal control with time-varying delay

For now, D is a fixed function of time. Very generally, we
define the objective function

J(x, u) = ψ(x(t0 + T )) +

∫ t0+T

t0

L(t, x(t), u(t)) dt. (10)

We now consider the following optimal control problem
Problem 3:

min
x,u

J(x, u)

s.t. ẋ = f(t, x(t), u(t−D(t)))

x(t0) = x0

. (11)

After adjoining the constraints, we obtain

min
x,u,λ

x(t0)=x0

J̄(x, u) = ψ(x(t0 +T ))+

∫ t0+T

t0

L(t, x(t), u(t))

+ λ(t)T [f(t, x(t), u(t−D(t)))− ẋ] dt.

The Gâteaux derivative w.r.t. the control variable u is

DhJ̄(x, u) =

∫ t0+T

t0

∂L

∂u
(t, x(t), u(t))h(t)

+ λ(t)T · ∂f
∂u

(t, x(t), u(t−D(t)))h(t−D(t)) dt,

hence

DhJ̄(x, u) =

∫ t0+T

t0

∂L

∂u
(t, x(t), u(t))h(t) dt

+

∫ r(t0+T )

t0

λ(r−1(t))T · ∂f
∂u

(r−1(t), x(r−1(t)), u(t))

(r−1)′(t)h(t) dt,

finally, Du Bois-Reymond lemma gives

∂L

∂u
(t, x(t), u(t)) dt+ 1[t0;r(t0+T )](t).

λ(r−1(t))T · ∂f
∂u

(r−1(t), x(r−1(t)), u(t))(r−1)′(t) = 0.

This condition is analogous to the one of the classical two-
point boundary problem ∂H

∂u , L + λT f = 0, where H
is the Hamiltonian of the system. Calculating the Gâteaux
derivatives with respect to x and λ, we classically get
the following two-point boundary value problem (TPBVP)
which represents stationarity conditions for Problem 3.

ẋ(t) = f(x, u(t−D(t)))

λ̇(t)T = −∂L
∂x

(t, x(t), u(t))

+ λ(t)T
∂f

∂x
(t, x(t), u(t−D(t)))

λ(t0 + T )T =
∂

∂x(t0 + T )
ψ(x(t0 + T ))

∂L

∂u
(t, x(t), u(t)) dt+ 1[t0;r(t0+T )](t)·

λ(r−1(t))T
∂f

∂u
(r−1(t), x(r−1(t)), u(t))(r−1)′(t) = 0

(12)

B. Optimal control with hydraulic delay

Let us now consider that the system has a hydraulic delay
as defined by (1) impacting the differential equation. The
cost function (10) is unchanged. Then, the optimal control
problem under consideration is

Problem 4:

min
x,u

J(x, u)

s.t. ẋ = f(t, x(t), u(t−D(t, u)))

x(t0) = x0

. (13)

Adjoining the constraints gives

min
x,u,λ

x(t0)=x0

J̄(x, u) = ψ(x(t0 +T ))+

∫ t0+T

t0

L(t, x(t), u(t))

+ λ(t)T [f(x(t), u(t−D(t, u)))− ẋ] dt.
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With respect to the control variable u, we have

DhJ̄(u) =

∫ t0+T

t0

∂L

∂u
(t, x(t), u(t))h(t) dt

+

∫ ru(t0+T )

t0

λ(r−1u (t))T · ∂f
∂u

(r−1u (t), x(r−1u (t)), u(t))

(r−1u )′(t)h(t) dt

+

∫ t0+T

t0

λ(t)T · ∂f
∂u

(t, x(t), u(t−D(t, u))u̇(t−D(t, u))

1

φ(u(t−D(t, u)))

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ) dτ dt.

Again, using Fubini’s theorem as in the previous section, we
get

DhJ̄(u) =

∫ t0+T

t0

∂L

∂u
(t, x(t), u(t))h(t) dt

+

∫ ru(t0+T )

t0

λ(r−1u (t))T · ∂f
∂u

(r−1u (t), x(r−1u (t)), u(t))

(r−1u )′(t)h(t) dt

+

∫ t0+T

t0

∫ min(r−1
u (τ),t0+T )

τ

λ(t)T ·∂f
∂u

(t, x(t), u(t−D(t, u))

u̇(t−D(t, u))
1

φ(u(t−D(t, u)))
dt
∂φ

∂u
(u(τ))h(τ) dτ.

Finally, Dubois-Reymond lemma gives

∂L

∂u
(t, x(t), u(t)) dt+ 1[t0;r(t0+T )](t).

λ(r−1(t))T · ∂f
∂u

(r−1(t), x(r−1(t)), u(t))(r−1)′(t)

+

∫ min(r−1
u (t),t0+T )

t

λ(τ)T · ∂f
∂u

(τ, x(τ), u(τ −D(τ, u))

u̇(τ −D(τ, u))
1

φ(u(τ −D(τ, u)))
dτ
∂φ

∂u
(u(t)) = 0.

Calculating the Gâteaux derivatives with respect to x and λ,
we classically get the (TPBVP) which formulates stationarity
conditions for Problem 4

ẋ(t) = f(x, u(t−D(t, u)))

λ̇(t)T = −∂L
∂x

(t, x(t), u(t))

+ λ(t)T
∂f

∂x
(t, x(t), u(t−D(t, u)))

λ(t0 + T )T =
∂

∂x(t0 + T )
ψ(x(t0 + T ))

∂L

∂u
(t, x(t), u(t)) dt+ 1[t0;ru(t0+T )](t).

λ(r−1u (t))T · ∂f
∂u

(r−1u (t), x(r−1u (t)), u(t))(r−1u )′(t)

+

∫ min(r−1
u (t),t0+T )

t

λ(τ)T · ∂f
∂u

(τ, x(τ), u(τ −D(τ, u))

u̇(τ −D(τ, u))
1

φ(u(τ −D(τ, u)))
dτ
∂φ

∂u
(u(t)) = 0

(14)

VI. SIMULATIONS

In this section, we present simulation results for the paint
mixing problem presented in § III-A. We assume that the
total output flow-rate is fixed equal to 1 m3.s−1, V = 50 m3

and that our control variables are the output flow-rates of the
three batches (ui)i∈J1;3K where u1+u2+u3 = 1 m3.s−1 and
0 < ui∈J1;3K. Given a reference trajectory yielding a smooth
change of set-point for the output recipe of the product
youtref , we seek to achieve its optimal tracking in the sense
of a quadratic norm. We assume that

∀t < 0, u(t) = u(0).

Invoking (2), we deduce

yout(t) = Γ(u(t−D(t, u)))u(t),

where

Γ(u(t−D(t, u))) =
u1(t−D(t,u))

u1(t−D(t,u))+u2(t−D(t,u))
u1(t−D(t,u))

u1(t−D(t,u)+u2(t−D(t,u)) 0
u2(t−D(t,u))

u1(t−D(t,u))+u2(t−D(t,u))
u2(t−D(t,u))

u1(t−D(t,u))+u2(t−D(t,u)) 0

0 0 1


with D the hydraulic delay defined by (3) and

u(t) =
(
u1(t) u2(t) u3(t)

)T
.

For comparisons, we first define a “naive” control law
as the input trajectory defined, straightforwardly but erro-
neously, by

unaive(t) , youtref (t).

This control input would be appropriate in the case V = 0,
and in any case yields an error going asymptotically to zero
if the reference signal itself is asymptotically converging.
We simulate the output obtained using this control law.
As expected, it generates a significant discrepancy with the
reference, cf. Figures 3a and 3d.

We then solve the following simplified problem

min
u
J(u) =

∫ T

0

‖Γ(u(t− τ))u(t)− youtref (t)‖2 dt,

where the delay is supposed to be a constant τ defined as

τ =
V

u1(0) + u2(0)
,

and T is set to 450s. The Figures 3b and 3e illustrate that
while this approach improves the transient behaviour of the
system, synchronization errors remain, creating a significant
bump during the transient.

Finally, using the results of this paper, we solve the exact
tracking problem

min
u
J(u) =

∫ T

0

‖Γ(u(t−D(t, u)))u(t)− youtref (t)‖2 dt.

(15)
To solve this problem, we design an iterative numerical
scheme.
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In the case of (15), the stationarity conditions (8) become

∂2L([u, u̇]D(t))

+ 1[t0;ru(t0+T )](t) · ∂3L([u, u̇]D(r−1u (t)))(r−1u )′(t)

+

∫ min(r−1
u (t),t0+T )

t

∂3L([u, u̇]D(τ))u̇(τ −D(τ, u))

1

φ(u(τ −D(τ, u)))
dτ
∂φ

∂u
(u(t)) = 0, (16)

where
φ = u1 + u2,

and

L(t, [u, u̇]D(t)) = ‖Γ(u(t−D(t, u)))u(t)−youtref (t)‖2.

Then, we define a sequence of functions (uk(.))k∈N as

u0 = unaive,

and ∀k ≥ 0, uk+1 is such as ∀t ∈ [t0; t0 + T ]

∂2L([uk+1, u̇k+1]Dk(t))

+ 1[t0;ruk (t0+T )](t) · ∂3L([uk+1, u̇k+1]D(r−1uk (t)))(r−1uk )′(t)

+

∫ min(r−1
uk

(t),t0+T )

t

∂3L([uk, u̇k]D(τ))u̇k(τ −D(τ, uk))

1

φ(uk(τ −D(τ, uk)))
dτ
∂φ

∂u
(uk(t)) = 0. (17)

One easily sees that any fixed point of this recursion is a
solution of (16). Denoting

Fk(t) =

∫ min(r−1
uk

(t),t0+T )

t

∂3L([uk, u̇k]D(τ))

u̇k(τ −D(τ, uk))
1

φ(uk(τ −D(τ, uk)))
dτ
∂φ

∂u
(uk(t)),

we finally have ∀t ∈ [t0; t0 + T ]

∂2L(t, uk+1(t), uk+1(t−D(t, uk))) + 1[t0;ruk (t0+T )](t)·
∂3L(t, uk+1(r−1uk (t)), uk+1(t))(r−1uk )′(t) + Fk(t) = 0. (18)

Let us now consider any given t ∈] max(t0, ruk(t0+T )); t0+
T ]. There exists a unique p ∈ N such as

rpuk(t) > t0 and rp+1
uk

(t) ≤ t0.

Then, evaluating (18) in (t, ruk(t), ..., rpuk(t)), we have

∂2L(t, uk+1(t), uk+1(ruk(t))) + Fk(t) = 0

∂2L(t, uk+1(ruk(t)), uk+1(r2uk(t)))+

∂3L(t, uk+1(t), uk+1(ruk(t)))(r−1uk )′(ruk(t))+

Fk(ruk(t)) = 0

...

∂2L(t, uk+1(rpuk(t)), uk+1(rp+1
uk

(t)))+

∂3L(t, uk+1(rp−1uk
(t)), uk+1(rpuk(t)))(r−1uk )′(rpuk(t))

+ Fk(rpuk(t)) = 0
(19)

By definition, rp+1
uk

(t) ≤ t0 and uk+1(rp+1
uk

(t)) = u(0)
is a past input, hence fixed. As a consequence, (19) is
a system of 3 × (p + 1) scalar difference equations and
variables that is fully determined. Hence, solving (17) to
determine uk+1 is equivalent to solving a set of smaller
independent sub-problems (19). Determining uk+1 from uk
is straightforward theoretically, and can be implemented with
little computational expenses. We then iterate until we reach
a (almost numerically) fixed point which we take as solution
of problem (15).

The solution of this approach along with the associated
output trajectory are presented in Figures 3c-3f. We witness
a significant improvement as compared to the method using a
fixed delay. Specifically, we know that once the initial content
of the pipe has been flushed out, the system output can be
set arbitrarily, see [18], and our optimization approach indeed
achieves exact tracking of the output trajectory passed this
point.

VII. CONCLUSIONS AND PERSPECTIVES

We have derived first-order optimality conditions for two
families of variably timed-delayed dynamic systems opti-
mization problems, with a particular emphasis on so-called
“hydraulic-delays” which is a class of practical importance.

Future works should be focused on the numerical treat-
ment of these conditions. A fixed-point method has been
employed here, to obtain the presented simulations results.
Beyond natural theoretical considerations, establishing its
convergence is a work that is needed prior to any real-life
implementation. On the application side, robust, accurate and
fast numerical schemes should be studied further.

In practice, it is observed that the solutions we obtain tend
to violate the preliminary assumptions of twice differentia-
bility, on a subset of zero measure. Certainly, this fact is
important as it could result into spurious oscillations in the
numerical solutions. Further investigations should also focus
on this point.

APPENDIX

PROOF OF PROPOSITION 1
With the notations of Proposition 1, following (1), ∀t ∈

r−1u (Ω) ∩ Ω for δ small enough, one has∫ t

t−D(t,u)

φ(u(τ)) dτ =

∫ t

t−D(t,u+δh)

φ(u(τ) + δh(τ)) dτ.

As a consequence∫ t−D(t,u+δh)

t−D(t,u)

φ(u(τ)) dτ =

∫ t

t−D(t,u+δh)

∂φ

∂u
(u(τ))δh(τ)

+ ε(δh(τ))δh(τ) dτ,

where ε is a twice differentiable function such as

∀τ ∈ [t−D(t, u+ δh); t], lim
δ→0

ε(δh(τ)) = 0.

Then, since φ is assumed to be a strictly positive function,
necessarily

lim
δ→0

D(t, u+ δh) = D(t, u).
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(a) Naive control
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(b) Optimal control for erroneous fixed delay
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(c) Optimal control for hydraulic delay
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(d) Output for strategy (a)
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(e) Output for strategy (b)
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(f) Output for strategy (c)

Fig. 3: Quadratic tracking of a reference trajectory for the “paint” problem

Finally

1

δ

∫ t−D(t,u+δh)

t−D(t,u)

φ(u(τ)) dτ =

∫ t

t−D(t,u)

∂φ

∂u
(u(τ))h(τ)

+ ε(δh(τ))h(τ) dτ +

∫ t−D(t,u)

t−D(t,u+δh)

∂φ

∂u
(u(τ))h(τ)

+ ε(δh(τ))h(τ) dτ,

and in the limit, we get the desired conclusion.
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