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a b s t r a c t

We consider a model of a microfluidic process under Zweifac–Fung effect, which gives rise to a second-
order nonlinear, non-affine system with control input that affects the plant both without delay and
with an input-dependent delay defined implicitly through an integral of the past input values (that
arises from a transport process with transport speed being the control input itself). We construct a
predictor-feedback control law that exponentially stabilizes the output to a desired reference point.
This is the first time that a predictor-feedback design is constructed that achieves complete input
delay compensation for such a type of input delay and despite that control input affects the plant also
without delay. This is attributed to the particular structure of the nonlinear system considered, which
allows to deriving an implementable formula for the predictor state at the proper prediction horizon.
We then identify a class of nonlinear systems with input-dependent input delay of hydraulic type for
which complete delay compensation, through construction of an exact predictor state, is achievable.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Microfluidic processes are ubiquitous in lab-on-a-chip applica-
ions, see, for example, Paratore, Bacheva, Bercovici, and Kaigala
2022), Tabeling (2005). An important phenomenon evident in
uch processes is the so-called Zweifach–Fung effect, which ap-
ears in microfluidic systems that involve separation of particles
ithin a fluid at a bifurcation point, with a separation volume
atio that depends on the flow rates at the two daughter branches
f the main channel. Fig. 1 illustrates an example of such a
etup. This effect can be utilized in applications, such as blood
urification (Yang, Undar, & Zahn, 2006), while it is studied
ithin the framework of analysis of microcirculation dynam-

cs, see, e.g., Dellimore, Dunlop, and Canham (1983), Fung and
weifach (1971), Guibert, Fonta, and Plouraboue (2010). Regu-
ating the volume fraction of particles in one of the reservoirs
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(corresponding to one of the daughter channels) is crucial for
applications that involve, for example, filtering or enrichment of
particles in a fluid, see, e.g., Petit (2022).

A control-oriented model of such a phenomenon is presented
in Petit (2022). The main features of this model are the following.
The control input is the flow ratio (with respect to total flow)
in the first channel, while the output is the volume fraction of
particles in the first reservoir. Owing to the transport of particles
from the bifurcation point to the first reservoir there is a delay
of hydraulic type (i.e., defined implicitly through an integral of
past values of flow ratio), because the transport speed depends
explicitly on the flow ratio itself. In addition, the Zweifach–Fung
effect at the bifurcation point, gives rise to a nonlinear term in
the dynamic equation for the volume ratio, which depends on
the flow ratio at the delay time. Moreover, the flow ratio also
affects directly the volume ratio of particles in the first reservoir,
which gives rise to a term that depends on a non-delayed form
of the flow ratio. Despite the practical importance of control
of such processes and existence of a control-oriented model,
there is no attempt to design a delay-compensating feedback
law. As a result, the related literature for this problem can be
categorized into results dealing with modeling and analysis of
such processes; see, for example, Dellimore et al. (1983), Fung
and Zweifach (1971), Guibert et al. (2010), Petit (2022), Yang
et al. (2006), and into results dealing with predictor-based control
of systems with input-dependent input delays; see, for exam-
ple, Bekiaris-Liberis and Krstic (2016), Bekiaris-Liberis and Krstic
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Fig. 1. Example of a microfluidic process (Petit, 2022). Particles in a fluid are
separated in the bifurcation point at a volume ratio that depends on flow rates
Q1 , Q2 of each daughter branch, which in turn can be manipulated via the
respective pressures P1 , P2 in the reservoirs.

2018b), Bresch-Pietri, Chauvin, and Petit (2014), Clerget and Petit
2019), Clerget and Petit (2020), Diagne, Bekiaris-Liberis, and
rstic (2017), Petit, Creff, and Rouchon (1998), Strecker, Aamo,
nd Cantoni (2022), and of systems with distributed input delay;
ee, e.g., Bekiaris-Liberis and Krstic (2016), Mazenc, Niculescu,
nd Krstic (2012), Ponomarev (2016), Xu, Liu, Krstic, and Feng
2022), Zhu and Krstic (2020).

In this paper, we develop a predictor-feedback law for a
onlinear model of a microfluidic process under Zweifach–Fung
ffect, which achieves exponential stabilization of a desired refer-
nce point. The design relies on two ingredients—the construction
f an exact predictor state and the design of a nominal feedback
aw. Despite that the delay is defined implicitly through an
ntegral of the input (over an interval from the delay time to the
urrent time) and despite that the input enters the plant both in
elayed and non-delayed form, the construction of the predictor
tate is made possible owing to the particular structure of the
onlinear system considered and the specific dependence of its
ector field on the input variable (in fact, the predictor state is
iven in explicit form). The nominal feedback law is designed
ased on a particular delay-free system, which is not obtained in
n obvious manner (e.g., considering that the input only appears
n non-delayed form in the system’s dynamic equation). It is
ather derived constructing a stabilizing feedback law for the
ystem in a new time variable, which allows, in fact, to recasting
he problem of design of the nominal controller as a problem of
esign of a feedback law for a delay-free, time-varying, nonlinear
on-affine system.
For guaranteeing the delay properties required for design of a

redictor state and for well-posedness of the system a feasibility
ondition that the input is lower and upper bounded by positive
onstants needs to be satisfied (also making the model considered
ealistic from a practical viewpoint). This imposes derivation of
local stability result in the supremum norm of the delayed,

ctuator state. The proof of exponential stability of the closed-
oop system relies on deriving estimates on solutions and on
elating the norm of the overall, infinite-dimensional system to
he norm of the predictor state. We then present an alternative
roof that enables exact computation of the region of attrac-
ion of the control law. We also present simulation results of
microfluidic process with a sinusoidal nonlinearity, describing

he Zweifach–Fung effect (see, for example, Doyeux, Podgorski,
eponas, Ismail, and Coupier (2011), Petit (2022)), which confirms
he performance improvement of the closed-loop system under
redictor feedback, as compared, for instance, to employment of
n open-loop control strategy.
We then generalize the (exact) predictor-feedback design to a

lass of nonlinear systems. This class is characterized by a vector
ield that could be viewed as a product of a nominal vector field,
hich depends on the delayed input, with a scaling term (that

epends on the non-delayed input), which is the function being

2

integrated in the definition of the hydraulic delay (or, simply,
the transport speed). Such systems may describe the dynamics
of parallel microfluidic processes with a single outlet reservoir,
actuated via a single pressure. Under an a priori assumption of
lower boundedness, by positive constant, of the scaling function
(and typical assumptions, imposed on the nominal vector field,
which guarantee global stabilization under predictor feedback
for long, input delays; see, for example, Krstic, 2010), we estab-
lish global asymptotic stability of the closed-loop system under
predictor feedback (otherwise, a local stability result would be
achievable, as in the case of the microfluidic process model). The
stability proof relies on derivation of estimates on solutions and
introduction of a suitable change of the time variable.

2. Model of the process and open-loop behavior

2.1. Model of the process

We consider the system

Ẏ (t) =
f (U (t − D(t)))− Y (t)

X(t)
U(t) (1)

Ẋ(t) = U(t) (2)
t

t−D(t)
U(s)ds = L, (3)

here Y > 0 denotes the ratio of particles volume with respect to
he total volume in the first reservoir, X > 0 is normalized total
olume in the first reservoir, U > 0 is flow ratio between flow in
he first channel and total flow in the main (inlet) channel, which
s the manipulated variable, D > 0 is delay, L > 0 is the ratio
etween total volume in the first channel and total flow in the
nlet channel, and t ≥ 0 is time variable. We also define the delay
ime φ as φ(t) = t − D(t), which is employed later on. The delay
s defined in (3) is referred to as transport (Bresch-Pietri et al.,
014) or hydraulic (Clerget & Petit, 2020) delay and expresses the
onservation of total volume of particles along the first channel.
hus, it is defined such that the integral of the flow rate of
articles in the first channel, from the time at which the particles
ere at the bifurcation point up to the current time at which
he particles have been transported to the first reservoir, is equal
o the total volume in the first reservoir, i.e., relation (3) holds.
urther details on the model derivation can be found in Petit
2022). We impose the following realistic (see, for example, Petit,
022) assumption on f .

ssumption 1. The function f : [c1, c2] → [d1, d2], with 0 <
1 < c2 < 1 and 0 < d1 < d2 < 1, is Lipschitz with constant
1, strictly increasing, and its inverse f −1

: [d1, d2] → [c1, c2] is
ipschitz with constant L2.

To guarantee well-posedness of system (1)–(3) and for sys-
em (1)–(3) to be a realistic model of the process the following
easibility condition has to be satisfied

< c1 ≤ U(θ ) ≤ c2 < 1, for all θ ≥ −D(0). (4)

Condition (4) guarantees that the delay D, defined implicitly
via (3), satisfies all requirements of time-varying input delays
that imply a uniquely defined delay that is positive and upper
bounded, as well as that its rate is less than one and lower
bounded (Bresch-Pietri et al., 2014). These requirements also
allow to guarantee well-posedness of a predictor state design
(Bekiaris-Liberis & Krstic, 2018a; Bresch-Pietri et al., 2014). We
summarize these properties for the delay in Proposition A.1 in
Appendix A, together with presenting its proof.

The goal of the predictor-feedback law is regulation of the
volume fraction Y to a desired reference value Ȳ , corresponding
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o a constant value Ū for the input (and thus, it also corresponds
o a constant delay value). Under (4), system (2) does not have
n equilibrium solution as its state X is a linearly increasing
unction of time (for this reason X can be viewed more as time
variable).1 Thus, by an equilibrium of system (1), (3) we denote
a scalar Ȳ satisfying Ȳ = f (c), which corresponds to a function
¯ ∈ C

([
−

L
c , 0

]
, (c1, c2)

)
with Ū ≡ c , resulting in a zero right-

and side for (1), for all X > 0. For such an equilibrium we derive
in closed loop) direct stability estimates in an ad hoc manner,
ithout necessarily invoking a definition of a specific type of
tability.2

.2. Open-loop behavior

emma 1. Consider system (1)–(3), under a reference input U(t) =

, t ≥ 0, for some c1 < c < c2. Under Assumption 1, for each
(0) = X0 > 0 and all initial conditions Y (0) = Y0 ∈ (f (c1), f (c2)),
0 ∈ C ([−D(0), 0], (c1, c2)), satisfying U0(0) = c, the following
olds

(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y0X0

ct + X0
+

c
∫ t
0 f (U0 (s − D(s))) ds

ct + X0
,

0 ≤ t ≤
L
c

f (c) +

(
Y

(
L
c

)
− f (c)

)
L + X0

ct + X0
, t >

L
c
.

(5)

Proof. The proof can be found in Appendix B.

Lemma 1 implies that, for constant input U(t) = Ū = c ,
t ≥ 0, Y remains bounded; while regulation to equilibrium
Ȳ = f (c), Ū = c ∈ C

([
−

L
c , 0

]
, (c1, c2)

)
is achieved. In fact, if

0 ≥ δ̄ > 0, then asymptotic stability, in the sense of satisfying
(t) ≤ β0 (ρ(X0)Ω0, t), t ≥ 0, holds with β0 (ρ(X0)Ω0, t) =

2X0 + L + L1L)
Ω0
ct+δ̄

(this is derived from (5)). To improve per-
formance (e.g., convergence rate) and robustness we design next
a predictor-feedback law.

3. Predictor-feedback control design

Given a nominal (for the delay-free case), stabilizing feedback
law κ , we construct the predictor-feedback law as

U(t) = κ (X(t) + L, P (t)) (6)

P(t) =
Y (t)X(t)
X(t) + L

+

∫ t
φ(t) f (U(s))U(s)ds

X(t) + L
. (7)

State P is the predictor of Y at the proper, for complete input
delay compensation, prediction horizon, whereas X + L is the
predictor state of X . These facts are explained as follows.

1 Because, in practice, convergence of Y is much faster (under the control
aw developed the rate is exponential) than the increase of X , it is expected
hat divergence of X would not have significant practical implications. In fact,
n practice, it may take several hours for the reservoir to become full, while,
n addition, the reservoir is usually replaced by an empty one, as soon as it
ecomes full.
2 A general version of the type of asymptotic stability obtained could be

tated as requiring that there exist a class KL function β0 , a continuous decreas-
ing function ϵ : (0,+∞) → (0,+∞), and a continuous function ρ : (0,+∞) →

(0,+∞) such that, for each X0 > 0, the solutions of system (1), (3) satisfy Ω(t) ≤

β0 (ρ(X0)Ω0, t), t ≥ 0, where Ω(t) = |Y (t) − f (c)| + supt−D(t)≤θ≤t |U(θ ) − c|,
for all initial conditions Y0 > 0 and U0 ∈ C ([−D(0), 0], (c1, c2)), which satisfy
Ω < ϵ X .
0 ( 0) n

3

3.1. Predictor states construction

Denoting the delay time as φ(t) = t − D(t) and the prediction
time as σ (t) = φ−1(t) (that exists as long as (4) is satisfied, and
thus, X is strictly increasing) we get for t ≥ 0∫ σ (t)

t
U(s)ds = L. (8)

Therefore, using (2) we get that

X (σ (t)) = X(t) + L, (9)

showing that the predictor state of X , i.e., X (σ ), is X + L. The
prediction horizon needed is σ (t) = X−1 (X(t) + L) (respectively,
integrating (2) from φ to t and using (3) we get for φ(t) ≥ 0
that φ(t) = X−1 (X(t) − L)). To find the predictor state of Y we
substitute t = σ (θ ), for φ(t) ≤ θ ≤ t , in (1) to obtain

dY (σ (θ ))
dθ

=
dσ (θ )
dθ

f (U(θ ))− Y (σ (θ ))
X (σ (θ ))

U (σ (θ )) . (10)

Thus, defining Y (σ (θ )) = P(θ ) and since U (σ (θ )) dσ (θ )
dθ = U(θ )

(that follows differentiating (8) with respect to the time variable
and which is the key for enabling construction of an imple-
mentable formula for the exact predictor state) we get

d (P(θ )X (σ (θ )))
dθ

= f (U(θ ))U (θ) . (11)

Integrating (11) from θ = φ(t) to θ = t and using (9) we get (7).
Note that, according to (10), the Ordinary Differential Equation
(ODE) satisfied by the predictor state is

Ṗ(t) =
f (U(t))− P(t)

X(t) + L
U(t). (12)

3.2. Nominal feedback law design

We choose the following nominal feedback law function3

κ (τ ,H) = f −1 (H − kτ (H − f (c))) , (13)

with some k > 0 and c1 < c < c2, which renders the equilibrium
H̄ = f (c) of system

dH (τ )
dτ

=
1
τ
(f (κ (τ ,H(τ )))− H (τ )) , (14)

symptotically stable. The choice of the nominal feedback law
uch that it stabilizes system (14) is motivated by the require-
ent of achieving stabilization of the P system given in (12) and

s explained as follows. With the change of variables τ = X(t)+ L
(with X(0) = X0 > 0) for the time variable t , under (4) (implying
that the change of variables is invertible) we get from (12) that

dH (τ )
dτ

=
1
τ
(f (W (τ ))− H (τ )) , (15)

where we defined H (τ ) = P
(
X−1 (τ − L)

)
and W (τ ) =

U
(
X−1 (τ − L)

)
, for τ ≥ X0+L. System (15) is a time-varying non-

linear system, which can be stabilized with the choice W (τ ) =

κ (τ ,H(τ )), with κ being defined in (13). The alternative repre-
sentation (15) also reveals that X could be viewed more as time
variable (rather than as state), and thus, as regards a nominal,
delay-free design, one could seek a feedback law of the form
κ (τ ,H) that stabilizes (15), which is simpler than (12).

3 Note that utilization of the inverse function (corresponding to the system’s
onlinearity) in the nominal feedback law appears in Fontaine and Kokotovic
1998) within the context of constructive control design for a class of non-affine,
onlinear systems.
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. Stability analysis

heorem 1. Consider the closed-loop system consisting of the plant
1)–(3) satisfying Assumption 1 and the control law (6), (7) with
13). For each X(0) = X0 > 0, there exists a strictly decreasing func-
ion ϵ ∈ C ((0,+∞), (0,+∞)) such that for all initial conditions
(0) = Y0 > 0 and U0 ∈ C ([−D(0), 0], (c1, c2)), which satisfy

0 < ϵ (X0) (16)

0 = |Y0 − f (c)| + sup
−D(0)≤θ≤0

|U0(θ ) − c| , (17)

nd U0(0) = κ

(
X0 + L, Y0X0

X0+L +

∫ 0
−D(0) f (U0(s))U0(s)ds

X0+L

)
, there exists a

nique solution such that Y (t) ∈ C1
[0,+∞), X(t) ∈ C1

[0,+∞),
(t) being locally Lipschitz on [0,+∞), and the following hold for
≥ 0

|Y (t) − f (c)| ≤ Ω0ekLmax {1, L1}e−kc1t (18)

sup
−D(t)≤θ≤t

|U(θ ) − c| ≤ Ω0max {1, L1}(L2 + 1)ekL

× (1 + kL + kX0 + kc2t) e−kc1t . (19)

oreover, the feasibility condition (4) is satisfied.

roof. The proof can be found in Appendix C.

The proof of Theorem 1 provides a direct and compact man-
er for establishing local exponential stability of the closed-loop
ystem. The region of attraction estimate (16) and the stability es-
imates (18), (19) may be, however, conservative. For this reason
nd for obtaining more exact/practical conditions we also provide
n alternative proof for establishing the following theorem, in
hich we provide an exact computation of the region of attrac-
ion of the control law as well as exact stability estimates and
ontrol gain parametrization (with respect to initial conditions).
he latter may be useful in applications, e.g., for performing gain
cheduling.

heorem 2. Consider the closed-loop system consisting of the dy-
amics (1)–(3) satisfying Assumption 1 and the control law defined
hrough (6), (7), and (13). Define the partition (f (c1), f (c2))2 =

1 ∪ R2 ∪ R3 with

1 =
{
(Π, f (c)) ∈ (f (c1), f (c2))2 |

f (c) − f (c2) ≤ Π − f (c) ≤ f (c) − f (c1)} (20)

2 =
{
(Π, f (c)) ∈ (f (c1), f (c2))2 |

f (c) − f (c1) < Π − f (c) < e2(f (c) − f (c1)) or

f (c2) − f (c) < f (c) −Π < e2(f (c2) − f (c))
}

(21)

3 = (f (c1), f (c2))2\(R1 ∪ R2) . (22)

Denoting Ψ0 = (Y0, X0,U0), let us define

0(Ψ0) =
Y0X0

X0 + L
+

1
X0 + L

∫ 0

−D(0)
U0(s)f (U0(s)) ds, (23)

nd

(Ψ0, c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (c) − f (c1)
P0(Ψ0) − f (c)

, if P0(Ψ0) > f (c)

f (c2) − f (c)
f (c) − P0(Ψ0)

, if P0(Ψ0) < f (c)

+∞, if P0(Ψ0) = f (c)

. (24)

For each X(0) = X0 > 0 and all initial conditions Y (0) = Y0 ∈

(f (c ), f (c )), U ∈ C [−D(0), 0), (c , c ) , it holds:
1 2 0 ( 1 2 )

4

• if (P0(Ψ0), f (c)) ∈ R1, then (Y ,U) are bounded and exponential
regulation is achieved, in particular,⎧⎪⎨⎪⎩

|Y (t) − f (c)| = e−k
∫ t
σ (0) U(s)ds

|Y (σ (0))− f (c)| ,
t ≥ σ (0)

U(t) ∈ (c1, c2) , t ≥ 0

,

(25)

if and only if k ∈ (0, k⋆1 (Ψ0, c)) with

k⋆1(Ψ0, c) =
ξ (Ψ0, c) + 1

X0 + L
; (26)

• if (P0(Ψ0), f (c)) ∈ R2, then (Y ,U) are bounded and exponential
regulation is achieved, in particular, relation (25) holds, iff
k ∈ (0, k⋆2(Ψ0, c)) with

k⋆2(Ψ0, c) =
2 + ln(ξ (Ψ0, c))

X0 + L
; (27)

• otherwise, if (P0(Ψ0), f (c)) ∈ R3, there does not exist k > 0
such that relation (25) is satisfied.

Proof. The proof can be found in Appendix D.

Statements of Theorems 1 and 2 are complementary and con-
sistent with each other. In particular, restricting Y0 to (f (c1), f (c2)),
hich also implies (from (23), (25), (C.12)) that Y (t) ∈ (f (c1), f (c2)
≥ 0 (that is a condition appearing in practice and stated in

heorem 2), is in agreement with the statement of Theorem 1
hat requires Y0 to be sufficiently close to f (c), which eventually
mposes Y0 ∈ (f (c1), f (c2)) (see relation (C.11)) and it guarantees
from (C.14) and solving (C.15)) that Y (t) ∈ (f (c1), f (c2)), t ≥ 0,
s well (although stability estimate (18) is not tight). The fact
hat Theorem 1 does not restrict the size of k > 0, which
uarantees stabilization and feasibility, provided that the initial
onditions are sufficiently close to equilibrium, is also consistent
ith Theorem 2. This can be seen from (24) and (26), (27) (and
C.7)), which imply that the allowable range for k tends to infinity
s the initial conditions tend to equilibrium.

. Simulation results

We consider the example from (Petit, 2022) in which f :
1
4 ,

3
4

)
→

( 1
4 ,

3
4

)
with f (U) =

1
2 −

1
4 sin (2πU) and f −1(U) =

π−arcsin(2−4U)
2π . We choose the desired reference point as Ȳ =

f (c) =
3
5 with Ū = c = 0.566 and a control gain k = 1.5. In

Fig. 2 we compare the output, control effort, and delay in the
cases of the open-loop system and for the closed-loop system
under the proposed predictor-feedback law. One can observe
that the predictor-feedback law stabilizes the desired equilibrium
faster than the open-loop controller. Note that because the initial
conditions for Y and U are at an equilibrium (although not at the
desired one), there is a time interval in which Y remains constant.
(This is consistent with Eq. (C.12); see also Lemma 1.) Note also
that, in the open-loop control case, the respective delay functions
are exact, linear functions of time. This follows from (3), which
implies that for 0 ≤ t ≤ σ (0), it holds that

∫ 0
t−D(t) U0ds+

∫ t
0 Ūds =

, and thus, D(t) =
L
U0

+ t
(
1 −

Ū
U0

)
; while for t ≥ σ (0), it holds

that D(t) =
L
Ū
, with σ (0) =

L
Ū
.

The initial conditions considered result in (P0, f (c)) ∈ R1, as
depicted in Fig. 3. The maximum allowable control gain values
are k⋆1(Ψ0) = 1.66 and k⋆1(Ψ0) = 2.99, respectively. Thus, the
chosen gain k = 1.5 lies in the feasibility interval provided in
Theorem 2. Interestingly, simulations performed in the limiting
case k = k⋆1 led to numerical infeasibility resulting from U
reaching the boundary of interval (0.25, 0.75), which, in turn,
implies non-invertibility of f .
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Fig. 2. Solid: Output Y (t) (top), control input U(t) (middle), and delay D(t)
(bottom) of system (1)–(3) for two different initial conditions, namely, U0 ≡

1
2 ,

0 = f
( 1
2

)
=

1
2 and U0 ≡ 0.65, Y0 = f (0.65) = 0.7, with X0 =

1
2 , under

he predictor-feedback control law (6), (7) with (13). Dashed: Output Y (t) (top),
ontrol input U(t) (middle), and delay D(t) (bottom) of system (1)–(3) for two
ifferent initial conditions, namely, U0 ≡

1
2 , Y0 = f

( 1
2

)
=

1
2 and U0 ≡ 0.65,

Y0 = f (0.65) = 0.7, with X0 =
1
2 , under the open-loop control law U(t) = Ū ,

or all t ≥ 0.

In simulations we employ the delay model (1)–(3) with L = 1
and implement the predictor state (7). Thus, for control imple-
mentation one needs to measure the output Y and the state X .
For computation of the finite integral in (7) we employ, at each
time step, a simple, left-endpoint rule. The implicit relation (3)
5

Fig. 3. Regions R1, R2 , and R3 in Theorem 2 for the numerical example.
Point (P0, f (c)) corresponds to the initial conditions under consideration and
is depicted by the asterisk/diamond.

for computing the delay time φ (and thus, also the delay via
equation D = t − φ) is resolved at t = 0 by deriving the
smallest value for the lower limit φ of the integral in (3), for
which the integral does not exceed the value L, initializing the
lower limit of the integral from a value equal to its upper limit
(i.e., equal to the current time). In fact, in the simulation scenario
considered, because the initial condition for the actuator state is
chosen as constant, φ(0) is computed explicitly as φ(0) = −

L
U0

.
Using the value for φ(0) obtained we consequently compute φ
according to the ODE φ′(t) =

U(t)
U(φ(t)) with initial condition φ(0).

In general, performance of the design in actual implementations
may be affected by model uncertainties and disturbances, as
well as by errors due to numerical approximations and digital
implementations. Study of robustness to such uncertainties and
errors although important, it constitutes a different research topic
itself that requires development of new results, which may be
guided by the respective results in the constant-delay case; see,
for example, Karafyllis and Krstic (2017), Zhu and Krstic (2020).

6. Generalization to a class of nonlinear systems

We identify a class of nonlinear systems with input-dependent
input delay of hydraulic type for which complete delay compen-
sation, via construction of an exact predictor state, is achievable.
The class of systems is described as

Ẋ(t) = f (X(t),U (t − D(t))) g (U(t)) (28)

L =

∫ t

t−D(t)
g (U(s)) ds, (29)

here X ∈ Rn is state, U ∈ R is control variable, f : Rn+1
→ Rn

s locally Lipschitz vector field with f (0, 0) = 0, and L > 0 is
onstant. We assume the following.

ssumption 2. Function g : R → R+ is locally Lipschitz and
atisfies, for some positive constant c1, the following

1 ≤ g(U), for all U ∈ R. (30)

ssumption 3. System Ẋ = f (X,U) is forward complete.

ssumption 4. There exists a locally Lipschitz feedback law κ :
n

→ R, with κ(0) = 0, which renders system Ẋ = f (X, κ (X))
lobally asymptotically stable.
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Without Assumption 2 only a local stability result would be
achievable (because the conditions on the delay could be, poten-
tially, guaranteed restricting the size of initial conditions, as in
Section 4; see also, for example, Bekiaris-Liberis & Krstic, 2018a;
Bresch-Pietri et al., 2014). Assumptions 3 and 4 are standard as-
sumptions for predictor feedback-based control design of systems
with long, input delays, achieving global stabilization (see, for
example, Krstic (2010)). We note here that Assumptions 3 and 4
are imposed on the system without the scaling term g . As shown
within the proof of Theorem 3 (stated below) in Appendix E,
this is adequate because, under Assumption 2, one can employ
a suitable change of the time variable absorbing g and enabling
the proof to be conducted under Assumptions 3 and 4.

The predictor-feedback law is given by

U(t) = κ (P(t)) (31)

(θ ) = X(t) +

∫ θ

φ(t)
f (P(s),U (s)) g (U(s)) ds, (32)

or all φ(t) ≤ θ ≤ t , where φ(t) = t − D(t). The fact that P in
(32) is the predictor state is shown employing change of variables
t = σ (θ ) = φ−1(θ ) in (28), where σ is defined via relation∫ σ (θ )
θ

g (U(s)) ds = L, φ(t) ≤ θ ≤ t . In more detail, from (28)
with definition X (σ (θ )) = P(θ ) we get
dP(θ )
dθ

=
dσ (θ )
dθ

g (U (σ (θ ))) f (P(θ ),U (θ)) , (33)

and hence, since g (U (σ (θ ))) dσ (θ )
dθ = g (U(θ )), we arrive at (32)

through integration. We have the following result.

Theorem 3. Consider the closed-loop system consisting of the plant
(28), (29) and feedback law (31) with (32). Under Assumptions 2–
4 there exists a class KL function β such that for all X0 ∈ R and
U0 ∈ C[−D(0), 0], with U0(0) = κ (P(0)), there exists a unique
olution with X(t) ∈ C1

[0,+∞), U(t) locally Lipschitz on [0,+∞),
nd the following holds

(t) ≤ β (Ξ (0), t) , t ≥ 0, (34)

here

(t) = |X(t)| + sup
t−D(t)≤θ≤t

|U(θ )|. (35)

roof. The proof can be found in Appendix E.

The proof strategy presented in Appendix E relies on estimates
n solutions obtained under Assumptions 3, 4, with the aid of
suitable change of time variables, which is well-defined under
ssumption 2. A Lyapunov-based proof is also possible, relying
n the Lyapunov characterization of input-to-state stability and
orward completeness, which can be established in a similar
anner to, for example, Bekiaris-Liberis and Krstic (2018a), Krstic

2010) (see also Diagne, Bekiaris-Liberis, Otto, & Krstic, 2017 for
he case of an input delay defined implicitly through an integral
f the state), utilizing the fact that the scaling function g , of the
ector field f in (28), satisfies (30).

. Conclusions

We constructed a predictor-feedback law for a second-order,
onlinear non-affine system with input-dependent input delay of
ydraulic type arising in control of microfluidic processes under
he Zweifach–Fung effect. We proved exponential stability of the
eference point in closed loop utilizing estimates on solutions.
he simulation results provided confirm the performance im-
rovement of the closed-loop system under the developed design.
e further generalized the predictor-feedback design to a class of
onlinear systems.
 e

6

Although we impose the assumption on invertibility of the
onlinearity due to Zweifach–Fung effect, this is not restrictive,
s, in certain applications, the operation region of interest lies
n medium flow ratios. To operate over the whole spectrum of
low ratios, where f may not be increasing, one has to remove
such an assumption (e.g., by constructing a different nominal
feedback law). This is an issue that we currently investigate.
As another topic of ongoing research, we aim at addressing the
delay-compensating control design problem of a general network
of microfluidic processes, featuring various bifurcation points,
channels, and reservoirs. Although addressing the control design
problem for the case of n channels is expected to be far from a
pure replication of the approach for the one-channel case consid-
ered here, the key step in enabling to address this general case,
is the control design and analysis step made here.

Appendix A

Proposition A.1. For a delay time φ(t) = t−D(t) defined implicitly
via

∫ t
φ(t) g (s) ds = L, with L > 0 and a continuous function g :

[φ(0),+∞) → R+, assume that relation c1 ≤ g (s), for some
ositive constant c1, is satisfied for all s ≥ φ(0). Then the following
olds for all t ≥ 0

− Ḋ(t) > 0 and 0 < D(t) ≤
L
c1
. (A.1)

In particular, there exists a unique time t∗ such that φ (t∗) = 0, with
t∗ ≤

L
c1
. Furthermore, if g ≡ c1, then t∗ =

L
c1
.

Proof. Differentiating relation
∫ t
φ(t) g (s) ds = L we get φ̇(t) =

g(t)
g(φ(t)) . Thus, φ̇(t) = 1 − Ḋ(t) > 0 is proved. Integrating relation

1 ≤ g (s), we get c1D(t) ≤
∫ t
φ(t) g (s) ds = L, which proves that

(t) ≤
L
c1
. With a contradiction argument (because g is positive)

e show that φ(t) < t , and hence, D(t) > 0, t ≥ 0. Since φ is
strictly increasing with φ(t) ≥ t −

L
c1

and φ(0) < 0, there exists
t∗ such that φ (t∗) = 0, with 0 = φ (t∗) ≥ t∗− L

c1
. If the delay time

is defined via
∫ t
φ(t) c1ds = L, it immediately follows that D(t) =

L
c1
,

and hence, 0 = φ (t∗) = t∗ −
L
c1
.

Appendix B. Proof of Lemma 1

Under the assumption for U0 and the fact that U(t) = c , t ≥ 0,
from Proposition A.1, there exists a unique t1 such that φ (t1) = 0.
sing (3) we get

∫ 0
φ(t) U0(s)ds = L − ct . Hence, t1 =

L
c , since

U0 is continuous and strictly positive. Thus, for t ≥
L
c system

(1), (2) evolves as Ẏ (t) =
f (c)−Y (t)

X(t) c , Ẋ(t) = c , which implies
(t)X(t) − Y

( L
c

)
X

( L
c

)
= cf (c)

(
t −

L
c

)
, X(t) = ct + X0. Hence,

we obtain (5) for t ≥
L
c . For 0 ≤ t ≤

L
c we get from (1), (2) that

Ẏ (t) = c f (U0(t−D(t)))−Y (t)
ct+X0

, which implies (5) for 0 ≤ t ≤
L
c .

Appendix C. Proof of Theorem 1

Feasibility condition satisfaction4: The feasibility condition (4) is
satisfied for −D(0) ≤ θ ≤ 0 by the assumption on the initial con-
ition for U . In order to guarantee that the feasibility condition is

4 We study existence and uniqueness of solutions, separately, in the third
art of Appendix C, to not distract the reader from the main contribution of the
aper, which is the predictor-feedback control design and respective stability
nalysis. the proof relies on the autonomous, (P, X) ODE system in closed loop
C.21), (C.22), having a locally Lipschitz right-hand side. this enables to conclude
xistence/uniqueness utilizing known results for ODEs.
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atisfied for t ≥ 0 we need to establish that the following holds
or t ≥ 0

(c1) ≤ P(t) − k (X(t) + L) (P(t) − f (c)) ≤ f (c2), (C.1)

hich can be satisfied provided that the following holds

P̃(t)
⏐⏐⏐ |1 − k (X(t) + L)| < δ, t ≥ 0, (C.2)

ith P̃ = P − f (c), δ = min {f (c2) − f (c), f (c) − f (c1)}. As long as
satisfies inequality (4), from (13), (6), (12) it follows that the

redictor state P satisfies ˙̃P(t) = −kP̃(t)Ẋ(t), and thus,

˜ (t) = P̃(0)e−k(X(t)−X0). (C.3)

urthermore, as long as U satisfies inequality (4), it holds that
1t + X0 ≤ X(t) ≤ c2t + X0. Therefore,

P̃(t)
⏐⏐⏐ |1 − k (X(t) + L)| ≤

⏐⏐⏐P̃(0)⏐⏐⏐ e−kc1t (1 + kL

+kX0 + kc2t) . (C.4)

rom (7) for t = 0 it follows using (3) that

P̃(0)
⏐⏐⏐ ≤

|Y0 − f (c)| X0

X0 + L

+

∫ 0
φ(0) |f (U0 (s))− f (c)|U0(s)ds

X0 + L
. (C.5)

Under Assumption 1 (f being Lipschitz) we get from (C.5) using
(3) that⏐⏐⏐P̃(0)⏐⏐⏐ ≤

|Y0 − f (c)| X0

X0 + L

+
LL1 sup−D(0)≤s≤0 |U0 (s)− c|

X0 + L
, (C.6)

nd thus (since X0 > 0 by assumption),

P̃(0)
⏐⏐⏐ ≤ |Y0 − f (c)| + L1 sup

−D(0)≤s≤0
|U0 (s)− c|. (C.7)

sing (C.4), it follows that (C.2) is satisfied provided that

P̃(0)
⏐⏐⏐ (1 + kL + kX0 + kc2t) e−kc1t < δ, t ≥ 0, (C.8)

which is satisfied whenever⏐⏐⏐P̃(0)⏐⏐⏐ < δ

M (X0)
(C.9)

M (X0) =max {1 + kL + kX0,

c2
c1

e−1+ c1
c2
(kL+1+kX0)

}
. (C.10)

Using (C.7) we obtain that condition (C.9), and hence, also (C.2),
is satisfied whenever (16) holds with

ϵ (X0) =
δ

max {1, L1}M (X0)
. (C.11)

Derivation of stability estimate for Y : From Proposition A.1,
under (4), there exists a unique finite time instant σ (0) ≥ 0, with
σ (0) ≤

L
c1
, such that φ (σ (0)) = 0. Hence, for all 0 ≤ t ≤ σ (0)

e obtain from (1), (2) that d(Y (t)X(t))
dt = f (U0 (t − D(t)))U(t), and

ence,

(t) − f (c) =

∫ t
0 (f (U0 (s − D(s)))− f (c))U(s)ds

X(t)

+
(Y0 − f (c)) X0

X(t)
, 0 ≤ t ≤ σ (0). (C.12)
7

Under Assumption 1 (f being Lipschitz) and the assumption
on U0 we get from (C.12) that

|Y (t) − f (c)| ≤
L1 sup0≤s≤t |U0 (s − D(s))− c|

X(t)

×

∫ t

0
U(s)ds +

|Y0 − f (c)| X0

X(t)
. (C.13)

Since X(t) ≥ c1t + X0 (under (4)), using (2) we obtain from
C.13) that for 0 ≤ t ≤ σ (0) it holds that

Y (t) − f (c)| ≤ |Y0 − f (c)|

+ L1 sup
−D(0)≤s≤0

|U0 (s)− c| . (C.14)

For t ≥ σ (0), which implies that t −D(t) ≥ 0, since X (σ (t)) =

(t) + L and P(t) = Y (σ (t)), we obtain from (6) that Ẏ (t) =
f (κ(X(t),Y (t)))−Y (t)

X(t) Ẋ(t), and hence, from (13) we get that

Ẏ (t) = −k (Y (t) − f (c)) Ẋ(t). (C.15)

Explicitly solving (C.15) and using (9) we get that Y (t) = f (c) +

e−k(X(t)−X0−L) (Y (σ (0))− f (c)), and hence,

|Y (t) − f (c)| ≤ e−kc1tekL |Y (σ (0))− f (c)| . (C.16)

sing (C.14) and the fact that for t ≤ σ (0) it holds that X(t) ≤

0 + L (since X is increasing), we obtain (18).

erivation of stability estimate for U : Since (C.1) holds and since
−1 is Lipschitz (by assumption), it follows from (13), (6) that
U(t) − c| ≤ L2

⏐⏐⏐P̃(t)⏐⏐⏐ |(1 − k (X(t) + L))|, t ≥ 0, and hence, using
C.4) it follows that

U(t) − c| ≤L2
⏐⏐⏐P̃(0)⏐⏐⏐ (1 + kL + kX0 + kc2t)

× e−kc1t , t ≥ 0. (C.17)

sing (C.7) we obtain from (C.17) that

U(t) − c| ≤max {1, L1}L2Ω0 (1 + kL + kX0 + kc2t)

× e−kc1t , t ≥ 0. (C.18)

Thus, for t ≥ σ (0) we obtain from (C.18) that

sup
−D(t)≤θ≤t

|U(θ ) − c| ≤Ω0max {1, L1}L2ekLe−kc1t

× (1 + kL + kX0 + kc2t) , (C.19)

here we used the fact that D(t) ≤
L
c1
, t ≥ 0, which fol-

ows from (3), (4). Using the fact that supt−D(t)≤θ≤t |U(θ ) − c| ≤(
sup−D(0)≤θ≤0 |U0(θ ) − c| + sup0≤θ≤t |U(θ ) − c|

)
×e−kc1(t−σ (0)), 0 ≤ t ≤ σ (0), we obtain using (C.18) that

sup
t−D(t)≤θ≤t

|U(θ ) − c| ≤ Ω0(L2 + 1)max {1, L1}ekc1σ (0)

× (1 + kL + kX0 + kc2t) e−kc1t , (C.20)

or 0 ≤ t ≤ σ (0). Using (4), (8) it follows that σ (0) ≤
L
c1
, and

hence, using (C.19), (C.20) we obtain (19).

Existence, uniqueness, and regularity of solutions: We first
note that from (2), (6), (12) it follows that

Ṗ(t) = −k (P(t) − f (c)) κ (X(t) + L, P(t)) (C.21)

Ẋ(t) = κ (X(t) + L, P(t)) , (C.22)

and thus, since the right-hand side of the above ODE in (P, X)
is locally Lipschitz in (P, X) we get (with (C.3), (C.7), and c1t +

0 ≤ X(t) ≤ c2t + X0) existence and uniqueness of a solution
(P(t), X(t)) ∈ C1 [0,+∞). Thus, from (6), (13) it follows from
Assumption 1 that U(t) is locally Lipschitz on [0,+∞). Moreover,
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ince mapping F (φ) =
∫ φ
0 U(s)ds satisfies F ′(φ) = U (φ), we can

niquely define (with (4)) its inverse F−1. As φ, for each t , satisfies
3), by the continuity of U on [φ(0),+∞), we obtain existence
f a unique solution φ(t) ∈ C1 [0,+∞) defined via φ(t) =

−1
(∫ t

0 U(s)ds − L
)

= F−1 (X(t) − X0 − L). Thus, from (C.12) it
ollows (with (18)) that there exists a unique solution Y (t) ∈
1 [0, σ (0)). Similarly, from (C.15) it follows (with (18)) that there
xists a unique solution Y (t) ∈ C1 (σ (0),+∞). Compatibility
f U0 with the feedback law guarantees that Y is continuously
ifferentiable also at t = σ (0).

Appendix D. Proof of Theorem 2

A necessary and sufficient condition for the controller to guar-
antee boundedness and exponential regulation is that k > 0 and
U(t) ∈ (c1, c2), t ≥ 0, hold simultaneously. Under Assumption 1,
this holds iff⎧⎨⎩

P(t) − k(X(t) + L)(P(t) − f (c)) ∈ (f (c1), f (c2)) ,
t ≥ 0

k > 0
.

(D.1)

Derivation of conditions on (Ψ0, k, c) for satisfaction of (D.1):
As long as U ∈ (c1, c2), the closed-loop system gives P(t) = f (c)+
e−k

∫ t
0 U(s)ds(P0 − f (c)). Hence, the first equation in condition (D.1)

is re-written as

f (c) + (1 − k(X0 + L) − h(t))(P0 − f (c))e−h(t)

∈ (f (c1), f (c2)) , t ≥ 0, (D.2)

with h(t) = k
∫ t
0 U(s)ds. For k > 0, as long as U > c1, this function

spans R+. Thus, introducing g1 : h ∈ R+ ↦→ f (c) + (1 − k(X0 +

L) − h)(P0 − f (c))e−h, the first equation in (D.1) is equivalent
to g1(h) ∈ (f (c1), f (c2)) for all h ≥ 0. Let us observe that
limh→+∞ g1(h) = f (c) belongs to (f (c1), f (c2)) from the definition
of c and Assumption 1. Using (23) we get that P0 ∈ (f (c1), f (c2))
for Y0 ∈ (f (c1), f (c2)) and U0 ∈ C ([−D(0), 0), (c1, c2)). Thus,
g1(0) ∈ (f (c1), f (c2)) if and only if k < k⋆1 (Ψ0, c), with k⋆1 defined
in (26). Furthermore, one can obtain that, if k ≥

2
X0+L ≜ η (X0),

then g1 is monotonic and, otherwise, g admits an extremum for
h = 2 − k(X0 + L), which is

g1(2 − k(X0 + L)) = f (c) − (P0 − f (c))e−2+k(X0+L) , (D.3)

and belongs to (f (c1), f (c2)) iff k < k⋆2 (Ψ0, c), with k⋆2 defined
in (27). Thus, stability and feasibility are established iff the fol-
lowing conditions on Ψ0, k, and c are satisfied{
0 < k < k⋆1 (Ψ0, c)
0 < k < k⋆2 (Ψ0, c) , if k < η(X0)

. (D.4)

Restatement as conditions on the gain dependent on (Ψ0, c):
To reformulate and simplify condition (D.4), let us observe that
the following properties hold (from (26), (27)):
(P1) k⋆1 ≥ k⋆2;
(P2) k⋆1 ≤ η ⇔ ξ ≤ 1 ⇔ k⋆2 ≤ η;
(P3) k⋆2 > 0 ⇔ ξ > e−2.

Hence, using (P1) and (P2), condition (D.4) is satisfied iff one
of the following two conditions holds{
k⋆2 ≥ η and 0 < k < k⋆1
k⋆1 < η and 0 < k < k⋆2

. (D.5)

Equivalently, (D.4) holds iff one of the following holds{
ξ ≥ 1 and 0 < k < k⋆1

⋆ , (D.6)

ξ < 1 and 0 < k < k2

8

which, combining (20), (21), and (24), can be written as{
(P0, f (c)) ∈ R1 and 0 < k < k⋆1
(P0, f (c)) ∈ R2 and 0 < k < k⋆2

. (D.7)

The proof is completed noting from (22), (24) that P0 ∈ R3 is
quivalent to ξ ≤ e−2, and thus, from (P3), to k⋆2 ≤ 0.

ppendix E. Proof of Theorem 3

Under Assumption 2, using Proposition A.1, we get from (29)
hat there exists t∗ such that t∗ = σ (0) ≤

L
c1
, where σ (t) = φ−1(t)

nd φ(t) = t−D(t). We continue the proof treating separately the
ases 0 ≤ t ≤ σ (0) and t ≥ σ (0).

erivation of solutions estimate for X for 0 ≤ t ≤ σ (0): Define
he change of variables

=

∫ t

0
g (U(s)) ds = ḡ(t), (E.1)

hich, under Assumption 2, is invertible as dτ
dt = g (U(t)) ≥ c1,

or t ≥ 0, while ḡ : [0,+∞) → [0,+∞) is strictly increasing.
In particular, since

∫ σ (0)
0 g (U(s)) ds = ḡ (σ (0)) = L, we get from

28) in τ variable that for 0 ≤ t ≤ σ (0) it holds that dX̄(τ )
dτ =

f
(
X̄ (τ ) , Ū (τ − L)

)
, 0 ≤ τ ≤ L, where X̄ (τ ) = X

(
ḡ−1(τ )

)
and

Ū(τ − L) = U
(
φ

(
ḡ−1(τ )

))
. Under Assumption 3 and Karafyllis

2004) it holds that
⏐⏐X̄ (τ )⏐⏐≤ν (τ) ψ (⏐⏐X̄(0)⏐⏐ + sup0≤s≤τ

⏐⏐Ū(s − L)
⏐⏐)

for a function ψ ∈ K and a continuous, positive, monotonically
ncreasing function ν. Hence, there exists ψ1 ∈ K such that
X̄ (τ )

⏐⏐ ≤ ψ1
(⏐⏐X̄(0)⏐⏐ + sup0≤s≤L

⏐⏐Ū(s − L)
⏐⏐), for 0 ≤ τ ≤ L, with

ψ1(s) = ν (L) ψ (s). Therefore, since σ (0) = ḡ−1(L), we arrive at

|X (t)| ≤ ψ1 (Ξ (0)) , 0 ≤ t ≤ σ (0). (E.2)

erivation of solutions estimate for X for t ≥ σ (0): Since
(t) = κ (P(t)) = κ (X (σ (t))), for all t ≥ 0, we obtain that the
losed-loop system for t ≥ σ (0) becomes

˙ (t) = f (X(t), κ (X(t))) g (U(t)) . (E.3)

n τ variable we get dX̄(τ )
dτ = f

(
X̄ (τ ) , κ

(
X̄ (τ )

))
, τ ≥ L. Thus,

under Assumption 4 we get
⏐⏐X̄ (τ )⏐⏐ ≤ β1

(⏐⏐X̄ (L)⏐⏐ , τ − L
)
, τ ≥ L,

with a β1 ∈ KL. Therefore,

|X (t)| ≤ β1 (|X (σ (0))| , ḡ(t) − L) , t ≥ σ (0). (E.4)

Since ḡ(t)−L =
∫ t
0 g (U(s)) ds−

∫ t
φ(t) g (U(s)) ds =

∫ φ(t)
0 g (U(s)) ds ≥

c1 (t − D(t)), for all t ≥ σ (0), we obtain from (E.4) for t ≥ σ (0)

|X (t)| ≤ β1 (|X (σ (0))| , c1 (t − D(t))) . (E.5)

Combining (E.5) with (E.2), we can get that |X (t)| ≤

β1 (ψ1 (Ξ (0)) , c1 max{0, φ(t)}) + ψ1 (Ξ (0)) e−max{0,φ(t)}, t ≥ 0,
and hence, as φ(t) ≥ t −

L
c1
, we arrive at

|X (t)| ≤ β2 (Ξ (0), t) , t ≥ 0, (E.6)

where β2(s, t)=β1

(
ψ1 (s), c1 max

{
0, t −

L
c1

})
+ψ1(s)e

−max
{
0,t− L

c1

}
is a class KL function.

Derivation of solutions estimate for U : Under Assumption 4
(local Lipschitzness of κ with κ(0) = 0), the fact that U(t) =

κ (P(t)) = κ (X (σ (t))), and (E.2), (E.5), there exists a class K∞

function ρ such that

|U(t)| ≤ ρ (β1 (ψ1 (Ξ (0)) , c1t)) , t ≥ 0, (E.7)

and hence, for t ≥ σ (0) it holds that

sup |U(θ )| ≤ ρ (β1 (ψ1 (Ξ (0)) , c1φ(t))) . (E.8)

t−D(t)≤θ≤t
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or 0 ≤ t ≤ σ (0) we have that supt−D(t)≤θ≤t |U(θ )| ≤ sup−D(0)≤θ≤0
U(θ )| + sup0≤θ≤σ (0) |U(θ )|, and hence, using (E.7), we get for
0 ≤ t ≤ σ (0) that

sup
t−D(t)≤θ≤t

|U(θ )| ≤ Ξ (0) + ρ (β1 (ψ1 (Ξ (0)) , 0)) . (E.9)

Combining (E.8), (E.9), we can get that

sup
t−D(t)≤θ≤t

|U(θ )| ≤ β3 (Ξ (0), t) , t ≥ 0, (E.10)

where β3(s, t) = ρ

(
β1

(
ψ1 (s) , c1 max

{
0, t −

L
c1

}))
+ (s + ρ

(β1 (ψ1 (s) , 0))) e
−max

{
0,t− L

c1

}
is of class KL. Combining (E.6),

(E.10) we get (34) with β = β2 + β3.
Existence, uniqueness, and regularity of solutions follow in a

similar manner to the respective part in Appendix C, starting from
the ODE for P , Ṗ(t) = g (κ (P(t))) f (P(t), κ (P(t))), which has a
locally Lipschitz right-hand side.
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