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a b s t r a c t

We investigate the design of a prediction-based controller for a linear system subject to a time-varying
input delay, not necessarily First-In/First-Out (FIFO). This means that the input signals can be reordered.
The feedback law uses the current delay value in the prediction. It does not exactly compensate for the
delay in the closed-loop dynamics but does not require to predict future delay values, contrary to the
standard prediction technique. Modeling the input delay as a transport Partial Differential Equation, we
prove asymptotic stabilization of the system state, that is, robust delay compensation, providing that the
average L2-norm of the delay time-derivative over some time-window is sufficiently small and that the
average time between two discontinuities (average dwell time) is sufficiently large.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delays are ubiquitous in engineering systems. They can
take the form of communication lags or physical dead-times and,
in all cases, often reveal troublesome in the design and tuning of
feedback control laws. Delays are a central concern for numerous
systems. When delay stems from transportation of material, as
observed in mixing plants for liquid or gaseous fluids (Chèbre,
Creff, & Petit, 2010; Petit, Creff, & Rouchon, 1998), automotive
engine and exhaust line (Depcik & Assanis, 2005) or heat collector
plant (Sbarciog, De Keyser, Cristea, & De Prada, 2008), the dead-
time satisfies the First-In/First-Out (FIFO) principle by definition,
i.e., the delay D is such that Ḋ(t) < 1 for all time. However, this
is not always the case. For example, communication delays can be
subject to sudden variations and not satisfy the FIFO principle. This
feature, sometimes referred to as fast-varying delay (see Seuret,
Gouaisbaut, & Fridman, 2013; Shustin& Fridman, 2007), can also be
exhibited for state- or input-dependent input delay systems (Dieu-
lot & Richard, 2001), in which the delay variations can be related
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to the input in a very intricate manner, like, e.g., for crushing mill
devices (Richard, 2003).

We investigate the design of a prediction-based control law
(Artstein, 1982; Kwon & Pearson, 1980; Manitius & Olbrot, 1979;
Smith, 1959), which is state-of-the-art for constant input de-
lay (Bresch-Pietri, Chauvin, & Petit, 2012; Gu & Niculescu, 2003;
Jankovic, 2008; Mazenc & Niculescu, 2011; Michiels & Niculescu,
2007; Moon, Park, & Kwon, 2001) but has only been more recently
used for time-varying delays (see Krstic, 2009 or Nihtila, 1991).
To compensate for a varying input delay, the prediction has to be
calculated over a time window the length of which matches the
value of the future delay. In other words, one needs to predict
the future variations of the delay to compensate for it. This is
the approach followed in Witrant (2005) for a communication
time-varying delay, the variations of which are provided by a
given known model. It has also been used in Bekiaris-Liberis and
Krstic (2012) and Bekiaris-Liberis and Krstic (2013a) for a state-
dependent delay or in Bekiaris-Liberis and Krstic (2013b) for a
delay depending on delayed state, where variations are anticipated
by a careful prediction of the system state. However, inmany cases,
it is not possible to model the delay and, even if so, to predict the
future delay values. For this reason, in this paper, in lieu of seek-
ing exact delay compensation, we consider a prediction horizon
equal to the current delay value, which is assumed to be known.
This relaxed assumption is realistic. The delay itself can vary to a
large extent, can be discontinuous and is not necessarily FIFO. By
contrast with previous works accounting explicitly for the delay
(that is, without recasting it as a disturbance) and assuming that
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Fig. 1. Example of architecture where the controller knows the current delay value.
The communication between the controller and the plant is subject to a delay, while
the one between the plant and the controller is not (as they are using different
communication paths). The controller is equipped with an internal clock and sends
a time stamp with each control input to the block [System + Actuator]. This block
then sends back to the controller this (delayed) time stamp, after receiving it. By
comparing this delayed time stampwith the time returned by its internal clock, the
controller then has access to the current delay affecting the communication path.

Ḋ(t) ≤ 1 for t ≥ 0 (see Bekiaris-Liberis & Krstic, 2013c; Figueredo,
Ishihara, Borges, & Bauchspiess, 2011; Yue & Han, 2005), we allow
the delay to be such that Ḋ(t) > 1 on some interval of time. A
delay of this type, considered for the first time in the preliminary
study (Bresch-Pietri & Petit, 2014) in a prediction design context,
is also considered in Mazenc, Malisoff, and Niculescu (2017) and
Mazenc, Niculescu, and Krstic (2012), but, in these papers the delay
is supposed to be equal to a function of class C 1 plus a small
discontinuous part, treated as a disturbance. We do not impose
such an assumption; in otherwords, we consider delayswithmore
general types of discontinuities, covering the casewhere they have
large discontinuous jumps.

We follow our preliminary study (Bresch-Pietri & Petit, 2014)
which, as a first step, considered the delay function to be contin-
uously differentiable (a demanding assumption from a practical
point of view) and apply the novel time-varying version of Halanay
inequality proposed inMazenc et al. (2017) to address delay jumps.
In this paper, as a result, the delay is only assumed to be piecewise
continuously differentiable, encompassing potential sudden delay
jumps and discontinuities, which are quite common, e.g., in the
context of networks and communication protocols. Recasting the
problem as an Ordinary Differential Equation (ODE) cascaded with
a transport Partial Differential Equation (PDE), we use a backstep-
ping transformation recently introduced in Krstic and Smyshlyaev
(2008) to analyze the closed-loop stability. We prove asymptotic
convergence of the system state provided that the delay time-
derivative is sufficiently small in average, in the sense of an av-
erage L2-norm, and that the delay non-differentiability times are
sufficiently sparse in time, in the sense of the average dwell time
(Hespanha & Morse, 1999).

The paper is organized as follows. In Section 2, we introduce the
problem at stake, before designing our control strategy and stating
ourmain result. The latter is proven in Section 3. Section 4 presents
an illustrative simulation example.

Notations. In the following, a function f is said to be piecewise con-
tinuous on an interval [a, b] ⊂ R if the interval can be partitioned
by a finite number of points a = t0 < t1 < · · · < tn = b so
that f is continuous on each subinterval (ti−1, ti) and f admits finite
right-hand and left-hand limits at ti, i ∈ {0, . . . , n}. A function
f is said to be piecewise continuous on R if the restriction of f
to any interval is piecewise continuous. A function f is said to
be piecewise continuously differentiable on R if both f and f ′ are
piecewise continuous on R. Standardly, we denote Cpw(I,R) (resp.
Cpw(R,R)) the set of real-valued piecewise continuous function on
an interval I ⊂ R (resp. onR) and f (t+) (resp. f (t−)) the right-hand
(resp. left-hand) limit of f at point t , if it exists.

|·| is the usual Euclidean norm and, for a signal u(x, ·) for x ∈

[0, 1], ∥u(·)∥ denotes its spatial L2-norm, i.e.,

∥u(t)∥ =

 ∫ 1

0
u(x, t)2dx. (1)

In the sequel, integrals should be understood in the Riemann
integrability sense, that is, when the signal x ↦→ u(x, ·) is not
defined on a set S ⊂ [0, 1] of measure zero, we write

∥u(t)∥ =

 ∫ 1

0
u(x, t)2dx =

 ∫
[0,1]\S

u(x, t)2dx (2)

and similarly for time signals. Finally, for a matrix M the eigen-
values of which are all real numbers, λ(M) and λ(M) refer to the
minimal and maximal eigenvalues ofM .

2. Problem statement and control design

We consider the following (potentially) unstable linear dynam-
ics

Ẋ(t) = AX(t) + BU(t − D(t)) (3)

in which X ∈ Rn, U is scalar and the delay D satisfies the following
assumption.

Assumption 1. The delay D is a piecewise continuously differen-
tiable function with set of time instants of non-differentiability

T = {ti , i ∈ N} (4)

and which satisfies

(i) D(t) ∈ [D,D] for t ≥ 0, with 0 < D ≤ D
(ii) there exists∆ > 0 such that ti − tj ≥ ∆, (tj, ti) ∈ T 2, i > j
(iii) there exist T > 0 and δ > 0 such that, for all i ∈ N,

1
T

∫ t+T

t
Ḋ(s)2ds ≤ δ , t ∈ (ti, ti+1 − T ), ti ∈ T . (5)

Note that no assumption ismade a priori on the time-derivative
ofD. In particular, it is possible that Ḋ(t) > 1 for certain intervals of
time. Also, it isworth observing thatD is not necessarily continuous
at time ti ∈ T .

In the sequel, we consider that the current value of the delay is
known. For instance, this is the case of the architecture presented
in Fig. 1.

Our control objective is to design a prediction-based controller
stabilizing the plant (3), using the knowledge of the current value
of the delay D(t) at time t ≥ 0. With this aim in view, consider the
following control law

U(t) = K
ï
eAD(t)X(t) +

∫ t

t−D(t)
eA(t−s)BU(s)ds

ò
(6)

in which the feedback gain K is such that A + BK is Hurwitz.
This controller approximately forecasts value of the state over a

time window of varying length D(t). Indeed, this prediction is only
an approximation in the sense that it does not correspond to the
future value X(t + D(t)) as

X(t + D(t)) = eAD(t)X(t) (7)

+

∫ t

t−D(t)
eA(t−s)BU(s + D(t) − D(s))ds.

However, this last expression is not implementable as it is not
always causal.1 However, it can be approximated by the one used
in (6) if D(t) − D(s) ≈ 0 for ‘‘most’’ instants t , i.e., under the
assumption that the variations of the delay are sufficiently small

1 In details, if there exists s ∈ [t −D(t), t] such that s−D(s) ≥ t −D(t), i.e., if the
delay D(t) is suddenly high and the information received at time t older than some
previously received), this expression is not causal while the one employed in (6)
always is.
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in average. We formalize this assumption in the sequel in themain
result of this paper (Theorem 1).

Of course, exact compensation of the delay is not achieved with
the control law (6). To do so, one would need to consider a time
window of which length would exactly match the value of the
future delay, as performed in Krstic (2009) and Nihtila (1991). In
details, defining ϕ(t) = t − D(t) and assuming that its inverse
exists, exact delay-compensation is obtained with the feedback
law U(t) = KX(ϕ−1(t)). Yet, implementing this relation requires
to predict the future variations of the delay via ϕ−1(t). This may
not be achieved in practice, when no delay model is available.
More importantly, note that the inverse function ϕ−1(t) may not
exist for all time, if Ḋ(s) > 1 for some instants as ϕ may then
be non-monotonically increasing. This motivates our choice of the
prediction-based controller (6).

Theorem 1. Consider the closed-loop system consisting of the dy-
namics (3) and the control law (6) in which the delay D : R → [D,D]

satisfies Assumption 1. Define the functional

Γ (t) = |X(t)|2 +

∫ t

t−D
U(s)2ds (8)

and a chatter bound N0 and an average dwell time τD ≥ 0 such that

ND(t, τ ) ≤ N0 +
t − τ

τD
(9)

in which ND(t, τ ) denotes the number of discontinuities of Ḋ in the
interval (τ , t). There exist δ∗

∈ (0, 1) and τ ∗

D > 0 such that, if δ < δ∗

and if τD > τ ∗

D , then there exist two constants γ , R > 0 such that

Γ (t) ≤ R max
s∈[−D̄,0]

Γ (s) e−γ t , t ≥ 0. (10)

Eq. (5) along with the condition δ < δ∗ allows the delay time-
derivative to be quite large for some time instants. However, to
guarantee stability, it requires it to be sufficiently small in average,
in the sense of the average L2-norm given in (5). In particular, the
delay function can be non-FIFO for some time instants, as long as it
is most of the time (i.e. as δ∗ < 1). Second, delay jumps can occur
provided that the average dwell time is large enough to guarantee
stability.

Note that, as our prediction employs the current delay value
D(t) instead of the time horizon ϕ−1(t) to estimate the future
system state, it can be highly inaccurate when the delay is fast
varying. In this context, the requirement δ < δ∗ with δ introduced
in (5) can also be interpreted as a condition for robust delay
compensation achievement: if the delay varies sufficiently slowly
most of the time, its current value D(t) used for prediction will
remain, sufficiently often, close enough to its future values for the
corresponding prediction to guarantee closed-loop stabilization.

We now detail the proof of this theorem.

3. Proof of Theorem 1

3.1. Reformulation of the plant as a cascade with a transport PDE

As a first step in our analysis, we define ÛD > D and introduce
the two distributed actuators

u(x, t) = U(t + D(t)(x − 1)) (11)

v(x, t) = U(t − ÛD + x(ÛD − D(t))) (12)

to reformulate the plant (3) into a PDEs–ODE cascade. In details,
the variable u represents the history of the input on the (moving)
horizon [t−D(t), t]while v completes it by the history of the input
over the (moving) horizon [t − ÛD, t − D(t)]. These variables are
pictured in Fig. 2.

Fig. 2. Schematic views of the distributed variables introduced in (11)–(12) for
delay variations pictured in the left plot.

Note that, from (6) and as the delay is piecewise continuously
differentiable, the control law is also piecewise continuously dif-
ferentiable and so are the distributed inputs u and v with respect
to x and t . To clarify this point, we first formulate the following
intermediate results.

Lemma1. The control lawdefined in (6) is continuously differentiable
on the union of intervals R \ T .

Proof. Consider the Dini derivative of U

D+U(t) = lim sup
h→0+

U(t + h) − U(t)
h

= K

ñ
A

ñ
eAD(t)X(t) +

∫ t

t−D(t)
eA(t−s)BU(s)ds

ô
+ BU(t) + Ḋ(t)eAD(t) [AX(t) + BU(t − D(t))]

]
. (13)

One can observe that the right-hand term of this equation is well-
defined and continuous as long as t ̸∈ T .

Lemma 2. For ti ∈ T , consider the sets

Di = {t ∈ R | t ≥ ti and t − D(t) ≤ ti} (14)

D̃i =

¶
t ∈ R | t − D(t) ≥ ti and t − ÛD ≤ ti

©
(15)

and the variables

xi(t) = 1 +
ti − t
D(t)

, for t ∈ Di (16)

x̃i(t) =
ti + ÛD − tÛD − D(t)

, for t ∈ D̃i. (17)

Define

X (t) = {xi(t) |Di ∋ t , i ∈ N} (18)

X̃ (t) =
{
x̃i(t) |D̃i ∋ t , i ∈ N

}
. (19)

Then, the distributed variable u (resp. v) is continuously differentiable
on the set

Du = {(x, t) | t ̸∈ T , x ̸∈ X (t)} (20)

(resp. Dv =
{
(x, t) | t ̸∈ T , x ̸∈ X̃ (t)

}
). (21)

Further, the function xi (resp. x̃i) is continuously differentiable for
t ∈ Di \ T (resp. for t ∈ D̃i \ T ) and satisfies

1 + Ḋ(t)(xi(t) − 1) + D(t)ẋi(t) = 0 , t ∈ Di \ T (22)

(resp. 1 + ẋi(t)(ÛD − D(t)) − xi(t)Ḋ(t) = 0 , t ∈ D̃i \ T ). (23)

Before providing a proof of this lemma, it is useful to make a
few comments on the definitions introduced above and illustrated
on Fig. 3. First, ÛD > D has been introduced only to guarantee the
well-posedness of (17) (otherwise, for ÛD = D, this variable could
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(a) Delay variations.

(b) Schematic view of the set of differentiability of u. Dashed–dotted
curves represent the sets where u is not differentiable.

(c) Schematic view of the set of differentiability of v.
Dashed–dotted curves represent the sets where v is
not differentiable. One can note that X̃ (t) = ∅ while
X (t) = {x1(t), x2(t)}.

Fig. 3. Schematic views of the sets introduced in Lemma 2 for a given delay function
pictured in the left-hand plot 3(a).

be undefined for some time instants such that D(t) = D). Second,
the subset of time Di (resp. D̃i) is a union of intervals which gathers
times for which a spatial non-differentiability point in u (resp. v)
related to the delay non-differentiability time ti exists. Conversely,
for a given t ∈ R, the space set X (t) (resp. X̃ (t)) is a finite union
of singletons which gathers, at a given time t , all existing points of
spatial non-differentiability of u (resp. v). In particular, this union
is indeed finite because the delay non-differentiability times are
separated by at least∆ due to Assumption 1.

Proof. By definition, the time-derivative of the feedback u defined
in (11) is given as

ut (x, t) = (1 + Ḋ(t)(x − 1))U̇(t + D(t)(x − 1)). (24)

It is straightforward to see the ut is not well-defined for t ∈ T .
Now, consider t ̸∈ T , then ut is well-defined provided that x ∈

[0, 1] is such that t + D(t)(x − 1) ̸∈∈ T . This last condition can
be formulated as x ̸∈ X (t). Similar considerations can be made
regarding the space-derivative of u. The result follows.

Finally, xi(t) ∈ X (t) implies that t + D(t)(xi(t) − 1) = ti. Tak-
ing a time-derivative of this expression, one obtains (22). Similar
conclusions can be obtained for the distributed variable v defined
in (12) following the same steps, which concludes the proof.

This allows to rewrite the plant (3) as the following PDEs–ODE
cascade

Ẋ(t) = AX(t) + Bu(0, t) (25)

D(t)ut = (1 + Ḋ(t)(x − 1))ux , (x, t) ∈ Du (26)
u(1, t) = U(t) (27)
u(x, t+) = U(t+ + D(t+)(x − 1)) , t ∈ T , x ̸∈ X (t) (28)

(ÛD − D(t))vt = (1 − xḊ(t))vx , (x, t) ∈ Dv (29)
v(1, t) = u(0, t) (30)

v(x, t+) = U(t+ − D + x(ÛD − D(t+))) , t ∈ T , x ̸∈ X (t). (31)

This system is well-posed, in the sense of the following lemma, the
proof of which is provided in Appendix.

Lemma 3. For any initial data (u, v) ∈ L2(0, 1) × L2(0, 1), the
system (26)–(31) has a unique weak solution in L2(0, 1) × L2(0, 1).

In details, the input delay is now represented as the cascade of
an ODE (25) fed by the output of a transport PDE (26)–(28), with
time- and space-varying propagation velocity, which can poten-
tially be locally equal to zero or negative. This output also feeds
a second transport PDE (29)–(31) with time- and space-varying
propagation velocity. It is worthmentioning that one needs to take
into account both distributed variables (u, v) in the analysis to
account for all potential values of the delay and the entire history
of the input over the time interval [t − ÛD, t].
3.2. Backstepping transformation and target system

To analyze this closed-loop system, following Krstic and
Smyshlyaev (2008), we define the backstepping transformation

w(x, t) = u(x, t) (32)

− K
ï
eAD(t)xX(t) + D(t)

∫ x

0
eAD(t)(x−y)Bu(y, t)dy

ò
.

As previously, before starting our analysis, we investigate thewell-
posedness of this distributed variable.

Lemma 4. The backstepping transformation defined in (32) is con-
tinuously differentiable for (x, t) ∈ Du, as introduced in (20).

Proof. Taking a space-derivative of (32), one gets

wx(x, t) = ux(x, t) − K
ï
AD(t)eAD(t)xX(t) + D(t)Bu(x, t)

+ AD(t)2
∫ x

0
eAD(t)(x−y)Bu(y, t)dy

ò
(33)
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which iswell-defined for (x, t) ∈ Du, following Lemma 2. Similarly,
taking a time-derivative of (32), one gets

wt (x, t) = ut (x, t) (34)

− KḊ(t)
ï
eAD(t)xAxX(t) +

∫ x

0
eAD(t)(x−y)Bu(y, t)dy

ò
− K
ï
eAD(t)x(AX + Bu(0, t)) + D(t)

d
dt

ï
∑

(xi,xi+1)∈X[0,x](t)2, xi<xi+1

∫ x−i+1

x+i

eAD(t)(x−y)Bu(y, t)dy
òò

in which we have introduced, for (a, b) ∈ [0, 1]2,

X[a,b](t) = {a} ∪ {xi ∈ X (t) | xi ≤ b} ∪ {b} (35)

and where

d
dt

ï ∑
(xi,xi+1)∈X[0,x](t)2, xi<xi+1

∫ x+i+1

x−i

eAD(t)(x−y)Bu(y, t)dy
ò

=

∑
(xi,xi+1)∈X[0,x](t)2, xi<xi+1

ï∫ x−i+1

x+i

d
dt

Å
eAD(t)(x−y)Bu(y, t)

ã
dy

+ ẋi+1eAD(t)(x−xi+1)Bu(x−

i+1, t) − ẋieAD(t)(x−xi)Bu(x+

i , t)
ò

(36)

with the convention ẋi = 0 if xi = 0 or xi = x. From these
expressions, using Lemma 2, one can deduce thatwt is well-posed
for (x, t) ∈ Du.

Lemma 5. The infinite-dimensional backstepping transforma-
tion (32) together with the control law (6) transform the plant (3)
into the target system

Ẋ(t) = (A + BK )X(t) + Bw(0, t) (37)

D(t)wt = (1 + Ḋ(t)(x − 1))wx − D(t)Ḋ(t)g(x, t) , (x, t) ∈ Du (38)
w(1, t) = 0 (39)

w(x, t+) = u(x, t+) − K
ï
eAD(t

+)xX(t) (40)

+ D(t+)
∫ x

0
eAD(t

+)(x−y)Bu(y, t)dy
ò
, t ∈ T

(ÛD − D(t))vt = (1 − xḊ(t))vx , (x, t) ∈ Du (41)
v(1, t) = w(0, t) + KX(t) (42)

v(x, t+) = U(t − D + x(D(t+) − ÛD)) , t ∈ T (43)

with

g(x, t) = KeAD(t)x(AX + Bu(0, t)). (44)

Proof. As previously, taking time- and space-derivatives of (32),
one gets, using integration by parts for the second equation,

wt = ut − KḊ(t)
ï
eAD(t)xAxX(t) (45)

+

∫ x

0
eAD(t)(x−y)(I + AD(t)(x − y))Bu(y, t)dy

ò
− K
ï
eAD(t)x(AX + Bu(0, t)) + D(t)

∫ x

0
eAD(t)(x−y)But (y, t)dy

ò
− KD(t)

∑
xi∈X(0,x)(t)

ẋieAD(t)(x−xi(t))B(u(x−

i , t) − u(x+

i , t))

wx = ux − K
ï
eAD(t)xAD(t)X + D(t)Bu(x, t)

+ D(t)
∫ x

0
eAD(t)(x−y)Bux(y, t)dy

− D(t)
∑

(xi,xi+1)∈X[0,x](t)2, xi<xi+1

[eAD(t)(x−xi+1(t))Bu(x−

i+1, t)

− eAD(t)(x−xi(t))Bu(x+

i , t)]
ò

(46)

in which we have introduced

X(a,b)(t) = {xi ∈ X (t) | xi ∈ (a, b)} , (a, b) ∈ [0, 1]2. (47)

Matching those two expressions and using (22) and (26), one
obtains (38) with

g(x, t) = K
ï
eAD(t)xAxX(t) + (1 − x)eAD(t)x(AX + Bu(0, t))

+

∫ x

0
eAD(t)(x−y)(I + AD(t)(x − y))Bu(y, t)dy

ò
+ K

∫ x

0
eAD(t)(x−y)B(y − x)ux(y, t)dy

+ K
∑

xi∈X (0,x)(t)

(x − xi)eAD(t)(x−xi)B[u(x−

i , t) − u(x+

i , t)] (48)

which, using the following integration by parts∫ x

0
eAD(t)(x−y)B(x − y)uxdy = −xeADxBu(0, t)∑
xi∈X (0,x)(t)

(x − xi)eAD(t)(x−xi)B[u(x−

i , t) − u(x+

i , t)]

+

∫ x

0
eAD(x−y)(I + AD(t)(x − y))Bu(y, t)dy (49)

can be expressed as (44). The boundary condition (39) di-
rectly follows from the choice of the control law (6) and the
backstepping transformation definition (32). Finally, the boundary
condition (42) follows from (30) and the backstepping transforma-
tion (32) for x = 0.

As the target system presents the suitable boundary condition
w(1, t) = 0, this is the one which is used in the Lyapunov analysis.

3.3. Stability analysis — proof of Theorem 1

Consider the following Lyapunov functional candidate

V (t) = X(t)TPX(t) + b1D(t)
∫ 1

0
(1 + x)w(x, t)2dx

+ b2(ÛD − D(t))
∫ 1

0
(1 + x)v(x, t)2dx (50)

in which P is the symmetric positive-definite solution of the Lya-
punov equation P(A + BK ) + (A + BK )TP = −Q , for a given sym-
metric definite-positive matrix Q and b1, b2 are positive constant
parameters. As D(t) is piecewise continuously differentiable and
according to Lemma 4, it is worth observing that this functional is
piecewise continuously differentiable.

Define

Γ0(t) = |X(t)|2 +

∫ t

t−ÛD U(s)2ds. (51)
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Note that, using Young and Cauchy–Schwarz inequalities, to-
gether with the inverse backstepping transformation

u(x, t) = w(x, t) + K
ï
e(A+BK )D(t)X(t)

+ D(t)
∫ x

0
e(A+BK )D(t)(x−y)Bw(y, t)dy

ò
(52)

one obtains the existence of constants r1, r2, s1, s2 > 0 such that

∥u(t)∥2
≤ r1|X(t)|2 + r2∥w(t)∥2 (53)

∥w(t)∥2
≤ s1|X(t)|2 + s2∥u(t)∥2 (54)

and hence, observing that
∫ t
t−D(t) U(s)2ds = D(t)∥u(t)∥2 and that∫ t−D(t)

t−ÛD U(s)2ds = (ÛD − D(t))∥v(t)∥2, we deduce that there are
µ1, µ2 > 0 such that

µ1Γ0(t) ≤ V (t) ≤ µ2Γ0(t). (55)

Now, consider ti ∈ T . Taking a time-derivative of (50) for t ∈

(ti, ti+1) and using integrations by parts jointly with (22)–(23) and
Lemma 4, one gets

V̇ (t) = −XTQX + 2XTPBw(0, t) + b1

Å
− (1 − Ḋ(t))w(0, t)2

− ∥w(t)∥2
− 2Ḋ(t)

∫ 1

0
xw(x, t)2dx +

∑
xi∈X(0,1)(t)

(1 + xi(t))

× [D(t)ẋi(t) + 1 + Ḋ(t)(xi(t) − 1)]  
=0

[w(x−

i )
2
− w(x+

i )
2
]

ã
− 2D(t)Ḋ(t)

∫ 1

0
(1 + x)w(x, t)g(x, t)dx

+ Ḋ(t)
∫ 1

0
(1 + x)[b1w(x, t)2 − b2v(x, t)2]dx

+ b2

Å
2v(1, t)2 − v(0, t)2 − ∥v(t)∥2

− 2Ḋ(t)v(1, t)2

+ Ḋ(t)
∫ 1

0
(1 + 2x)v(x, t)2dx +

∑
xi∈X(0,1)(t)

(1 + xi(t)) (56)

× [ẋi(t)(ÛD − D(t)) + 1 − xiḊ(t)]  
=0

[v(x−

i , t)
2
− v(x+

i , t)
2
]

ã
in which, from (30) and (32),

2v(1, t)2 ≤ 4(w(0, t)2 + |K |
2
|X(t)|2). (57)

Using the fact that, from (6) with Young and Cauchy–Schwarz
inequalities,

u(0, t)2 = U(t − D(t))2

≤ M̃(|X(t − D(t))|2 + ∥u(t − D(t))∥2) , t ≥ D (58)

for a given positive constant M̃ , together with (53) and Young
and Cauchy–Schwarz inequalities, one obtains the existence of a
constantM > 0 such that⏐⏐⏐⏐2D(t)∫ 1

0
(1 + x)w(x, t)g(x, t)dx

⏐⏐⏐⏐
≤ M
Å

max
s∈[−D,0]

|X(t + s)|2 + max
s∈[−D,0]

∥w(t + s)∥2
ã

(59)

2v(1, t)2 ≤ M
Å

max
s∈[−D,0]

|X(t + s)|2 + max
s∈[−D,0]

∥w(t + s)∥2
ã

(60)

w(0, t)2 ≤ M
Å

max
s∈[−D,0]

|X(t + s)|2 + max
s∈[−D,0]

∥w(t + s)∥2
ã

(61)

for t ≥ D. Therefore, with (57), (59)–(61) and applying Young
inequality, one gets f.a.a. t ≥ D

V̇ (t) ≤ −

Å
λ(Q )
2

− 4b2|K |
2
ã

|X(t)|2 − b1∥w(t)∥2

− b2∥v(t)∥2
−

Å
b1 − 4b2 −

2|PB|2

λ(Q )

ã
w(0, t)2

+ b0|Ḋ(t)|
Å

max
s∈[−D,0]

|X(t + s)|2 + max
s∈[−D,0]

∥w(t + s)∥2
ã

(62)

in which b0 = b1(4 + 2M) + b2(5 + M). Consequently, choosing
b2 =

λ(Q )
16|K |2

, b1 > 4b2 +
2|PB|2
λ(Q ) , it follows

V̇ (t) ≤ −ηV (t) + η0|Ḋ(t)| max
s∈[−D,0]

V (t + s) , f.a.a. t ≥ D (63)

in which we have introduced η =
min
{
λ(Q )
4 ,b2

}
max
{
λ(P),2b1ÛD} and η0 =

b0
min{λ(P),b1D}

. We now consider (63) for t ∈ (ti, ti+1) and introduce
W such that

Ẇ (t) = − ηW (t) + b(t) max
s∈[−D,0]

W (t + s) , f.a.a. t ∈ (ti, ti+1] (64)

W (t) =

®
V (t) if t ∈ [ti − D, ti)

max
{
V (t+i ), V (t−i )

}
if t = ti

(65)

in which b is a function such that b(t) = η0|Ḋ(t)| for t ∈ (ti, ti+1).
Such a solution is well-defined, as Assumption 1-(ii) guarantees
that the initial condition is piecewise continuous and according
to Lemma 7. Applying Lemma 6, one concludes that there exists
δ∗

∈ (0,
Ä
η

η0

ä2
) such that, for δ < δ∗, there exist two constants

r, γ > 0 (independent of ti+1 − ti) such that, for t ≥ D,

W (t) ≤ r max
s∈[−D,0]

W (ti + s) e−γ (t−ti) , t ∈ [ti, ti+1). (66)

Considering z = W − V , with a contradiction argument (similarly
to the one employed in the proof of Lemma 6), one can conclude
that z(t) ≥ 0 for t ∈ [ti, ti+1) and thus that

V (t) ≤ r max
s∈[−D,0]

W (ti + s) e−γ (t−ti) , t ∈ [ti, ti+1). (67)

Hence, for δ < δ∗, using (55), the definition (65) and the fact that
Γ0 is continuous, one deduces the existence of R̃, γ̃ > 0 such that,
for t ≥ D,

Γ0(t) ≤ R̃ max
s∈[−D,0]

Γ0(ti + s) e−γ̃ (t−max
{

ti,D
}

)
, t ∈ [ti, ti+1). (68)

Consequently, as Γ is a continuous functional, one gets

max
s∈[−D,0]

Γ0(ti+1 + s) ≤ R̃e−γ̃ (∆ti−D) max
s∈[−D,0]

Γ0(ti + s)

in which, potentially,∆ti ≤ D. Hence, with ND(t, τ ) the number of
discontinuities in the interval (τ , t), it follows that

Γ0(t) ≤ R̃ND(t,D)e−γ̃ (t−D−ND(t,D)D) max
s∈[−D,0]

Γ0(D + s)

or equivalently, using (9)

Γ0(t) ≤ eN0(ln(R̃)+γ̃D)e
−

Ä
γ̃−

ln(R̃)+γ̃D
τD

ä
(t−D)

max
s∈[−D,0]

Γ0(D + s).

Consequently, if τD > τ ∗

D
∆
=

ln(R̃)
γ̃

+ D and as ÛD can be chosen
arbitrarily close to D, there exist two constants R, γ > 0 such that
the exponential stability result in terms of Γ of Theorem 1 holds.
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Fig. 4. Schematic view of the considered system with communication delay. The
controller and the plant exchange information through a network in which a
supervisor orchestrates the data routing by choosing between a family of candidates
paths.

4. Illustrative toy example: communication delay

To illustrate the relevance of the proposed prediction-based
control law, we consider the unstable second-order dynamics

Ẋ(t) =

Å
0 1

−1 1

ã
X(t) +

Å
0
1

ã
U(t − D(t)) (69)

inwhichD(t) is a piecewise continuously differentiable delay func-
tion as considered throughout this paper. It can be subject to large
variations. A schematic viewof the system at stake is given in Fig. 4.
We consider that the controller sends orders to the plant through
a network in which a supervisor orchestrates the data routing by
choosing between a family of candidate paths. This routing tries
to keep the data queuing lines below some acceptable value. If it
increases too much, a new route is chosen, causing delay jumps.
We assume that the communication channels between the plant
and the controller are not symmetric, resulting into a sole input
delay.2

We first consider the delay function pictured in Fig. 5(b). In
this case, data were routed in such a way that reordering occurs
periodically, resulting in periodic jumps and non-FIFO delay vari-
ations (Ḋ exhibits values larger than one periodically). The control
law (6) is applied with the feedback gain K = −[9 10] and imple-
mented with a trapezoidal discretization of the integral. Closed-
loop simulation results are reported in Fig. 5. One can observe that
the plant asymptotically converges, as Theorem1 guarantees it can
be the case. Indeed, the intervals duringwhich the delay derivative
is larger than one are reduced enough compared to the dwell time
(constant in this example) to guarantee that the condition δ < δ∗

required by Theorem1holds. On the other hand, a predictor using a
constant average delay value (D ≈ 0.22) fails to stabilize the plant.
In all likelihood, this result could be explained by the selection of a
relatively high feedback gain value K = −[9 10]. This illustrates
the interest of using the current delay value as prediction horizon
rather than an average value of it, grounding in a delay-robustness
property of the prediction-based controller (as studied in a FIFO
context in Bekiaris-Liberis and Krstic, 2013d).

To evaluate our controller performance in a more challenging
context, we consider now that the delay is a discrete-time random
process, (D(n))n∈N = (D(nTs))n∈N with Ts = 0.3 s and D(n) a
uniform random variable on [0.8, 1.2]. The control law (6) is now
applied with the feedback gain K = −[3 4]. Corresponding
simulation results are pictured in Fig. 6 and exhibit the same
convergence property as previously. Similarly, a prediction-based
controller using the expected delay value E(D(n)) = 1 as prediction
horizon fails to stabilize the plant. Of course, this framework does
not fit into the mathematical formalism considered throughout
this paper, which could be considered as a first step to address this
case. This is a direction of future works, the interest of which is
strengthened by the simulation results of Fig. 6.

2 An even more general and representative modeling could also include a time-
varying output delay (to account for the fact that the plant sends outputs to the
controller through a similar network). To handle this additive complexity, our
control strategy should be extended to handle linear time-varying dynamics.

(a) State and control evolution.

(b) Delay and functionals evolution.

Fig. 5. Simulation results with a feedback gain K = −[9 10] and initial conditions
X(0) = [1 0]T , U0 = 0. The controller proposed in this paper is compared with a
prediction-based controller using a constant delay D ≈ 0.22. The functionals Γ and
V are calculated with D = 1.

5. Conclusion

This paper presents a prediction-based control for a time-
varying input delay, the variations of which are not assumed to
satisfy a FIFO property and are not assumed to be continuous or
with sufficiently small jumps. We propose to use the current delay
as a prediction horizon and proved that the closed-loop system
exponentially converges, provided that the delay time-derivative
is sufficiently small in the sense of an average L2-norm and that
the delay discontinuities are sufficiently sparse in the sense of the
average dwell time. This result is very promising as it enables to
alleviate the very limiting assumption Ḋ(t) < 1, t ≥ 0 and to
consider delays with strong discontinuities.
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(a) State and control evolution.

(b) Delay and functionals evolution.

Fig. 6. Simulation results with a feedback gain K = −[3 4] and initial conditions
X(0) = [1 0]T , U0 = 0. The delay is a discrete-time random process, (D(n))n∈N =

(D(nTs))n∈N with Ts = 0.3 s and D(n) a uniform random variable on [0.8, 1.2]. The
controller proposed in this paper is compared with a prediction-based controller
using a constant delay D = 1. The functionals Γ and V are calculated with D = 1.5.

Much more remains to be done. Extension of this work to more
general dynamics, such as time-varying or nonlinear ones, is a first
path to explore. This will likely require the design of new Halanay-
type Delay Differential Inequalities. Further, the interest of Lya-
punov techniques standardly used in the field of sampled-data
systems (looped functionals) should be investigated in this context.

Appendix A. Well-posedness of (26)–(31) — Proof of Lemma 3

We start this proof by noticing that (11)–(12) is a solution to
the system (26)–(31). We now wish to prove that this solution is

unique and continuously depends on its initial condition.With this
aim in view, consider (u, v) a solution to (26)–(31) and introduce
the following distributed variable

ū(x, t) =

⎧⎪⎪⎨⎪⎪⎩
u
Å

D̄
D(t)

(x − 1) + 1, t
ã
, x ∈

ï
D̄ − D(t)

D̄
, 1
ò

v

Å
D̄

D̄ − D(t)
x, t
ã
, x ∈

ï
0,

D̄ − D(t)
D̄

ò (70)

which can be inverted as⎧⎪⎪⎨⎪⎪⎩
u(x, t) =ū

Å
1 +

D(t)
D̄

(x − 1), t
ã

v(x, t) =ū
Å
D̄ − D(t)

D̄
x, t
ã
.

(71)

Note that the variable (70) is well-defined as ū
Ä

D̄−D(t)
D̄

ä
=

u(0, t) = v(1, t) according to (30). Furthermore, taking time-
and space-derivatives of ū and using (26)–(31), one proves that it
satisfies

D̄ūt = ūx (72)
ū(1, t) = U(t) (73)

which has a unique weak solution in L2(0, 1) (see Curtain & Zwart,
1995). Thus, from its inverse (71), this implies that (u, v) is the
unique weak solution of (26)–(31) and continuously depends on
its initial condition.

Appendix B. Time-varying Halanay inequality

We use the following result, the proof of which is inspired from
Mazenc and Malisoff (2015).

Lemma 6. Consider a nonnegative piecewise continuously differen-
tiable function x with only one discontinuity at time t = 0 and such
that®

ẋ(t) ≤ −ax(t) + b(t) max
s∈[−D,0]

x(t + s) , f.a.a. t > 0

x0 = ψ ∈ Cpw([−D, 0],R)
(74)

in which D ≥ 0, a ≥ 0 and b : R+ → R+ is a piecewise continuous
function with only one discontinuity at time t = 0 and which satisfies
for some T > 0, δ > 0 and T0 > D + T

1
T

∫ t+T

t
b(s)2ds ≤ δ , t ∈ [0, T0 − T ]. (75)

There exists δ∗
∈ (0, a2) (independent of T0) such that, if δ < δ∗,

then there exist two constants γ , r ≥ 0 (independent of T0) such that

∀t ≥ t0 x(t) ≤ r maxψe−γ t , t ∈ [0, T0]. (76)

Proof. We start by proving the existence of r0 > 0 such that

max
s∈[−T−D,0]

x(T + s) ≤ r0 maxψ. (77)

Let k > maxψ and y such that y(t) = k for t ∈ [−D, 0] and
y(t) = k exp

Ä∫ t
0 b(s)ds

ä
for t ∈ [0, T ]. Thus, y is an increasing

function which satisfies

ẏ(t) = b(t) max
s∈[−D,0]

y(t + s) , t > 0. (78)

Consider z = y−x and, by contradiction, assume there exists t1
such that z(t1) < 0. Then, by continuity, there exists t2 such that

z(t) > 0 for t ∈ [0, t2)
z(t2) = 0
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ż(t2) ≤ 0. (79)

However, from (74) and (78), it follows that

ż(t2) ≥ b(t2)y(t2) − b(t2)max x(t2) > 0

in which the last inequality follows from the definition of t2 and
is in contradiction with (79). Therefore, z(t) ≥ 0, t ∈ [0, T ]. As
the previous considerations hold for all k > maxψ , using Cauchy–
Schwarz inequality, one concludes that

x(t) ≤ exp
Å∫ t

0
b(s)ds

ã
maxψ

≤ exp

( ∫ t

0
b(s)2ds

√
t

)
maxψ , t ∈ [0, T ].

As t ∈ [0, T ], using (75), it follows that (77) holds with r0 =

e
√
δT

√
T .

Now, consider t ≥ T . Integrating (74) between t − T and t , one
gets

x(t) ≤ e−aT x(t − T ) +

∫ t

t−T
e−a(t−s)b(s) max

ξ∈[−D,0]
x(s + ξ )ds

≤

Å
e−aT

+

∫ t

t−T
e−a(t−s)b(s)ds

ã
max

s∈[−T−D,0]
x(t + s)

inwhich the right-hand side iswell-defined according to Lemma 7.
Using Cauchy–Schwarz inequality and from (75), one obtains

x(t) ≤

(
e−aT

+

…
1 − e−2aT

2a

 ∫ t

t−T
b(s)2ds

)
max

s∈[−T−D,0]
x(t + s)

≤ c max
s∈[−T−D,0]

x(t + s)

in which

c = e−aT
+

…
1 − e−2aT

2a

√
Tδ. (80)

Thus, with (77), if c < 1, the result holds. With straightforward
calculations, one obtains that c < 1 if and only if

δ ≤
2a
T

1 − e−aT

1 + eaT
∆
= δ∗.

Finally, one can note that δ∗ is a decreasing function with respect
to T which tends to a2 as T tends to zero. This gives the expected
result.

In the above, we also needed the following result.

Lemma 7. Consider f ∈ Cpw(R,R) and D ≥ 0, then

h : t ∈ R ↦→ max
s∈[t−D,t]

f (s) ∈ Cpw(R,R). (81)

Proof. The main idea of this proof is to construct a new grid for
h which gathers the grid corresponding to f and the same one but
delayed by D-units of time.

Consider I = [a, b]. Define Ĩ = [a − D, b] and a finite sequence
(t̃n)0≤n≤Ñ partitioning Ĩ and corresponding to the piecewise contin-
uous function f . Define

t0 = a , ti+1 = min
{

min
0≤n≤Ñ
ti<t̃n

t̃n,D + min
0≤n≤Ñ
ti−D<t̃n

t̃n
}
. (82)

By construction, this sequence is finite and a = t0 < t1 < · · · <
tN = b (for a given N ∈ N). Consider t ∈ (ti, ti+1). By definition, as
[t − D, t] = [t − D, ti+1 − D) ∪ [ti+1 − D, ti] ∪ (ti, t],

h(t) = max

{
sup

s∈[t−D,ti+1−D)
f (s), max

s∈[ti+1−D,ti]
f (s), sup

s∈(ti,t]
f (s)

}
(83)

or, denoting f e the continuity extension of f (which exists as f is
piecewise continuous),

h(t) = max

®
max

s∈[t−D,ti+1−D]

f e(s), max
s∈[ti+1−D,ti]

f (s), max
s∈[ti,t]

f e(s)

´
. (84)

Finally, applying the maximum theorem (Berge, 1963), one
concludes that t ↦→ maxs∈[t−D,ti+1−D]

f e(s) and t ↦→ maxs∈[ti,t]f
e(s)

are continuous functions as f e is continuous over the intervals
under consideration. Therefore, it follows that h is continuous
over (ti, ti+1) by composition of continuous functions. One also
concludes that h admits a finite left-hand side limit at ti+1 and
right-hand site limit at ti, which concludes the proof.
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